1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
/* The MIT License
*
* Copyright (c) 2010 Intel Corporation.
* All rights reserved.
*
* Based on the convexdecomposition library from
* <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
using System.Collections.Generic;
using System.Diagnostics;
namespace OpenSim.Region.PhysicsModules.ConvexDecompositionDotNet
{
public class DecompDesc
{
public List<float3> mVertices;
public List<int> mIndices;
// options
public uint mDepth; // depth to split, a maximum of 10, generally not over 7.
public float mCpercent; // the concavity threshold percentage. 0=20 is reasonable.
public float mPpercent; // the percentage volume conservation threshold to collapse hulls. 0-30 is reasonable.
// hull output limits.
public uint mMaxVertices; // maximum number of vertices in the output hull. Recommended 32 or less.
public float mSkinWidth; // a skin width to apply to the output hulls.
public ConvexDecompositionCallback mCallback; // the interface to receive back the results.
public DecompDesc()
{
mDepth = 5;
mCpercent = 5;
mPpercent = 5;
mMaxVertices = 32;
}
}
public class CHull
{
public float[] mMin = new float[3];
public float[] mMax = new float[3];
public float mVolume;
public float mDiagonal;
public ConvexResult mResult;
public CHull(ConvexResult result)
{
mResult = new ConvexResult(result);
mVolume = Concavity.computeMeshVolume(result.HullVertices, result.HullIndices);
mDiagonal = getBoundingRegion(result.HullVertices, mMin, mMax);
float dx = mMax[0] - mMin[0];
float dy = mMax[1] - mMin[1];
float dz = mMax[2] - mMin[2];
dx *= 0.1f; // inflate 1/10th on each edge
dy *= 0.1f; // inflate 1/10th on each edge
dz *= 0.1f; // inflate 1/10th on each edge
mMin[0] -= dx;
mMin[1] -= dy;
mMin[2] -= dz;
mMax[0] += dx;
mMax[1] += dy;
mMax[2] += dz;
}
public void Dispose()
{
mResult = null;
}
public bool overlap(CHull h)
{
return overlapAABB(mMin, mMax, h.mMin, h.mMax);
}
// returns the d1Giagonal distance
private static float getBoundingRegion(List<float3> points, float[] bmin, float[] bmax)
{
float3 first = points[0];
bmin[0] = first.x;
bmin[1] = first.y;
bmin[2] = first.z;
bmax[0] = first.x;
bmax[1] = first.y;
bmax[2] = first.z;
for (int i = 1; i < points.Count; i++)
{
float3 p = points[i];
if (p[0] < bmin[0]) bmin[0] = p[0];
if (p[1] < bmin[1]) bmin[1] = p[1];
if (p[2] < bmin[2]) bmin[2] = p[2];
if (p[0] > bmax[0]) bmax[0] = p[0];
if (p[1] > bmax[1]) bmax[1] = p[1];
if (p[2] > bmax[2]) bmax[2] = p[2];
}
float dx = bmax[0] - bmin[0];
float dy = bmax[1] - bmin[1];
float dz = bmax[2] - bmin[2];
return (float)Math.Sqrt(dx * dx + dy * dy + dz * dz);
}
// return true if the two AABB's overlap.
private static bool overlapAABB(float[] bmin1, float[] bmax1, float[] bmin2, float[] bmax2)
{
if (bmax2[0] < bmin1[0]) return false; // if the maximum is less than our minimum on any axis
if (bmax2[1] < bmin1[1]) return false;
if (bmax2[2] < bmin1[2]) return false;
if (bmin2[0] > bmax1[0]) return false; // if the minimum is greater than our maximum on any axis
if (bmin2[1] > bmax1[1]) return false; // if the minimum is greater than our maximum on any axis
if (bmin2[2] > bmax1[2]) return false; // if the minimum is greater than our maximum on any axis
return true; // the extents overlap
}
}
public class ConvexBuilder
{
public List<CHull> mChulls = new List<CHull>();
private ConvexDecompositionCallback mCallback;
private int MAXDEPTH = 8;
private float CONCAVE_PERCENT = 1f;
private float MERGE_PERCENT = 2f;
public ConvexBuilder(ConvexDecompositionCallback callback)
{
mCallback = callback;
}
public void Dispose()
{
int i;
for (i = 0; i < mChulls.Count; i++)
{
CHull cr = mChulls[i];
cr.Dispose();
}
}
public bool isDuplicate(uint i1, uint i2, uint i3, uint ci1, uint ci2, uint ci3)
{
uint dcount = 0;
Debug.Assert(i1 != i2 && i1 != i3 && i2 != i3);
Debug.Assert(ci1 != ci2 && ci1 != ci3 && ci2 != ci3);
if (i1 == ci1 || i1 == ci2 || i1 == ci3)
dcount++;
if (i2 == ci1 || i2 == ci2 || i2 == ci3)
dcount++;
if (i3 == ci1 || i3 == ci2 || i3 == ci3)
dcount++;
return dcount == 3;
}
public void getMesh(ConvexResult cr, VertexPool vc, List<int> indices)
{
List<int> src = cr.HullIndices;
for (int i = 0; i < src.Count / 3; i++)
{
int i1 = src[i * 3 + 0];
int i2 = src[i * 3 + 1];
int i3 = src[i * 3 + 2];
float3 p1 = cr.HullVertices[i1];
float3 p2 = cr.HullVertices[i2];
float3 p3 = cr.HullVertices[i3];
i1 = vc.getIndex(p1);
i2 = vc.getIndex(p2);
i3 = vc.getIndex(p3);
}
}
public CHull canMerge(CHull a, CHull b)
{
if (!a.overlap(b)) // if their AABB's (with a little slop) don't overlap, then return.
return null;
CHull ret = null;
// ok..we are going to combine both meshes into a single mesh
// and then we are going to compute the concavity...
VertexPool vc = new VertexPool();
List<int> indices = new List<int>();
getMesh(a.mResult, vc, indices);
getMesh(b.mResult, vc, indices);
int vcount = vc.GetSize();
List<float3> vertices = vc.GetVertices();
int tcount = indices.Count / 3;
//don't do anything if hull is empty
if (tcount == 0)
{
vc.Clear();
return null;
}
HullResult hresult = new HullResult();
HullDesc desc = new HullDesc();
desc.SetHullFlag(HullFlag.QF_TRIANGLES);
desc.Vertices = vertices;
HullError hret = HullUtils.CreateConvexHull(desc, ref hresult);
if (hret == HullError.QE_OK)
{
float combineVolume = Concavity.computeMeshVolume(hresult.OutputVertices, hresult.Indices);
float sumVolume = a.mVolume + b.mVolume;
float percent = (sumVolume * 100) / combineVolume;
if (percent >= (100.0f - MERGE_PERCENT))
{
ConvexResult cr = new ConvexResult(hresult.OutputVertices, hresult.Indices);
ret = new CHull(cr);
}
}
vc.Clear();
return ret;
}
public bool combineHulls()
{
bool combine = false;
sortChulls(mChulls); // sort the convex hulls, largest volume to least...
List<CHull> output = new List<CHull>(); // the output hulls...
int i;
for (i = 0; i < mChulls.Count && !combine; ++i)
{
CHull cr = mChulls[i];
int j;
for (j = 0; j < mChulls.Count; j++)
{
CHull match = mChulls[j];
if (cr != match) // don't try to merge a hull with itself, that be stoopid
{
CHull merge = canMerge(cr, match); // if we can merge these two....
if (merge != null)
{
output.Add(merge);
++i;
while (i != mChulls.Count)
{
CHull cr2 = mChulls[i];
if (cr2 != match)
{
output.Add(cr2);
}
i++;
}
cr.Dispose();
match.Dispose();
combine = true;
break;
}
}
}
if (combine)
{
break;
}
else
{
output.Add(cr);
}
}
if (combine)
{
mChulls.Clear();
mChulls = output;
output.Clear();
}
return combine;
}
public int process(DecompDesc desc)
{
int ret = 0;
MAXDEPTH = (int)desc.mDepth;
CONCAVE_PERCENT = desc.mCpercent;
MERGE_PERCENT = desc.mPpercent;
ConvexDecomposition.calcConvexDecomposition(desc.mVertices, desc.mIndices, ConvexDecompResult, 0f, 0, MAXDEPTH, CONCAVE_PERCENT, MERGE_PERCENT);
while (combineHulls()) // keep combinging hulls until I can't combine any more...
;
int i;
for (i = 0; i < mChulls.Count; i++)
{
CHull cr = mChulls[i];
// before we hand it back to the application, we need to regenerate the hull based on the
// limits given by the user.
ConvexResult c = cr.mResult; // the high resolution hull...
HullResult result = new HullResult();
HullDesc hdesc = new HullDesc();
hdesc.SetHullFlag(HullFlag.QF_TRIANGLES);
hdesc.Vertices = c.HullVertices;
hdesc.MaxVertices = desc.mMaxVertices; // maximum number of vertices allowed in the output
if (desc.mSkinWidth != 0f)
{
hdesc.SkinWidth = desc.mSkinWidth;
hdesc.SetHullFlag(HullFlag.QF_SKIN_WIDTH); // do skin width computation.
}
HullError ret2 = HullUtils.CreateConvexHull(hdesc, ref result);
if (ret2 == HullError.QE_OK)
{
ConvexResult r = new ConvexResult(result.OutputVertices, result.Indices);
r.mHullVolume = Concavity.computeMeshVolume(result.OutputVertices, result.Indices); // the volume of the hull.
// compute the best fit OBB
//computeBestFitOBB(result.mNumOutputVertices, result.mOutputVertices, sizeof(float) * 3, r.mOBBSides, r.mOBBTransform);
//r.mOBBVolume = r.mOBBSides[0] * r.mOBBSides[1] * r.mOBBSides[2]; // compute the OBB volume.
//fm_getTranslation(r.mOBBTransform, r.mOBBCenter); // get the translation component of the 4x4 matrix.
//fm_matrixToQuat(r.mOBBTransform, r.mOBBOrientation); // extract the orientation as a quaternion.
//r.mSphereRadius = computeBoundingSphere(result.mNumOutputVertices, result.mOutputVertices, r.mSphereCenter);
//r.mSphereVolume = fm_sphereVolume(r.mSphereRadius);
mCallback(r);
}
result = null;
cr.Dispose();
}
ret = mChulls.Count;
mChulls.Clear();
return ret;
}
public void ConvexDecompResult(ConvexResult result)
{
CHull ch = new CHull(result);
mChulls.Add(ch);
}
public void sortChulls(List<CHull> hulls)
{
hulls.Sort(delegate(CHull a, CHull b) { return a.mVolume.CompareTo(b.mVolume); });
}
}
}
|