1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
some useful collision utility stuff. this includes some API utility
functions that are defined in the public header files.
*/
#include <ode/common.h>
#include <ode/collision.h>
#include <ode/odemath.h>
#include "collision_util.h"
//****************************************************************************
int dCollideSpheres (dVector3 p1, dReal r1,
dVector3 p2, dReal r2, dContactGeom *c)
{
// printf ("d=%.2f (%.2f %.2f %.2f) (%.2f %.2f %.2f) r1=%.2f r2=%.2f\n",
// d,p1[0],p1[1],p1[2],p2[0],p2[1],p2[2],r1,r2);
dReal d = dDISTANCE (p1,p2);
if (d > (r1 + r2)) return 0;
if (d <= 0) {
c->pos[0] = p1[0];
c->pos[1] = p1[1];
c->pos[2] = p1[2];
c->normal[0] = 1;
c->normal[1] = 0;
c->normal[2] = 0;
c->depth = r1 + r2;
}
else {
dReal d1 = dRecip (d);
c->normal[0] = (p1[0]-p2[0])*d1;
c->normal[1] = (p1[1]-p2[1])*d1;
c->normal[2] = (p1[2]-p2[2])*d1;
dReal k = REAL(0.5) * (r2 - r1 - d);
c->pos[0] = p1[0] + c->normal[0]*k;
c->pos[1] = p1[1] + c->normal[1]*k;
c->pos[2] = p1[2] + c->normal[2]*k;
c->depth = r1 + r2 - d;
}
return 1;
}
void dLineClosestApproach (const dVector3 pa, const dVector3 ua,
const dVector3 pb, const dVector3 ub,
dReal *alpha, dReal *beta)
{
dVector3 p;
p[0] = pb[0] - pa[0];
p[1] = pb[1] - pa[1];
p[2] = pb[2] - pa[2];
dReal uaub = dDOT(ua,ub);
dReal q1 = dDOT(ua,p);
dReal q2 = -dDOT(ub,p);
dReal d = 1-uaub*uaub;
if (d <= REAL(0.0001)) {
// @@@ this needs to be made more robust
*alpha = 0;
*beta = 0;
}
else {
d = dRecip(d);
*alpha = (q1 + uaub*q2)*d;
*beta = (uaub*q1 + q2)*d;
}
}
// given two line segments A and B with endpoints a1-a2 and b1-b2, return the
// points on A and B that are closest to each other (in cp1 and cp2).
// in the case of parallel lines where there are multiple solutions, a
// solution involving the endpoint of at least one line will be returned.
// this will work correctly for zero length lines, e.g. if a1==a2 and/or
// b1==b2.
//
// the algorithm works by applying the voronoi clipping rule to the features
// of the line segments. the three features of each line segment are the two
// endpoints and the line between them. the voronoi clipping rule states that,
// for feature X on line A and feature Y on line B, the closest points PA and
// PB between X and Y are globally the closest points if PA is in V(Y) and
// PB is in V(X), where V(X) is the voronoi region of X.
void dClosestLineSegmentPoints (const dVector3 a1, const dVector3 a2,
const dVector3 b1, const dVector3 b2,
dVector3 cp1, dVector3 cp2)
{
dVector3 a1a2,b1b2,a1b1,a1b2,a2b1,a2b2,n;
dReal la,lb,k,da1,da2,da3,da4,db1,db2,db3,db4,det;
#define SET2(a,b) a[0]=b[0]; a[1]=b[1]; a[2]=b[2];
#define SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2];
// check vertex-vertex features
SET3 (a1a2,a2,-,a1);
SET3 (b1b2,b2,-,b1);
SET3 (a1b1,b1,-,a1);
da1 = dDOT(a1a2,a1b1);
db1 = dDOT(b1b2,a1b1);
if (da1 <= 0 && db1 >= 0) {
SET2 (cp1,a1);
SET2 (cp2,b1);
return;
}
SET3 (a1b2,b2,-,a1);
da2 = dDOT(a1a2,a1b2);
db2 = dDOT(b1b2,a1b2);
if (da2 <= 0 && db2 <= 0) {
SET2 (cp1,a1);
SET2 (cp2,b2);
return;
}
SET3 (a2b1,b1,-,a2);
da3 = dDOT(a1a2,a2b1);
db3 = dDOT(b1b2,a2b1);
if (da3 >= 0 && db3 >= 0) {
SET2 (cp1,a2);
SET2 (cp2,b1);
return;
}
SET3 (a2b2,b2,-,a2);
da4 = dDOT(a1a2,a2b2);
db4 = dDOT(b1b2,a2b2);
if (da4 >= 0 && db4 <= 0) {
SET2 (cp1,a2);
SET2 (cp2,b2);
return;
}
// check edge-vertex features.
// if one or both of the lines has zero length, we will never get to here,
// so we do not have to worry about the following divisions by zero.
la = dDOT(a1a2,a1a2);
if (da1 >= 0 && da3 <= 0) {
k = da1 / la;
SET3 (n,a1b1,-,k*a1a2);
if (dDOT(b1b2,n) >= 0) {
SET3 (cp1,a1,+,k*a1a2);
SET2 (cp2,b1);
return;
}
}
if (da2 >= 0 && da4 <= 0) {
k = da2 / la;
SET3 (n,a1b2,-,k*a1a2);
if (dDOT(b1b2,n) <= 0) {
SET3 (cp1,a1,+,k*a1a2);
SET2 (cp2,b2);
return;
}
}
lb = dDOT(b1b2,b1b2);
if (db1 <= 0 && db2 >= 0) {
k = -db1 / lb;
SET3 (n,-a1b1,-,k*b1b2);
if (dDOT(a1a2,n) >= 0) {
SET2 (cp1,a1);
SET3 (cp2,b1,+,k*b1b2);
return;
}
}
if (db3 <= 0 && db4 >= 0) {
k = -db3 / lb;
SET3 (n,-a2b1,-,k*b1b2);
if (dDOT(a1a2,n) <= 0) {
SET2 (cp1,a2);
SET3 (cp2,b1,+,k*b1b2);
return;
}
}
// it must be edge-edge
k = dDOT(a1a2,b1b2);
det = la*lb - k*k;
if (det <= 0) {
// this should never happen, but just in case...
SET2(cp1,a1);
SET2(cp2,b1);
return;
}
det = dRecip (det);
dReal alpha = (lb*da1 - k*db1) * det;
dReal beta = ( k*da1 - la*db1) * det;
SET3 (cp1,a1,+,alpha*a1a2);
SET3 (cp2,b1,+,beta*b1b2);
# undef SET2
# undef SET3
}
// a simple root finding algorithm is used to find the value of 't' that
// satisfies:
// d|D(t)|^2/dt = 0
// where:
// |D(t)| = |p(t)-b(t)|
// where p(t) is a point on the line parameterized by t:
// p(t) = p1 + t*(p2-p1)
// and b(t) is that same point clipped to the boundary of the box. in box-
// relative coordinates d|D(t)|^2/dt is the sum of three x,y,z components
// each of which looks like this:
//
// t_lo /
// ______/ -->t
// / t_hi
// /
//
// t_lo and t_hi are the t values where the line passes through the planes
// corresponding to the sides of the box. the algorithm computes d|D(t)|^2/dt
// in a piecewise fashion from t=0 to t=1, stopping at the point where
// d|D(t)|^2/dt crosses from negative to positive.
void dClosestLineBoxPoints (const dVector3 p1, const dVector3 p2,
const dVector3 c, const dMatrix3 R,
const dVector3 side,
dVector3 lret, dVector3 bret)
{
int i;
// compute the start and delta of the line p1-p2 relative to the box.
// we will do all subsequent computations in this box-relative coordinate
// system. we have to do a translation and rotation for each point.
dVector3 tmp,s,v;
tmp[0] = p1[0] - c[0];
tmp[1] = p1[1] - c[1];
tmp[2] = p1[2] - c[2];
dMULTIPLY1_331 (s,R,tmp);
tmp[0] = p2[0] - p1[0];
tmp[1] = p2[1] - p1[1];
tmp[2] = p2[2] - p1[2];
dMULTIPLY1_331 (v,R,tmp);
// mirror the line so that v has all components >= 0
dVector3 sign;
for (i=0; i<3; i++) {
if (v[i] < 0) {
s[i] = -s[i];
v[i] = -v[i];
sign[i] = -1;
}
else sign[i] = 1;
}
// compute v^2
dVector3 v2;
v2[0] = v[0]*v[0];
v2[1] = v[1]*v[1];
v2[2] = v[2]*v[2];
// compute the half-sides of the box
dReal h[3];
h[0] = REAL(0.5) * side[0];
h[1] = REAL(0.5) * side[1];
h[2] = REAL(0.5) * side[2];
// region is -1,0,+1 depending on which side of the box planes each
// coordinate is on. tanchor is the next t value at which there is a
// transition, or the last one if there are no more.
int region[3];
dReal tanchor[3];
// Denormals are a problem, because we divide by v[i], and then
// multiply that by 0. Alas, infinity times 0 is infinity (!)
// We also use v2[i], which is v[i] squared. Here's how the epsilons
// are chosen:
// float epsilon = 1.175494e-038 (smallest non-denormal number)
// double epsilon = 2.225074e-308 (smallest non-denormal number)
// For single precision, choose an epsilon such that v[i] squared is
// not a denormal; this is for performance.
// For double precision, choose an epsilon such that v[i] is not a
// denormal; this is for correctness. (Jon Watte on mailinglist)
#if defined( dSINGLE )
const dReal tanchor_eps = REAL(1e-19);
#else
const dReal tanchor_eps = REAL(1e-307);
#endif
// find the region and tanchor values for p1
for (i=0; i<3; i++) {
if (v[i] > tanchor_eps) {
if (s[i] < -h[i]) {
region[i] = -1;
tanchor[i] = (-h[i]-s[i])/v[i];
}
else {
region[i] = (s[i] > h[i]);
tanchor[i] = (h[i]-s[i])/v[i];
}
}
else {
region[i] = 0;
tanchor[i] = 2; // this will never be a valid tanchor
}
}
// compute d|d|^2/dt for t=0. if it's >= 0 then p1 is the closest point
dReal t=0;
dReal dd2dt = 0;
for (i=0; i<3; i++) dd2dt -= (region[i] ? v2[i] : 0) * tanchor[i];
if (dd2dt >= 0) goto got_answer;
do {
// find the point on the line that is at the next clip plane boundary
dReal next_t = 1;
for (i=0; i<3; i++) {
if (tanchor[i] > t && tanchor[i] < 1 && tanchor[i] < next_t)
next_t = tanchor[i];
}
// compute d|d|^2/dt for the next t
dReal next_dd2dt = 0;
for (i=0; i<3; i++) {
next_dd2dt += (region[i] ? v2[i] : 0) * (next_t - tanchor[i]);
}
// if the sign of d|d|^2/dt has changed, solution = the crossover point
if (next_dd2dt >= 0) {
dReal m = (next_dd2dt-dd2dt)/(next_t - t);
t -= dd2dt/m;
goto got_answer;
}
// advance to the next anchor point / region
for (i=0; i<3; i++) {
if (tanchor[i] == next_t) {
tanchor[i] = (h[i]-s[i])/v[i];
region[i]++;
}
}
t = next_t;
dd2dt = next_dd2dt;
}
while (t < 1);
t = 1;
got_answer:
// compute closest point on the line
for (i=0; i<3; i++) lret[i] = p1[i] + t*tmp[i]; // note: tmp=p2-p1
// compute closest point on the box
for (i=0; i<3; i++) {
tmp[i] = sign[i] * (s[i] + t*v[i]);
if (tmp[i] < -h[i]) tmp[i] = -h[i];
else if (tmp[i] > h[i]) tmp[i] = h[i];
}
dMULTIPLY0_331 (s,R,tmp);
for (i=0; i<3; i++) bret[i] = s[i] + c[i];
}
// given boxes (p1,R1,side1) and (p1,R1,side1), return 1 if they intersect
// or 0 if not.
int dBoxTouchesBox (const dVector3 p1, const dMatrix3 R1,
const dVector3 side1, const dVector3 p2,
const dMatrix3 R2, const dVector3 side2)
{
// two boxes are disjoint if (and only if) there is a separating axis
// perpendicular to a face from one box or perpendicular to an edge from
// either box. the following tests are derived from:
// "OBB Tree: A Hierarchical Structure for Rapid Interference Detection",
// S.Gottschalk, M.C.Lin, D.Manocha., Proc of ACM Siggraph 1996.
// Rij is R1'*R2, i.e. the relative rotation between R1 and R2.
// Qij is abs(Rij)
dVector3 p,pp;
dReal A1,A2,A3,B1,B2,B3,R11,R12,R13,R21,R22,R23,R31,R32,R33,
Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33;
// get vector from centers of box 1 to box 2, relative to box 1
p[0] = p2[0] - p1[0];
p[1] = p2[1] - p1[1];
p[2] = p2[2] - p1[2];
dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1
// get side lengths / 2
A1 = side1[0]*REAL(0.5); A2 = side1[1]*REAL(0.5); A3 = side1[2]*REAL(0.5);
B1 = side2[0]*REAL(0.5); B2 = side2[1]*REAL(0.5); B3 = side2[2]*REAL(0.5);
// for the following tests, excluding computation of Rij, in the worst case,
// 15 compares, 60 adds, 81 multiplies, and 24 absolutes.
// notation: R1=[u1 u2 u3], R2=[v1 v2 v3]
// separating axis = u1,u2,u3
R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13);
if (dFabs(pp[0]) > (A1 + B1*Q11 + B2*Q12 + B3*Q13)) return 0;
R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23);
if (dFabs(pp[1]) > (A2 + B1*Q21 + B2*Q22 + B3*Q23)) return 0;
R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);
Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33);
if (dFabs(pp[2]) > (A3 + B1*Q31 + B2*Q32 + B3*Q33)) return 0;
// separating axis = v1,v2,v3
if (dFabs(dDOT41(R2+0,p)) > (A1*Q11 + A2*Q21 + A3*Q31 + B1)) return 0;
if (dFabs(dDOT41(R2+1,p)) > (A1*Q12 + A2*Q22 + A3*Q32 + B2)) return 0;
if (dFabs(dDOT41(R2+2,p)) > (A1*Q13 + A2*Q23 + A3*Q33 + B3)) return 0;
// separating axis = u1 x (v1,v2,v3)
if (dFabs(pp[2]*R21-pp[1]*R31) > A2*Q31 + A3*Q21 + B2*Q13 + B3*Q12) return 0;
if (dFabs(pp[2]*R22-pp[1]*R32) > A2*Q32 + A3*Q22 + B1*Q13 + B3*Q11) return 0;
if (dFabs(pp[2]*R23-pp[1]*R33) > A2*Q33 + A3*Q23 + B1*Q12 + B2*Q11) return 0;
// separating axis = u2 x (v1,v2,v3)
if (dFabs(pp[0]*R31-pp[2]*R11) > A1*Q31 + A3*Q11 + B2*Q23 + B3*Q22) return 0;
if (dFabs(pp[0]*R32-pp[2]*R12) > A1*Q32 + A3*Q12 + B1*Q23 + B3*Q21) return 0;
if (dFabs(pp[0]*R33-pp[2]*R13) > A1*Q33 + A3*Q13 + B1*Q22 + B2*Q21) return 0;
// separating axis = u3 x (v1,v2,v3)
if (dFabs(pp[1]*R11-pp[0]*R21) > A1*Q21 + A2*Q11 + B2*Q33 + B3*Q32) return 0;
if (dFabs(pp[1]*R12-pp[0]*R22) > A1*Q22 + A2*Q12 + B1*Q33 + B3*Q31) return 0;
if (dFabs(pp[1]*R13-pp[0]*R23) > A1*Q23 + A2*Q13 + B1*Q32 + B2*Q31) return 0;
return 1;
}
//****************************************************************************
// other utility functions
void dInfiniteAABB (dxGeom *geom, dReal aabb[6])
{
aabb[0] = -dInfinity;
aabb[1] = dInfinity;
aabb[2] = -dInfinity;
aabb[3] = dInfinity;
aabb[4] = -dInfinity;
aabb[5] = dInfinity;
}
//****************************************************************************
// Helpers for Croteam's collider - by Nguyen Binh
int dClipEdgeToPlane( dVector3 &vEpnt0, dVector3 &vEpnt1, const dVector4& plPlane)
{
// calculate distance of edge points to plane
dReal fDistance0 = dPointPlaneDistance( vEpnt0 ,plPlane );
dReal fDistance1 = dPointPlaneDistance( vEpnt1 ,plPlane );
// if both points are behind the plane
if ( fDistance0 < 0 && fDistance1 < 0 )
{
// do nothing
return 0;
// if both points in front of the plane
}
else if ( fDistance0 > 0 && fDistance1 > 0 )
{
// accept them
return 1;
// if we have edge/plane intersection
} else if ((fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0))
{
// find intersection point of edge and plane
dVector3 vIntersectionPoint;
vIntersectionPoint[0]= vEpnt0[0]-(vEpnt0[0]-vEpnt1[0])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[1]= vEpnt0[1]-(vEpnt0[1]-vEpnt1[1])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[2]= vEpnt0[2]-(vEpnt0[2]-vEpnt1[2])*fDistance0/(fDistance0-fDistance1);
// clamp correct edge to intersection point
if ( fDistance0 < 0 )
{
dVector3Copy(vIntersectionPoint,vEpnt0);
} else
{
dVector3Copy(vIntersectionPoint,vEpnt1);
}
return 1;
}
return 1;
}
// clip polygon with plane and generate new polygon points
void dClipPolyToPlane( const dVector3 avArrayIn[], const int ctIn,
dVector3 avArrayOut[], int &ctOut,
const dVector4 &plPlane )
{
// start with no output points
ctOut = 0;
int i0 = ctIn-1;
// for each edge in input polygon
for (int i1=0; i1<ctIn; i0=i1, i1++) {
// calculate distance of edge points to plane
dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane );
dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane );
// if first point is in front of plane
if( fDistance0 >= 0 ) {
// emit point
avArrayOut[ctOut][0] = avArrayIn[i0][0];
avArrayOut[ctOut][1] = avArrayIn[i0][1];
avArrayOut[ctOut][2] = avArrayIn[i0][2];
ctOut++;
}
// if points are on different sides
if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) ) {
// find intersection point of edge and plane
dVector3 vIntersectionPoint;
vIntersectionPoint[0]= avArrayIn[i0][0] -
(avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[1]= avArrayIn[i0][1] -
(avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[2]= avArrayIn[i0][2] -
(avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1);
// emit intersection point
avArrayOut[ctOut][0] = vIntersectionPoint[0];
avArrayOut[ctOut][1] = vIntersectionPoint[1];
avArrayOut[ctOut][2] = vIntersectionPoint[2];
ctOut++;
}
}
}
void dClipPolyToCircle(const dVector3 avArrayIn[], const int ctIn,
dVector3 avArrayOut[], int &ctOut,
const dVector4 &plPlane ,dReal fRadius)
{
// start with no output points
ctOut = 0;
int i0 = ctIn-1;
// for each edge in input polygon
for (int i1=0; i1<ctIn; i0=i1, i1++)
{
// calculate distance of edge points to plane
dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane );
dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane );
// if first point is in front of plane
if( fDistance0 >= 0 )
{
// emit point
if (dVector3Length2(avArrayIn[i0]) <= fRadius*fRadius)
{
avArrayOut[ctOut][0] = avArrayIn[i0][0];
avArrayOut[ctOut][1] = avArrayIn[i0][1];
avArrayOut[ctOut][2] = avArrayIn[i0][2];
ctOut++;
}
}
// if points are on different sides
if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) )
{
// find intersection point of edge and plane
dVector3 vIntersectionPoint;
vIntersectionPoint[0]= avArrayIn[i0][0] -
(avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[1]= avArrayIn[i0][1] -
(avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1);
vIntersectionPoint[2]= avArrayIn[i0][2] -
(avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1);
// emit intersection point
if (dVector3Length2(avArrayIn[i0]) <= fRadius*fRadius)
{
avArrayOut[ctOut][0] = vIntersectionPoint[0];
avArrayOut[ctOut][1] = vIntersectionPoint[1];
avArrayOut[ctOut][2] = vIntersectionPoint[2];
ctOut++;
}
}
}
}
|