1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
THE ALGORITHM
-------------
solve A*x = b+w, with x and w subject to certain LCP conditions.
each x(i),w(i) must lie on one of the three line segments in the following
diagram. each line segment corresponds to one index set :
w(i)
/|\ | :
| | :
| |i in N :
w>0 | |state[i]=0 :
| | :
| | : i in C
w=0 + +-----------------------+
| : |
| : |
w<0 | : |i in N
| : |state[i]=1
| : |
| : |
+-------|-----------|-----------|----------> x(i)
lo 0 hi
the Dantzig algorithm proceeds as follows:
for i=1:n
* if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
negative towards the line. as this is done, the other (x(j),w(j))
for j<i are constrained to be on the line. if any (x,w) reaches the
end of a line segment then it is switched between index sets.
* i is added to the appropriate index set depending on what line segment
it hits.
we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
simpler, because the starting point for x(i),w(i) is always on the dotted
line x=0 and x will only ever increase in one direction, so it can only hit
two out of the three line segments.
NOTES
-----
this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
the implementation is split into an LCP problem object (dLCP) and an LCP
driver function. most optimization occurs in the dLCP object.
a naive implementation of the algorithm requires either a lot of data motion
or a lot of permutation-array lookup, because we are constantly re-ordering
rows and columns. to avoid this and make a more optimized algorithm, a
non-trivial data structure is used to represent the matrix A (this is
implemented in the fast version of the dLCP object).
during execution of this algorithm, some indexes in A are clamped (set C),
some are non-clamped (set N), and some are "don't care" (where x=0).
A,x,b,w (and other problem vectors) are permuted such that the clamped
indexes are first, the unclamped indexes are next, and the don't-care
indexes are last. this permutation is recorded in the array `p'.
initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
the corresponding elements of p are swapped.
because the C and N elements are grouped together in the rows of A, we can do
lots of work with a fast dot product function. if A,x,etc were not permuted
and we only had a permutation array, then those dot products would be much
slower as we would have a permutation array lookup in some inner loops.
A is accessed through an array of row pointers, so that element (i,j) of the
permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
we still have to actually move the data.
during execution of this algorithm we maintain an L*D*L' factorization of
the clamped submatrix of A (call it `AC') which is the top left nC*nC
submatrix of A. there are two ways we could arrange the rows/columns in AC.
(1) AC is always permuted such that L*D*L' = AC. this causes a problem
when a row/column is removed from C, because then all the rows/columns of A
between the deleted index and the end of C need to be rotated downward.
this results in a lot of data motion and slows things down.
(2) L*D*L' is actually a factorization of a *permutation* of AC (which is
itself a permutation of the underlying A). this is what we do - the
permutation is recorded in the vector C. call this permutation A[C,C].
when a row/column is removed from C, all we have to do is swap two
rows/columns and manipulate C.
*/
#include <ode/common.h>
#include "lcp.h"
#include <ode/matrix.h>
#include <ode/misc.h>
#include "mat.h" // for testing
#include <ode/timer.h> // for testing
//***************************************************************************
// code generation parameters
// LCP debugging (mosty for fast dLCP) - this slows things down a lot
//#define DEBUG_LCP
//#define dLCP_SLOW // use slow dLCP object
#define dLCP_FAST // use fast dLCP object
// option 1 : matrix row pointers (less data copying)
#define ROWPTRS
#define ATYPE dReal **
#define AROW(i) (A[i])
// option 2 : no matrix row pointers (slightly faster inner loops)
//#define NOROWPTRS
//#define ATYPE dReal *
//#define AROW(i) (A+(i)*nskip)
// use protected, non-stack memory allocation system
#ifdef dUSE_MALLOC_FOR_ALLOCA
extern unsigned int dMemoryFlag;
#define ALLOCA(t,v,s) t* v = (t*) malloc(s)
#define UNALLOCA(t) free(t)
#else
#define ALLOCA(t,v,s) t* v =(t*)dALLOCA16(s)
#define UNALLOCA(t) /* nothing */
#endif
#define NUB_OPTIMIZATIONS
//***************************************************************************
// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
// A is nskip. this only references and swaps the lower triangle.
// if `do_fast_row_swaps' is nonzero and row pointers are being used, then
// rows will be swapped by exchanging row pointers. otherwise the data will
// be copied.
static void swapRowsAndCols (ATYPE A, int n, int i1, int i2, int nskip,
int do_fast_row_swaps)
{
int i;
dAASSERT (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
nskip >= n && i1 < i2);
# ifdef ROWPTRS
for (i=i1+1; i<i2; i++) A[i1][i] = A[i][i1];
for (i=i1+1; i<i2; i++) A[i][i1] = A[i2][i];
A[i1][i2] = A[i1][i1];
A[i1][i1] = A[i2][i1];
A[i2][i1] = A[i2][i2];
// swap rows, by swapping row pointers
if (do_fast_row_swaps) {
dReal *tmpp;
tmpp = A[i1];
A[i1] = A[i2];
A[i2] = tmpp;
}
else {
ALLOCA (dReal,tmprow,n * sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (tmprow == NULL) {
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
memcpy (tmprow,A[i1],n * sizeof(dReal));
memcpy (A[i1],A[i2],n * sizeof(dReal));
memcpy (A[i2],tmprow,n * sizeof(dReal));
UNALLOCA(tmprow);
}
// swap columns the hard way
for (i=i2+1; i<n; i++) {
dReal tmp = A[i][i1];
A[i][i1] = A[i][i2];
A[i][i2] = tmp;
}
# else
dReal tmp;
ALLOCA (dReal,tmprow,n * sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (tmprow == NULL) {
return;
}
#endif
if (i1 > 0) {
memcpy (tmprow,A+i1*nskip,i1*sizeof(dReal));
memcpy (A+i1*nskip,A+i2*nskip,i1*sizeof(dReal));
memcpy (A+i2*nskip,tmprow,i1*sizeof(dReal));
}
for (i=i1+1; i<i2; i++) {
tmp = A[i2*nskip+i];
A[i2*nskip+i] = A[i*nskip+i1];
A[i*nskip+i1] = tmp;
}
tmp = A[i1*nskip+i1];
A[i1*nskip+i1] = A[i2*nskip+i2];
A[i2*nskip+i2] = tmp;
for (i=i2+1; i<n; i++) {
tmp = A[i*nskip+i1];
A[i*nskip+i1] = A[i*nskip+i2];
A[i*nskip+i2] = tmp;
}
UNALLOCA(tmprow);
# endif
}
// swap two indexes in the n*n LCP problem. i1 must be <= i2.
static void swapProblem (ATYPE A, dReal *x, dReal *b, dReal *w, dReal *lo,
dReal *hi, int *p, int *state, int *findex,
int n, int i1, int i2, int nskip,
int do_fast_row_swaps)
{
dReal tmp;
int tmpi;
dIASSERT (n>0 && i1 >=0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n &&
i1 <= i2);
if (i1==i2) return;
swapRowsAndCols (A,n,i1,i2,nskip,do_fast_row_swaps);
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (dMemoryFlag == d_MEMORY_OUT_OF_MEMORY)
return;
#endif
tmp = x[i1];
x[i1] = x[i2];
x[i2] = tmp;
tmp = b[i1];
b[i1] = b[i2];
b[i2] = tmp;
tmp = w[i1];
w[i1] = w[i2];
w[i2] = tmp;
tmp = lo[i1];
lo[i1] = lo[i2];
lo[i2] = tmp;
tmp = hi[i1];
hi[i1] = hi[i2];
hi[i2] = tmp;
tmpi = p[i1];
p[i1] = p[i2];
p[i2] = tmpi;
tmpi = state[i1];
state[i1] = state[i2];
state[i2] = tmpi;
if (findex) {
tmpi = findex[i1];
findex[i1] = findex[i2];
findex[i2] = tmpi;
}
}
// for debugging - check that L,d is the factorization of A[C,C].
// A[C,C] has size nC*nC and leading dimension nskip.
// L has size nC*nC and leading dimension nskip.
// d has size nC.
#ifdef DEBUG_LCP
static void checkFactorization (ATYPE A, dReal *_L, dReal *_d,
int nC, int *C, int nskip)
{
int i,j;
if (nC==0) return;
// get A1=A, copy the lower triangle to the upper triangle, get A2=A[C,C]
dMatrix A1 (nC,nC);
for (i=0; i<nC; i++) {
for (j=0; j<=i; j++) A1(i,j) = A1(j,i) = AROW(i)[j];
}
dMatrix A2 = A1.select (nC,C,nC,C);
// printf ("A1=\n"); A1.print(); printf ("\n");
// printf ("A2=\n"); A2.print(); printf ("\n");
// compute A3 = L*D*L'
dMatrix L (nC,nC,_L,nskip,1);
dMatrix D (nC,nC);
for (i=0; i<nC; i++) D(i,i) = 1/_d[i];
L.clearUpperTriangle();
for (i=0; i<nC; i++) L(i,i) = 1;
dMatrix A3 = L * D * L.transpose();
// printf ("L=\n"); L.print(); printf ("\n");
// printf ("D=\n"); D.print(); printf ("\n");
// printf ("A3=\n"); A2.print(); printf ("\n");
// compare A2 and A3
dReal diff = A2.maxDifference (A3);
if (diff > 1e-8)
dDebug (0,"L*D*L' check, maximum difference = %.6e\n",diff);
}
#endif
// for debugging
#ifdef DEBUG_LCP
static void checkPermutations (int i, int n, int nC, int nN, int *p, int *C)
{
int j,k;
dIASSERT (nC>=0 && nN>=0 && (nC+nN)==i && i < n);
for (k=0; k<i; k++) dIASSERT (p[k] >= 0 && p[k] < i);
for (k=i; k<n; k++) dIASSERT (p[k] == k);
for (j=0; j<nC; j++) {
int C_is_bad = 1;
for (k=0; k<nC; k++) if (C[k]==j) C_is_bad = 0;
dIASSERT (C_is_bad==0);
}
}
#endif
//***************************************************************************
// dLCP manipulator object. this represents an n*n LCP problem.
//
// two index sets C and N are kept. each set holds a subset of
// the variable indexes 0..n-1. an index can only be in one set.
// initially both sets are empty.
//
// the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
#ifdef dLCP_SLOW
// simple but slow implementation of dLCP, for testing the LCP drivers.
#include "array.h"
struct dLCP {
int n,nub,nskip;
dReal *Adata,*x,*b,*w,*lo,*hi; // LCP problem data
ATYPE A; // A rows
dArray<int> C,N; // index sets
int last_i_for_solve1; // last i value given to solve1
dLCP (int _n, int _nub, dReal *_Adata, dReal *_x, dReal *_b, dReal *_w,
dReal *_lo, dReal *_hi, dReal *_L, dReal *_d,
dReal *_Dell, dReal *_ell, dReal *_tmp,
int *_state, int *_findex, int *_p, int *_C, dReal **Arows);
// the constructor is given an initial problem description (A,x,b,w) and
// space for other working data (which the caller may allocate on the stack).
// some of this data is specific to the fast dLCP implementation.
// the matrices A and L have size n*n, vectors have size n*1.
// A represents a symmetric matrix but only the lower triangle is valid.
// `nub' is the number of unbounded indexes at the start. all the indexes
// 0..nub-1 will be put into C.
~dLCP();
int getNub() { return nub; }
// return the value of `nub'. the constructor may want to change it,
// so the caller should find out its new value.
// transfer functions: transfer index i to the given set (C or N). indexes
// less than `nub' can never be given. A,x,b,w,etc may be permuted by these
// functions, the caller must be robust to this.
void transfer_i_to_C (int i);
// this assumes C and N span 1:i-1. this also assumes that solve1() has
// been recently called for the same i without any other transfer
// functions in between (thereby allowing some data reuse for the fast
// implementation).
void transfer_i_to_N (int i);
// this assumes C and N span 1:i-1.
void transfer_i_from_N_to_C (int i);
void transfer_i_from_C_to_N (int i);
int numC();
int numN();
// return the number of indexes in set C/N
int indexC (int i);
int indexN (int i);
// return index i in set C/N.
// accessor and arithmetic functions. Aij translates as A(i,j), etc.
// make sure that only the lower triangle of A is ever referenced.
dReal Aii (int i);
dReal AiC_times_qC (int i, dReal *q);
dReal AiN_times_qN (int i, dReal *q); // for all Nj
void pN_equals_ANC_times_qC (dReal *p, dReal *q); // for all Nj
void pN_plusequals_ANi (dReal *p, int i, int sign=1);
// for all Nj. sign = +1,-1. assumes i > maximum index in N.
void pC_plusequals_s_times_qC (dReal *p, dReal s, dReal *q);
void pN_plusequals_s_times_qN (dReal *p, dReal s, dReal *q); // for all Nj
void solve1 (dReal *a, int i, int dir=1, int only_transfer=0);
// get a(C) = - dir * A(C,C) \ A(C,i). dir must be +/- 1.
// the fast version of this function computes some data that is needed by
// transfer_i_to_C(). if only_transfer is nonzero then this function
// *only* computes that data, it does not set a(C).
void unpermute();
// call this at the end of the LCP function. if the x/w values have been
// permuted then this will unscramble them.
};
dLCP::dLCP (int _n, int _nub, dReal *_Adata, dReal *_x, dReal *_b, dReal *_w,
dReal *_lo, dReal *_hi, dReal *_L, dReal *_d,
dReal *_Dell, dReal *_ell, dReal *_tmp,
int *_state, int *_findex, int *_p, int *_C, dReal **Arows)
{
dUASSERT (_findex==0,"slow dLCP object does not support findex array");
n = _n;
nub = _nub;
Adata = _Adata;
A = 0;
x = _x;
b = _b;
w = _w;
lo = _lo;
hi = _hi;
nskip = dPAD(n);
dSetZero (x,n);
last_i_for_solve1 = -1;
int i,j;
C.setSize (n);
N.setSize (n);
for (i=0; i<n; i++) {
C[i] = 0;
N[i] = 0;
}
# ifdef ROWPTRS
// make matrix row pointers
A = Arows;
for (i=0; i<n; i++) A[i] = Adata + i*nskip;
# else
A = Adata;
# endif
// lets make A symmetric
for (i=0; i<n; i++) {
for (j=i+1; j<n; j++) AROW(i)[j] = AROW(j)[i];
}
// if nub>0, put all indexes 0..nub-1 into C and solve for x
if (nub > 0) {
for (i=0; i<nub; i++) memcpy (_L+i*nskip,AROW(i),(i+1)*sizeof(dReal));
dFactorLDLT (_L,_d,nub,nskip);
memcpy (x,b,nub*sizeof(dReal));
dSolveLDLT (_L,_d,x,nub,nskip);
dSetZero (_w,nub);
for (i=0; i<nub; i++) C[i] = 1;
}
}
dLCP::~dLCP()
{
}
void dLCP::transfer_i_to_C (int i)
{
if (i < nub) dDebug (0,"bad i");
if (C[i]) dDebug (0,"i already in C");
if (N[i]) dDebug (0,"i already in N");
for (int k=0; k<i; k++) {
if (!(C[k] ^ N[k])) dDebug (0,"assumptions for C and N violated");
}
for (int k=i; k<n; k++)
if (C[k] || N[k]) dDebug (0,"assumptions for C and N violated");
if (i != last_i_for_solve1) dDebug (0,"assumptions for i violated");
last_i_for_solve1 = -1;
C[i] = 1;
}
void dLCP::transfer_i_to_N (int i)
{
if (i < nub) dDebug (0,"bad i");
if (C[i]) dDebug (0,"i already in C");
if (N[i]) dDebug (0,"i already in N");
for (int k=0; k<i; k++)
if (!C[k] && !N[k]) dDebug (0,"assumptions for C and N violated");
for (int k=i; k<n; k++)
if (C[k] || N[k]) dDebug (0,"assumptions for C and N violated");
last_i_for_solve1 = -1;
N[i] = 1;
}
void dLCP::transfer_i_from_N_to_C (int i)
{
if (i < nub) dDebug (0,"bad i");
if (C[i]) dDebug (0,"i already in C");
if (!N[i]) dDebug (0,"i not in N");
last_i_for_solve1 = -1;
N[i] = 0;
C[i] = 1;
}
void dLCP::transfer_i_from_C_to_N (int i)
{
if (i < nub) dDebug (0,"bad i");
if (N[i]) dDebug (0,"i already in N");
if (!C[i]) dDebug (0,"i not in C");
last_i_for_solve1 = -1;
C[i] = 0;
N[i] = 1;
}
int dLCP::numC()
{
int i,count=0;
for (i=0; i<n; i++) if (C[i]) count++;
return count;
}
int dLCP::numN()
{
int i,count=0;
for (i=0; i<n; i++) if (N[i]) count++;
return count;
}
int dLCP::indexC (int i)
{
int k,count=0;
for (k=0; k<n; k++) {
if (C[k]) {
if (count==i) return k;
count++;
}
}
dDebug (0,"bad index C (%d)",i);
return 0;
}
int dLCP::indexN (int i)
{
int k,count=0;
for (k=0; k<n; k++) {
if (N[k]) {
if (count==i) return k;
count++;
}
}
dDebug (0,"bad index into N");
return 0;
}
dReal dLCP::Aii (int i)
{
return AROW(i)[i];
}
dReal dLCP::AiC_times_qC (int i, dReal *q)
{
dReal sum = 0;
for (int k=0; k<n; k++) if (C[k]) sum += AROW(i)[k] * q[k];
return sum;
}
dReal dLCP::AiN_times_qN (int i, dReal *q)
{
dReal sum = 0;
for (int k=0; k<n; k++) if (N[k]) sum += AROW(i)[k] * q[k];
return sum;
}
void dLCP::pN_equals_ANC_times_qC (dReal *p, dReal *q)
{
dReal sum;
for (int ii=0; ii<n; ii++) if (N[ii]) {
sum = 0;
for (int jj=0; jj<n; jj++) if (C[jj]) sum += AROW(ii)[jj] * q[jj];
p[ii] = sum;
}
}
void dLCP::pN_plusequals_ANi (dReal *p, int i, int sign)
{
int k;
for (k=0; k<n; k++) if (N[k] && k >= i) dDebug (0,"N assumption violated");
if (sign > 0) {
for (k=0; k<n; k++) if (N[k]) p[k] += AROW(i)[k];
}
else {
for (k=0; k<n; k++) if (N[k]) p[k] -= AROW(i)[k];
}
}
void dLCP::pC_plusequals_s_times_qC (dReal *p, dReal s, dReal *q)
{
for (int k=0; k<n; k++) if (C[k]) p[k] += s*q[k];
}
void dLCP::pN_plusequals_s_times_qN (dReal *p, dReal s, dReal *q)
{
for (int k=0; k<n; k++) if (N[k]) p[k] += s*q[k];
}
void dLCP::solve1 (dReal *a, int i, int dir, int only_transfer)
{
ALLOCA (dReal,AA,n*nskip*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (AA == NULL) {
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,dd,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (dd == NULL) {
UNALLOCA(AA);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,bb,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (bb == NULL) {
UNALLOCA(AA);
UNALLOCA(dd);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
int ii,jj,AAi,AAj;
last_i_for_solve1 = i;
AAi = 0;
for (ii=0; ii<n; ii++) if (C[ii]) {
AAj = 0;
for (jj=0; jj<n; jj++) if (C[jj]) {
AA[AAi*nskip+AAj] = AROW(ii)[jj];
AAj++;
}
bb[AAi] = AROW(i)[ii];
AAi++;
}
if (AAi==0) {
UNALLOCA (AA);
UNALLOCA (dd);
UNALLOCA (bb);
return;
}
dFactorLDLT (AA,dd,AAi,nskip);
dSolveLDLT (AA,dd,bb,AAi,nskip);
AAi=0;
if (dir > 0) {
for (ii=0; ii<n; ii++) if (C[ii]) a[ii] = -bb[AAi++];
}
else {
for (ii=0; ii<n; ii++) if (C[ii]) a[ii] = bb[AAi++];
}
UNALLOCA (AA);
UNALLOCA (dd);
UNALLOCA (bb);
}
void dLCP::unpermute()
{
}
#endif // dLCP_SLOW
//***************************************************************************
// fast implementation of dLCP. see the above definition of dLCP for
// interface comments.
//
// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
// permuted as the other vectors/matrices are permuted.
//
// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
// contiguous indexes. the don't-care indexes follow N.
//
// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
// added or removed from the set C the factorization is updated.
// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
// the leading dimension of the matrix L is always `nskip'.
//
// at the start there may be other indexes that are unbounded but are not
// included in `nub'. dLCP will permute the matrix so that absolutely all
// unbounded vectors are at the start. thus there may be some initial
// permutation.
//
// the algorithms here assume certain patterns, particularly with respect to
// index transfer.
#ifdef dLCP_FAST
struct dLCP {
int n,nskip,nub;
ATYPE A; // A rows
dReal *Adata,*x,*b,*w,*lo,*hi; // permuted LCP problem data
dReal *L,*d; // L*D*L' factorization of set C
dReal *Dell,*ell,*tmp;
int *state,*findex,*p,*C;
int nC,nN; // size of each index set
dLCP (int _n, int _nub, dReal *_Adata, dReal *_x, dReal *_b, dReal *_w,
dReal *_lo, dReal *_hi, dReal *_L, dReal *_d,
dReal *_Dell, dReal *_ell, dReal *_tmp,
int *_state, int *_findex, int *_p, int *_C, dReal **Arows);
int getNub() { return nub; }
void transfer_i_to_C (int i);
void transfer_i_to_N (int i)
{ nN++; } // because we can assume C and N span 1:i-1
void transfer_i_from_N_to_C (int i);
void transfer_i_from_C_to_N (int i);
int numC() { return nC; }
int numN() { return nN; }
int indexC (int i) { return i; }
int indexN (int i) { return i+nC; }
dReal Aii (int i) { return AROW(i)[i]; }
dReal AiC_times_qC (int i, dReal *q) { return dDot (AROW(i),q,nC); }
dReal AiN_times_qN (int i, dReal *q) { return dDot (AROW(i)+nC,q+nC,nN); }
void pN_equals_ANC_times_qC (dReal *p, dReal *q);
void pN_plusequals_ANi (dReal *p, int i, int sign=1);
void pC_plusequals_s_times_qC (dReal *p, dReal s, dReal *q)
{ for (int i=0; i<nC; i++) p[i] += s*q[i]; }
void pN_plusequals_s_times_qN (dReal *p, dReal s, dReal *q)
{ for (int i=0; i<nN; i++) p[i+nC] += s*q[i+nC]; }
void solve1 (dReal *a, int i, int dir=1, int only_transfer=0);
void unpermute();
};
dLCP::dLCP (int _n, int _nub, dReal *_Adata, dReal *_x, dReal *_b, dReal *_w,
dReal *_lo, dReal *_hi, dReal *_L, dReal *_d,
dReal *_Dell, dReal *_ell, dReal *_tmp,
int *_state, int *_findex, int *_p, int *_C, dReal **Arows)
{
n = _n;
nub = _nub;
Adata = _Adata;
A = 0;
x = _x;
b = _b;
w = _w;
lo = _lo;
hi = _hi;
L = _L;
d = _d;
Dell = _Dell;
ell = _ell;
tmp = _tmp;
state = _state;
findex = _findex;
p = _p;
C = _C;
nskip = dPAD(n);
dSetZero (x,n);
int k;
# ifdef ROWPTRS
// make matrix row pointers
A = Arows;
for (k=0; k<n; k++) A[k] = Adata + k*nskip;
# else
A = Adata;
# endif
nC = 0;
nN = 0;
for (k=0; k<n; k++) p[k]=k; // initially unpermuted
/*
// for testing, we can do some random swaps in the area i > nub
if (nub < n) {
for (k=0; k<100; k++) {
int i1,i2;
do {
i1 = dRandInt(n-nub)+nub;
i2 = dRandInt(n-nub)+nub;
}
while (i1 > i2);
//printf ("--> %d %d\n",i1,i2);
swapProblem (A,x,b,w,lo,hi,p,state,findex,n,i1,i2,nskip,0);
}
}
*/
// permute the problem so that *all* the unbounded variables are at the
// start, i.e. look for unbounded variables not included in `nub'. we can
// potentially push up `nub' this way and get a bigger initial factorization.
// note that when we swap rows/cols here we must not just swap row pointers,
// as the initial factorization relies on the data being all in one chunk.
// variables that have findex >= 0 are *not* considered to be unbounded even
// if lo=-inf and hi=inf - this is because these limits may change during the
// solution process.
for (k=nub; k<n; k++) {
if (findex && findex[k] >= 0) continue;
if (lo[k]==-dInfinity && hi[k]==dInfinity) {
swapProblem (A,x,b,w,lo,hi,p,state,findex,n,nub,k,nskip,0);
nub++;
}
}
// if there are unbounded variables at the start, factorize A up to that
// point and solve for x. this puts all indexes 0..nub-1 into C.
if (nub > 0) {
for (k=0; k<nub; k++) memcpy (L+k*nskip,AROW(k),(k+1)*sizeof(dReal));
dFactorLDLT (L,d,nub,nskip);
memcpy (x,b,nub*sizeof(dReal));
dSolveLDLT (L,d,x,nub,nskip);
dSetZero (w,nub);
for (k=0; k<nub; k++) C[k] = k;
nC = nub;
}
// permute the indexes > nub such that all findex variables are at the end
if (findex) {
int num_at_end = 0;
for (k=n-1; k >= nub; k--) {
if (findex[k] >= 0) {
swapProblem (A,x,b,w,lo,hi,p,state,findex,n,k,n-1-num_at_end,nskip,1);
num_at_end++;
}
}
}
// print info about indexes
/*
for (k=0; k<n; k++) {
if (k<nub) printf ("C");
else if (lo[k]==-dInfinity && hi[k]==dInfinity) printf ("c");
else printf (".");
}
printf ("\n");
*/
}
void dLCP::transfer_i_to_C (int i)
{
int j;
if (nC > 0) {
// ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
for (j=0; j<nC; j++) L[nC*nskip+j] = ell[j];
d[nC] = dRecip (AROW(i)[i] - dDot(ell,Dell,nC));
}
else {
d[0] = dRecip (AROW(i)[i]);
}
swapProblem (A,x,b,w,lo,hi,p,state,findex,n,nC,i,nskip,1);
C[nC] = nC;
nC++;
# ifdef DEBUG_LCP
checkFactorization (A,L,d,nC,C,nskip);
if (i < (n-1)) checkPermutations (i+1,n,nC,nN,p,C);
# endif
}
void dLCP::transfer_i_from_N_to_C (int i)
{
int j;
if (nC > 0) {
dReal *aptr = AROW(i);
# ifdef NUB_OPTIMIZATIONS
// if nub>0, initial part of aptr unpermuted
for (j=0; j<nub; j++) Dell[j] = aptr[j];
for (j=nub; j<nC; j++) Dell[j] = aptr[C[j]];
# else
for (j=0; j<nC; j++) Dell[j] = aptr[C[j]];
# endif
dSolveL1 (L,Dell,nC,nskip);
for (j=0; j<nC; j++) ell[j] = Dell[j] * d[j];
for (j=0; j<nC; j++) L[nC*nskip+j] = ell[j];
d[nC] = dRecip (AROW(i)[i] - dDot(ell,Dell,nC));
}
else {
d[0] = dRecip (AROW(i)[i]);
}
swapProblem (A,x,b,w,lo,hi,p,state,findex,n,nC,i,nskip,1);
C[nC] = nC;
nN--;
nC++;
// @@@ TO DO LATER
// if we just finish here then we'll go back and re-solve for
// delta_x. but actually we can be more efficient and incrementally
// update delta_x here. but if we do this, we wont have ell and Dell
// to use in updating the factorization later.
# ifdef DEBUG_LCP
checkFactorization (A,L,d,nC,C,nskip);
# endif
}
void dLCP::transfer_i_from_C_to_N (int i)
{
// remove a row/column from the factorization, and adjust the
// indexes (black magic!)
int j,k;
for (j=0; j<nC; j++) if (C[j]==i) {
dLDLTRemove (A,C,L,d,n,nC,j,nskip);
for (k=0; k<nC; k++) if (C[k]==nC-1) {
C[k] = C[j];
if (j < (nC-1)) memmove (C+j,C+j+1,(nC-j-1)*sizeof(int));
break;
}
dIASSERT (k < nC);
break;
}
dIASSERT (j < nC);
swapProblem (A,x,b,w,lo,hi,p,state,findex,n,i,nC-1,nskip,1);
nC--;
nN++;
# ifdef DEBUG_LCP
checkFactorization (A,L,d,nC,C,nskip);
# endif
}
void dLCP::pN_equals_ANC_times_qC (dReal *p, dReal *q)
{
// we could try to make this matrix-vector multiplication faster using
// outer product matrix tricks, e.g. with the dMultidotX() functions.
// but i tried it and it actually made things slower on random 100x100
// problems because of the overhead involved. so we'll stick with the
// simple method for now.
for (int i=0; i<nN; i++) p[i+nC] = dDot (AROW(i+nC),q,nC);
}
void dLCP::pN_plusequals_ANi (dReal *p, int i, int sign)
{
dReal *aptr = AROW(i)+nC;
if (sign > 0) {
for (int i=0; i<nN; i++) p[i+nC] += aptr[i];
}
else {
for (int i=0; i<nN; i++) p[i+nC] -= aptr[i];
}
}
void dLCP::solve1 (dReal *a, int i, int dir, int only_transfer)
{
// the `Dell' and `ell' that are computed here are saved. if index i is
// later added to the factorization then they can be reused.
//
// @@@ question: do we need to solve for entire delta_x??? yes, but
// only if an x goes below 0 during the step.
int j;
if (nC > 0) {
dReal *aptr = AROW(i);
# ifdef NUB_OPTIMIZATIONS
// if nub>0, initial part of aptr[] is guaranteed unpermuted
for (j=0; j<nub; j++) Dell[j] = aptr[j];
for (j=nub; j<nC; j++) Dell[j] = aptr[C[j]];
# else
for (j=0; j<nC; j++) Dell[j] = aptr[C[j]];
# endif
dSolveL1 (L,Dell,nC,nskip);
for (j=0; j<nC; j++) ell[j] = Dell[j] * d[j];
if (!only_transfer) {
for (j=0; j<nC; j++) tmp[j] = ell[j];
dSolveL1T (L,tmp,nC,nskip);
if (dir > 0) {
for (j=0; j<nC; j++) a[C[j]] = -tmp[j];
}
else {
for (j=0; j<nC; j++) a[C[j]] = tmp[j];
}
}
}
}
void dLCP::unpermute()
{
// now we have to un-permute x and w
int j;
ALLOCA (dReal,tmp,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (tmp == NULL) {
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
memcpy (tmp,x,n*sizeof(dReal));
for (j=0; j<n; j++) x[p[j]] = tmp[j];
memcpy (tmp,w,n*sizeof(dReal));
for (j=0; j<n; j++) w[p[j]] = tmp[j];
UNALLOCA (tmp);
}
#endif // dLCP_FAST
//***************************************************************************
// an unoptimized Dantzig LCP driver routine for the basic LCP problem.
// must have lo=0, hi=dInfinity, and nub=0.
void dSolveLCPBasic (int n, dReal *A, dReal *x, dReal *b,
dReal *w, int nub, dReal *lo, dReal *hi)
{
dAASSERT (n>0 && A && x && b && w && nub == 0);
int i,k;
int nskip = dPAD(n);
ALLOCA (dReal,L,n*nskip*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (L == NULL) {
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,d,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (d == NULL) {
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,delta_x,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (delta_x == NULL) {
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,delta_w,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (delta_w == NULL) {
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,Dell,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (Dell == NULL) {
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,ell,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (ell == NULL) {
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,tmp,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (tmp == NULL) {
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal*,Arows,n*sizeof(dReal*));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (Arows == NULL) {
UNALLOCA(tmp);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (int,p,n*sizeof(int));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (p == NULL) {
UNALLOCA(Arows);
UNALLOCA(tmp);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (int,C,n*sizeof(int));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (C == NULL) {
UNALLOCA(p);
UNALLOCA(Arows);
UNALLOCA(tmp);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (int,dummy,n*sizeof(int));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (dummy == NULL) {
UNALLOCA(C);
UNALLOCA(p);
UNALLOCA(Arows);
UNALLOCA(tmp);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
dLCP lcp (n,0,A,x,b,w,tmp,tmp,L,d,Dell,ell,tmp,dummy,dummy,p,C,Arows);
nub = lcp.getNub();
for (i=0; i<n; i++) {
w[i] = lcp.AiC_times_qC (i,x) - b[i];
if (w[i] >= 0) {
lcp.transfer_i_to_N (i);
}
else {
for (;;) {
// compute: delta_x(C) = -A(C,C)\A(C,i)
dSetZero (delta_x,n);
lcp.solve1 (delta_x,i);
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (dMemoryFlag == d_MEMORY_OUT_OF_MEMORY) {
UNALLOCA(dummy);
UNALLOCA(C);
UNALLOCA(p);
UNALLOCA(Arows);
UNALLOCA(tmp);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
return;
}
#endif
delta_x[i] = 1;
// compute: delta_w = A*delta_x
dSetZero (delta_w,n);
lcp.pN_equals_ANC_times_qC (delta_w,delta_x);
lcp.pN_plusequals_ANi (delta_w,i);
delta_w[i] = lcp.AiC_times_qC (i,delta_x) + lcp.Aii(i);
// find index to switch
int si = i; // si = switch index
int si_in_N = 0; // set to 1 if si in N
dReal s = -w[i]/delta_w[i];
if (s <= 0) {
dMessage (d_ERR_LCP, "LCP internal error, s <= 0 (s=%.4e)",s);
if (i < (n-1)) {
dSetZero (x+i,n-i);
dSetZero (w+i,n-i);
}
goto done;
}
for (k=0; k < lcp.numN(); k++) {
if (delta_w[lcp.indexN(k)] < 0) {
dReal s2 = -w[lcp.indexN(k)] / delta_w[lcp.indexN(k)];
if (s2 < s) {
s = s2;
si = lcp.indexN(k);
si_in_N = 1;
}
}
}
for (k=0; k < lcp.numC(); k++) {
if (delta_x[lcp.indexC(k)] < 0) {
dReal s2 = -x[lcp.indexC(k)] / delta_x[lcp.indexC(k)];
if (s2 < s) {
s = s2;
si = lcp.indexC(k);
si_in_N = 0;
}
}
}
// apply x = x + s * delta_x
lcp.pC_plusequals_s_times_qC (x,s,delta_x);
x[i] += s;
lcp.pN_plusequals_s_times_qN (w,s,delta_w);
w[i] += s * delta_w[i];
// switch indexes between sets if necessary
if (si==i) {
w[i] = 0;
lcp.transfer_i_to_C (i);
break;
}
if (si_in_N) {
w[si] = 0;
lcp.transfer_i_from_N_to_C (si);
}
else {
x[si] = 0;
lcp.transfer_i_from_C_to_N (si);
}
}
}
}
done:
lcp.unpermute();
UNALLOCA (L);
UNALLOCA (d);
UNALLOCA (delta_x);
UNALLOCA (delta_w);
UNALLOCA (Dell);
UNALLOCA (ell);
UNALLOCA (tmp);
UNALLOCA (Arows);
UNALLOCA (p);
UNALLOCA (C);
UNALLOCA (dummy);
}
//***************************************************************************
// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
void dSolveLCP (int n, dReal *A, dReal *x, dReal *b,
dReal *w, int nub, dReal *lo, dReal *hi, int *findex)
{
dAASSERT (n>0 && A && x && b && w && lo && hi && nub >= 0 && nub <= n);
int i,k,hit_first_friction_index = 0;
int nskip = dPAD(n);
// if all the variables are unbounded then we can just factor, solve,
// and return
if (nub >= n) {
dFactorLDLT (A,w,n,nskip); // use w for d
dSolveLDLT (A,w,b,n,nskip);
memcpy (x,b,n*sizeof(dReal));
dSetZero (w,n);
return;
}
# ifndef dNODEBUG
// check restrictions on lo and hi
for (k=0; k<n; k++) dIASSERT (lo[k] <= 0 && hi[k] >= 0);
# endif
ALLOCA (dReal,L,n*nskip*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (L == NULL) {
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,d,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (d == NULL) {
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,delta_x,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (delta_x == NULL) {
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,delta_w,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (delta_w == NULL) {
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,Dell,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (Dell == NULL) {
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,ell,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (ell == NULL) {
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal*,Arows,n*sizeof(dReal*));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (Arows == NULL) {
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (int,p,n*sizeof(int));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (p == NULL) {
UNALLOCA(Arows);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (int,C,n*sizeof(int));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (C == NULL) {
UNALLOCA(p);
UNALLOCA(Arows);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
int dir;
dReal dirf;
// for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
ALLOCA (int,state,n*sizeof(int));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (state == NULL) {
UNALLOCA(C);
UNALLOCA(p);
UNALLOCA(Arows);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
// create LCP object. note that tmp is set to delta_w to save space, this
// optimization relies on knowledge of how tmp is used, so be careful!
dLCP *lcp=new dLCP(n,nub,A,x,b,w,lo,hi,L,d,Dell,ell,delta_w,state,findex,p,C,Arows);
nub = lcp->getNub();
// loop over all indexes nub..n-1. for index i, if x(i),w(i) satisfy the
// LCP conditions then i is added to the appropriate index set. otherwise
// x(i),w(i) is driven either +ve or -ve to force it to the valid region.
// as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
// while driving x(i) we maintain the LCP conditions on the other variables
// 0..i-1. we do this by watching out for other x(i),w(i) values going
// outside the valid region, and then switching them between index sets
// when that happens.
for (i=nub; i<n; i++) {
// the index i is the driving index and indexes i+1..n-1 are "dont care",
// i.e. when we make changes to the system those x's will be zero and we
// don't care what happens to those w's. in other words, we only consider
// an (i+1)*(i+1) sub-problem of A*x=b+w.
// if we've hit the first friction index, we have to compute the lo and
// hi values based on the values of x already computed. we have been
// permuting the indexes, so the values stored in the findex vector are
// no longer valid. thus we have to temporarily unpermute the x vector.
// for the purposes of this computation, 0*infinity = 0 ... so if the
// contact constraint's normal force is 0, there should be no tangential
// force applied.
if (hit_first_friction_index == 0 && findex && findex[i] >= 0) {
// un-permute x into delta_w, which is not being used at the moment
for (k=0; k<n; k++) delta_w[p[k]] = x[k];
// set lo and hi values
for (k=i; k<n; k++) {
dReal wfk = delta_w[findex[k]];
if (wfk == 0) {
hi[k] = 0;
lo[k] = 0;
}
else {
hi[k] = dFabs (hi[k] * wfk);
lo[k] = -hi[k];
}
}
hit_first_friction_index = 1;
}
// thus far we have not even been computing the w values for indexes
// greater than i, so compute w[i] now.
w[i] = lcp->AiC_times_qC (i,x) + lcp->AiN_times_qN (i,x) - b[i];
// if lo=hi=0 (which can happen for tangential friction when normals are
// 0) then the index will be assigned to set N with some state. however,
// set C's line has zero size, so the index will always remain in set N.
// with the "normal" switching logic, if w changed sign then the index
// would have to switch to set C and then back to set N with an inverted
// state. this is pointless, and also computationally expensive. to
// prevent this from happening, we use the rule that indexes with lo=hi=0
// will never be checked for set changes. this means that the state for
// these indexes may be incorrect, but that doesn't matter.
// see if x(i),w(i) is in a valid region
if (lo[i]==0 && w[i] >= 0) {
lcp->transfer_i_to_N (i);
state[i] = 0;
}
else if (hi[i]==0 && w[i] <= 0) {
lcp->transfer_i_to_N (i);
state[i] = 1;
}
else if (w[i]==0) {
// this is a degenerate case. by the time we get to this test we know
// that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
// and similarly that hi > 0. this means that the line segment
// corresponding to set C is at least finite in extent, and we are on it.
// NOTE: we must call lcp->solve1() before lcp->transfer_i_to_C()
lcp->solve1 (delta_x,i,0,1);
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (dMemoryFlag == d_MEMORY_OUT_OF_MEMORY) {
UNALLOCA(state);
UNALLOCA(C);
UNALLOCA(p);
UNALLOCA(Arows);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
return;
}
#endif
lcp->transfer_i_to_C (i);
}
else {
// we must push x(i) and w(i)
for (;;) {
// find direction to push on x(i)
if (w[i] <= 0) {
dir = 1;
dirf = REAL(1.0);
}
else {
dir = -1;
dirf = REAL(-1.0);
}
// compute: delta_x(C) = -dir*A(C,C)\A(C,i)
lcp->solve1 (delta_x,i,dir);
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (dMemoryFlag == d_MEMORY_OUT_OF_MEMORY) {
UNALLOCA(state);
UNALLOCA(C);
UNALLOCA(p);
UNALLOCA(Arows);
UNALLOCA(ell);
UNALLOCA(Dell);
UNALLOCA(delta_w);
UNALLOCA(delta_x);
UNALLOCA(d);
UNALLOCA(L);
return;
}
#endif
// note that delta_x[i] = dirf, but we wont bother to set it
// compute: delta_w = A*delta_x ... note we only care about
// delta_w(N) and delta_w(i), the rest is ignored
lcp->pN_equals_ANC_times_qC (delta_w,delta_x);
lcp->pN_plusequals_ANi (delta_w,i,dir);
delta_w[i] = lcp->AiC_times_qC (i,delta_x) + lcp->Aii(i)*dirf;
// find largest step we can take (size=s), either to drive x(i),w(i)
// to the valid LCP region or to drive an already-valid variable
// outside the valid region.
int cmd = 1; // index switching command
int si = 0; // si = index to switch if cmd>3
dReal s = -w[i]/delta_w[i];
if (dir > 0) {
if (hi[i] < dInfinity) {
dReal s2 = (hi[i]-x[i])/dirf; // step to x(i)=hi(i)
if (s2 < s) {
s = s2;
cmd = 3;
}
}
}
else {
if (lo[i] > -dInfinity) {
dReal s2 = (lo[i]-x[i])/dirf; // step to x(i)=lo(i)
if (s2 < s) {
s = s2;
cmd = 2;
}
}
}
for (k=0; k < lcp->numN(); k++) {
if ((state[lcp->indexN(k)]==0 && delta_w[lcp->indexN(k)] < 0) ||
(state[lcp->indexN(k)]!=0 && delta_w[lcp->indexN(k)] > 0)) {
// don't bother checking if lo=hi=0
if (lo[lcp->indexN(k)] == 0 && hi[lcp->indexN(k)] == 0) continue;
dReal s2 = -w[lcp->indexN(k)] / delta_w[lcp->indexN(k)];
if (s2 < s) {
s = s2;
cmd = 4;
si = lcp->indexN(k);
}
}
}
for (k=nub; k < lcp->numC(); k++) {
if (delta_x[lcp->indexC(k)] < 0 && lo[lcp->indexC(k)] > -dInfinity) {
dReal s2 = (lo[lcp->indexC(k)]-x[lcp->indexC(k)]) /
delta_x[lcp->indexC(k)];
if (s2 < s) {
s = s2;
cmd = 5;
si = lcp->indexC(k);
}
}
if (delta_x[lcp->indexC(k)] > 0 && hi[lcp->indexC(k)] < dInfinity) {
dReal s2 = (hi[lcp->indexC(k)]-x[lcp->indexC(k)]) /
delta_x[lcp->indexC(k)];
if (s2 < s) {
s = s2;
cmd = 6;
si = lcp->indexC(k);
}
}
}
//static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
// "C->NL","C->NH"};
//printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
// if s <= 0 then we've got a problem. if we just keep going then
// we're going to get stuck in an infinite loop. instead, just cross
// our fingers and exit with the current solution.
if (s <= 0) {
dMessage (d_ERR_LCP, "LCP internal error, s <= 0 (s=%.4e)",s);
if (i < (n-1)) {
dSetZero (x+i,n-i);
dSetZero (w+i,n-i);
}
goto done;
}
// apply x = x + s * delta_x
lcp->pC_plusequals_s_times_qC (x,s,delta_x);
x[i] += s * dirf;
// apply w = w + s * delta_w
lcp->pN_plusequals_s_times_qN (w,s,delta_w);
w[i] += s * delta_w[i];
// switch indexes between sets if necessary
switch (cmd) {
case 1: // done
w[i] = 0;
lcp->transfer_i_to_C (i);
break;
case 2: // done
x[i] = lo[i];
state[i] = 0;
lcp->transfer_i_to_N (i);
break;
case 3: // done
x[i] = hi[i];
state[i] = 1;
lcp->transfer_i_to_N (i);
break;
case 4: // keep going
w[si] = 0;
lcp->transfer_i_from_N_to_C (si);
break;
case 5: // keep going
x[si] = lo[si];
state[si] = 0;
lcp->transfer_i_from_C_to_N (si);
break;
case 6: // keep going
x[si] = hi[si];
state[si] = 1;
lcp->transfer_i_from_C_to_N (si);
break;
}
if (cmd <= 3) break;
}
}
}
done:
lcp->unpermute();
delete lcp;
UNALLOCA (L);
UNALLOCA (d);
UNALLOCA (delta_x);
UNALLOCA (delta_w);
UNALLOCA (Dell);
UNALLOCA (ell);
UNALLOCA (Arows);
UNALLOCA (p);
UNALLOCA (C);
UNALLOCA (state);
}
//***************************************************************************
// accuracy and timing test
extern "C" ODE_API void dTestSolveLCP()
{
int n = 100;
int i,nskip = dPAD(n);
#ifdef dDOUBLE
const dReal tol = REAL(1e-9);
#endif
#ifdef dSINGLE
const dReal tol = REAL(1e-4);
#endif
printf ("dTestSolveLCP()\n");
ALLOCA (dReal,A,n*nskip*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (A == NULL) {
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,x,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (x == NULL) {
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,b,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (b == NULL) {
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,w,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (w == NULL) {
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,lo,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (lo == NULL) {
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,hi,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (hi == NULL) {
UNALLOCA (lo);
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,A2,n*nskip*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (A2 == NULL) {
UNALLOCA (hi);
UNALLOCA (lo);
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,b2,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (b2 == NULL) {
UNALLOCA (A2);
UNALLOCA (hi);
UNALLOCA (lo);
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,lo2,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (lo2 == NULL) {
UNALLOCA (b2);
UNALLOCA (A2);
UNALLOCA (hi);
UNALLOCA (lo);
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,hi2,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (hi2 == NULL) {
UNALLOCA (lo2);
UNALLOCA (b2);
UNALLOCA (A2);
UNALLOCA (hi);
UNALLOCA (lo);
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,tmp1,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (tmp1 == NULL) {
UNALLOCA (hi2);
UNALLOCA (lo2);
UNALLOCA (b2);
UNALLOCA (A2);
UNALLOCA (hi);
UNALLOCA (lo);
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
ALLOCA (dReal,tmp2,n*sizeof(dReal));
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (tmp2 == NULL) {
UNALLOCA (tmp1);
UNALLOCA (hi2);
UNALLOCA (lo2);
UNALLOCA (b2);
UNALLOCA (A2);
UNALLOCA (hi);
UNALLOCA (lo);
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
dMemoryFlag = d_MEMORY_OUT_OF_MEMORY;
return;
}
#endif
double total_time = 0;
for (int count=0; count < 1000; count++) {
// form (A,b) = a random positive definite LCP problem
dMakeRandomMatrix (A2,n,n,1.0);
dMultiply2 (A,A2,A2,n,n,n);
dMakeRandomMatrix (x,n,1,1.0);
dMultiply0 (b,A,x,n,n,1);
for (i=0; i<n; i++) b[i] += (dRandReal()*REAL(0.2))-REAL(0.1);
// choose `nub' in the range 0..n-1
int nub = 50; //dRandInt (n);
// make limits
for (i=0; i<nub; i++) lo[i] = -dInfinity;
for (i=0; i<nub; i++) hi[i] = dInfinity;
//for (i=nub; i<n; i++) lo[i] = 0;
//for (i=nub; i<n; i++) hi[i] = dInfinity;
//for (i=nub; i<n; i++) lo[i] = -dInfinity;
//for (i=nub; i<n; i++) hi[i] = 0;
for (i=nub; i<n; i++) lo[i] = -(dRandReal()*REAL(1.0))-REAL(0.01);
for (i=nub; i<n; i++) hi[i] = (dRandReal()*REAL(1.0))+REAL(0.01);
// set a few limits to lo=hi=0
/*
for (i=0; i<10; i++) {
int j = dRandInt (n-nub) + nub;
lo[j] = 0;
hi[j] = 0;
}
*/
// solve the LCP. we must make copy of A,b,lo,hi (A2,b2,lo2,hi2) for
// SolveLCP() to permute. also, we'll clear the upper triangle of A2 to
// ensure that it doesn't get referenced (if it does, the answer will be
// wrong).
memcpy (A2,A,n*nskip*sizeof(dReal));
dClearUpperTriangle (A2,n);
memcpy (b2,b,n*sizeof(dReal));
memcpy (lo2,lo,n*sizeof(dReal));
memcpy (hi2,hi,n*sizeof(dReal));
dSetZero (x,n);
dSetZero (w,n);
dStopwatch sw;
dStopwatchReset (&sw);
dStopwatchStart (&sw);
dSolveLCP (n,A2,x,b2,w,nub,lo2,hi2,0);
#ifdef dUSE_MALLOC_FOR_ALLOCA
if (dMemoryFlag == d_MEMORY_OUT_OF_MEMORY) {
UNALLOCA (tmp2);
UNALLOCA (tmp1);
UNALLOCA (hi2);
UNALLOCA (lo2);
UNALLOCA (b2);
UNALLOCA (A2);
UNALLOCA (hi);
UNALLOCA (lo);
UNALLOCA (w);
UNALLOCA (b);
UNALLOCA (x);
UNALLOCA (A);
return;
}
#endif
dStopwatchStop (&sw);
double time = dStopwatchTime(&sw);
total_time += time;
double average = total_time / double(count+1) * 1000.0;
// check the solution
dMultiply0 (tmp1,A,x,n,n,1);
for (i=0; i<n; i++) tmp2[i] = b[i] + w[i];
dReal diff = dMaxDifference (tmp1,tmp2,n,1);
// printf ("\tA*x = b+w, maximum difference = %.6e - %s (1)\n",diff,
// diff > tol ? "FAILED" : "passed");
if (diff > tol) dDebug (0,"A*x = b+w, maximum difference = %.6e",diff);
int n1=0,n2=0,n3=0;
for (i=0; i<n; i++) {
if (x[i]==lo[i] && w[i] >= 0) {
n1++; // ok
}
else if (x[i]==hi[i] && w[i] <= 0) {
n2++; // ok
}
else if (x[i] >= lo[i] && x[i] <= hi[i] && w[i] == 0) {
n3++; // ok
}
else {
dDebug (0,"FAILED: i=%d x=%.4e w=%.4e lo=%.4e hi=%.4e",i,
x[i],w[i],lo[i],hi[i]);
}
}
// pacifier
printf ("passed: NL=%3d NH=%3d C=%3d ",n1,n2,n3);
printf ("time=%10.3f ms avg=%10.4f\n",time * 1000.0,average);
}
UNALLOCA (A);
UNALLOCA (x);
UNALLOCA (b);
UNALLOCA (w);
UNALLOCA (lo);
UNALLOCA (hi);
UNALLOCA (A2);
UNALLOCA (b2);
UNALLOCA (lo2);
UNALLOCA (hi2);
UNALLOCA (tmp1);
UNALLOCA (tmp2);
}
|