1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyrightD
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Text;
using OpenSim.Framework;
using OpenSim.Region.Framework;
using OpenSim.Region.PhysicsModules.SharedBase;
using Nini.Config;
using log4net;
using OpenMetaverse;
namespace OpenSim.Region.PhysicsModule.BulletS
{
public sealed class BSTerrainMesh : BSTerrainPhys
{
static string LogHeader = "[BULLETSIM TERRAIN MESH]";
private float[] m_savedHeightMap;
int m_sizeX;
int m_sizeY;
BulletShape m_terrainShape;
BulletBody m_terrainBody;
public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id, Vector3 regionSize)
: base(physicsScene, regionBase, id)
{
}
public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id /* parameters for making mesh */)
: base(physicsScene, regionBase, id)
{
}
// Create terrain mesh from a heightmap.
public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id, float[] initialMap,
Vector3 minCoords, Vector3 maxCoords)
: base(physicsScene, regionBase, id)
{
int indicesCount;
int[] indices;
int verticesCount;
float[] vertices;
m_savedHeightMap = initialMap;
m_sizeX = (int)(maxCoords.X - minCoords.X);
m_sizeY = (int)(maxCoords.Y - minCoords.Y);
bool meshCreationSuccess = false;
if (BSParam.TerrainMeshMagnification == 1)
{
// If a magnification of one, use the old routine that is tried and true.
meshCreationSuccess = BSTerrainMesh.ConvertHeightmapToMesh(m_physicsScene,
initialMap, m_sizeX, m_sizeY, // input size
Vector3.Zero, // base for mesh
out indicesCount, out indices, out verticesCount, out vertices);
}
else
{
// Other magnifications use the newer routine
meshCreationSuccess = BSTerrainMesh.ConvertHeightmapToMesh2(m_physicsScene,
initialMap, m_sizeX, m_sizeY, // input size
BSParam.TerrainMeshMagnification,
physicsScene.TerrainManager.DefaultRegionSize,
Vector3.Zero, // base for mesh
out indicesCount, out indices, out verticesCount, out vertices);
}
if (!meshCreationSuccess)
{
// DISASTER!!
m_physicsScene.DetailLog("{0},BSTerrainMesh.create,failedConversionOfHeightmap,id={1}", BSScene.DetailLogZero, ID);
m_physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh! base={1}", LogHeader, TerrainBase);
// Something is very messed up and a crash is in our future.
return;
}
m_physicsScene.DetailLog("{0},BSTerrainMesh.create,meshed,id={1},indices={2},indSz={3},vertices={4},vertSz={5}",
BSScene.DetailLogZero, ID, indicesCount, indices.Length, verticesCount, vertices.Length);
m_terrainShape = m_physicsScene.PE.CreateMeshShape(m_physicsScene.World, indicesCount, indices, verticesCount, vertices);
if (!m_terrainShape.HasPhysicalShape)
{
// DISASTER!!
m_physicsScene.DetailLog("{0},BSTerrainMesh.create,failedCreationOfShape,id={1}", BSScene.DetailLogZero, ID);
m_physicsScene.Logger.ErrorFormat("{0} Failed creation of terrain mesh! base={1}", LogHeader, TerrainBase);
// Something is very messed up and a crash is in our future.
return;
}
Vector3 pos = regionBase;
Quaternion rot = Quaternion.Identity;
m_terrainBody = m_physicsScene.PE.CreateBodyWithDefaultMotionState(m_terrainShape, ID, pos, rot);
if (!m_terrainBody.HasPhysicalBody)
{
// DISASTER!!
m_physicsScene.Logger.ErrorFormat("{0} Failed creation of terrain body! base={1}", LogHeader, TerrainBase);
// Something is very messed up and a crash is in our future.
return;
}
physicsScene.PE.SetShapeCollisionMargin(m_terrainShape, BSParam.TerrainCollisionMargin);
// Set current terrain attributes
m_physicsScene.PE.SetFriction(m_terrainBody, BSParam.TerrainFriction);
m_physicsScene.PE.SetHitFraction(m_terrainBody, BSParam.TerrainHitFraction);
m_physicsScene.PE.SetRestitution(m_terrainBody, BSParam.TerrainRestitution);
m_physicsScene.PE.SetContactProcessingThreshold(m_terrainBody, BSParam.TerrainContactProcessingThreshold);
m_physicsScene.PE.SetCollisionFlags(m_terrainBody, CollisionFlags.CF_STATIC_OBJECT);
// Static objects are not very massive.
m_physicsScene.PE.SetMassProps(m_terrainBody, 0f, Vector3.Zero);
// Put the new terrain to the world of physical objects
m_physicsScene.PE.AddObjectToWorld(m_physicsScene.World, m_terrainBody);
// Redo its bounding box now that it is in the world
m_physicsScene.PE.UpdateSingleAabb(m_physicsScene.World, m_terrainBody);
m_terrainBody.collisionType = CollisionType.Terrain;
m_terrainBody.ApplyCollisionMask(m_physicsScene);
if (BSParam.UseSingleSidedMeshes)
{
m_physicsScene.DetailLog("{0},BSTerrainMesh.settingCustomMaterial,id={1}", BSScene.DetailLogZero, id);
m_physicsScene.PE.AddToCollisionFlags(m_terrainBody, CollisionFlags.CF_CUSTOM_MATERIAL_CALLBACK);
}
// Make it so the terrain will not move or be considered for movement.
m_physicsScene.PE.ForceActivationState(m_terrainBody, ActivationState.DISABLE_SIMULATION);
}
public override void Dispose()
{
if (m_terrainBody.HasPhysicalBody)
{
m_physicsScene.PE.RemoveObjectFromWorld(m_physicsScene.World, m_terrainBody);
// Frees both the body and the shape.
m_physicsScene.PE.DestroyObject(m_physicsScene.World, m_terrainBody);
m_terrainBody.Clear();
m_terrainShape.Clear();
}
}
public override float GetTerrainHeightAtXYZ(Vector3 pos)
{
// For the moment use the saved heightmap to get the terrain height.
// TODO: raycast downward to find the true terrain below the position.
float ret = BSTerrainManager.HEIGHT_GETHEIGHT_RET;
int mapIndex = (int)pos.Y * m_sizeY + (int)pos.X;
try
{
ret = m_savedHeightMap[mapIndex];
}
catch
{
// Sometimes they give us wonky values of X and Y. Give a warning and return something.
m_physicsScene.Logger.WarnFormat("{0} Bad request for terrain height. terrainBase={1}, pos={2}",
LogHeader, TerrainBase, pos);
ret = BSTerrainManager.HEIGHT_GETHEIGHT_RET;
}
return ret;
}
// The passed position is relative to the base of the region.
public override float GetWaterLevelAtXYZ(Vector3 pos)
{
return m_physicsScene.SimpleWaterLevel;
}
// Convert the passed heightmap to mesh information suitable for CreateMeshShape2().
// Return 'true' if successfully created.
public static bool ConvertHeightmapToMesh( BSScene physicsScene,
float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap
Vector3 extentBase, // base to be added to all vertices
out int indicesCountO, out int[] indicesO,
out int verticesCountO, out float[] verticesO)
{
bool ret = false;
int indicesCount = 0;
int verticesCount = 0;
int[] indices = new int[0];
float[] vertices = new float[0];
// Simple mesh creation which assumes magnification == 1.
// TODO: do a more general solution that scales, adds new vertices and smoothes the result.
// Create an array of vertices that is sizeX+1 by sizeY+1 (note the loop
// from zero to <= sizeX). The triangle indices are then generated as two triangles
// per heightmap point. There are sizeX by sizeY of these squares. The extra row and
// column of vertices are used to complete the triangles of the last row and column
// of the heightmap.
try
{
// One vertice per heightmap value plus the vertices off the side and bottom edge.
int totalVertices = (sizeX + 1) * (sizeY + 1);
vertices = new float[totalVertices * 3];
int totalIndices = sizeX * sizeY * 6;
indices = new int[totalIndices];
if (physicsScene != null)
physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh,totVert={1},totInd={2},extentBase={3}",
BSScene.DetailLogZero, totalVertices, totalIndices, extentBase);
float minHeight = float.MaxValue;
// Note that sizeX+1 vertices are created since there is land between this and the next region.
for (int yy = 0; yy <= sizeY; yy++)
{
for (int xx = 0; xx <= sizeX; xx++) // Hint: the "<=" means we go around sizeX + 1 times
{
int offset = yy * sizeX + xx;
// Extend the height with the height from the last row or column
if (yy == sizeY) offset -= sizeX;
if (xx == sizeX) offset -= 1;
float height = heightMap[offset];
minHeight = Math.Min(minHeight, height);
vertices[verticesCount + 0] = (float)xx + extentBase.X;
vertices[verticesCount + 1] = (float)yy + extentBase.Y;
vertices[verticesCount + 2] = height + extentBase.Z;
verticesCount += 3;
}
}
verticesCount = verticesCount / 3;
for (int yy = 0; yy < sizeY; yy++)
{
for (int xx = 0; xx < sizeX; xx++)
{
int offset = yy * (sizeX + 1) + xx;
// Each vertices is presumed to be the upper left corner of a box of two triangles
indices[indicesCount + 0] = offset;
indices[indicesCount + 1] = offset + 1;
indices[indicesCount + 2] = offset + sizeX + 1; // accounting for the extra column
indices[indicesCount + 3] = offset + 1;
indices[indicesCount + 4] = offset + sizeX + 2;
indices[indicesCount + 5] = offset + sizeX + 1;
indicesCount += 6;
}
}
ret = true;
}
catch (Exception e)
{
if (physicsScene != null)
physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}",
LogHeader, physicsScene.RegionName, extentBase, e);
}
indicesCountO = indicesCount;
indicesO = indices;
verticesCountO = verticesCount;
verticesO = vertices;
return ret;
}
private class HeightMapGetter
{
private float[] m_heightMap;
private int m_sizeX;
private int m_sizeY;
public HeightMapGetter(float[] pHeightMap, int pSizeX, int pSizeY)
{
m_heightMap = pHeightMap;
m_sizeX = pSizeX;
m_sizeY = pSizeY;
}
// The heightmap is extended as an infinite plane at the last height
public float GetHeight(int xx, int yy)
{
int offset = 0;
// Extend the height with the height from the last row or column
if (yy >= m_sizeY)
if (xx >= m_sizeX)
offset = (m_sizeY - 1) * m_sizeX + (m_sizeX - 1);
else
offset = (m_sizeY - 1) * m_sizeX + xx;
else
if (xx >= m_sizeX)
offset = yy * m_sizeX + (m_sizeX - 1);
else
offset = yy * m_sizeX + xx;
return m_heightMap[offset];
}
}
// Convert the passed heightmap to mesh information suitable for CreateMeshShape2().
// Version that handles magnification.
// Return 'true' if successfully created.
public static bool ConvertHeightmapToMesh2( BSScene physicsScene,
float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap
int magnification, // number of vertices per heighmap step
Vector3 extent, // dimensions of the output mesh
Vector3 extentBase, // base to be added to all vertices
out int indicesCountO, out int[] indicesO,
out int verticesCountO, out float[] verticesO)
{
bool ret = false;
int indicesCount = 0;
int verticesCount = 0;
int[] indices = new int[0];
float[] vertices = new float[0];
HeightMapGetter hmap = new HeightMapGetter(heightMap, sizeX, sizeY);
// The vertices dimension of the output mesh
int meshX = sizeX * magnification;
int meshY = sizeY * magnification;
// The output size of one mesh step
float meshXStep = extent.X / meshX;
float meshYStep = extent.Y / meshY;
// Create an array of vertices that is meshX+1 by meshY+1 (note the loop
// from zero to <= meshX). The triangle indices are then generated as two triangles
// per heightmap point. There are meshX by meshY of these squares. The extra row and
// column of vertices are used to complete the triangles of the last row and column
// of the heightmap.
try
{
// Vertices for the output heightmap plus one on the side and bottom to complete triangles
int totalVertices = (meshX + 1) * (meshY + 1);
vertices = new float[totalVertices * 3];
int totalIndices = meshX * meshY * 6;
indices = new int[totalIndices];
if (physicsScene != null)
physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,inSize={1},outSize={2},totVert={3},totInd={4},extentBase={5}",
BSScene.DetailLogZero, new Vector2(sizeX, sizeY), new Vector2(meshX, meshY),
totalVertices, totalIndices, extentBase);
float minHeight = float.MaxValue;
// Note that sizeX+1 vertices are created since there is land between this and the next region.
// Loop through the output vertices and compute the mediun height in between the input vertices
for (int yy = 0; yy <= meshY; yy++)
{
for (int xx = 0; xx <= meshX; xx++) // Hint: the "<=" means we go around sizeX + 1 times
{
float offsetY = (float)yy * (float)sizeY / (float)meshY; // The Y that is closest to the mesh point
int stepY = (int)offsetY;
float fractionalY = offsetY - (float)stepY;
float offsetX = (float)xx * (float)sizeX / (float)meshX; // The X that is closest to the mesh point
int stepX = (int)offsetX;
float fractionalX = offsetX - (float)stepX;
// physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,xx={1},yy={2},offX={3},stepX={4},fractX={5},offY={6},stepY={7},fractY={8}",
// BSScene.DetailLogZero, xx, yy, offsetX, stepX, fractionalX, offsetY, stepY, fractionalY);
// get the four corners of the heightmap square the mesh point is in
float heightUL = hmap.GetHeight(stepX , stepY );
float heightUR = hmap.GetHeight(stepX + 1, stepY );
float heightLL = hmap.GetHeight(stepX , stepY + 1);
float heightLR = hmap.GetHeight(stepX + 1, stepY + 1);
// bilinear interplolation
float height = heightUL * (1 - fractionalX) * (1 - fractionalY)
+ heightUR * fractionalX * (1 - fractionalY)
+ heightLL * (1 - fractionalX) * fractionalY
+ heightLR * fractionalX * fractionalY;
// physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,heightUL={1},heightUR={2},heightLL={3},heightLR={4},heightMap={5}",
// BSScene.DetailLogZero, heightUL, heightUR, heightLL, heightLR, height);
minHeight = Math.Min(minHeight, height);
vertices[verticesCount + 0] = (float)xx * meshXStep + extentBase.X;
vertices[verticesCount + 1] = (float)yy * meshYStep + extentBase.Y;
vertices[verticesCount + 2] = height + extentBase.Z;
verticesCount += 3;
}
}
// The number of vertices generated
verticesCount /= 3;
// Loop through all the heightmap squares and create indices for the two triangles for that square
for (int yy = 0; yy < meshY; yy++)
{
for (int xx = 0; xx < meshX; xx++)
{
int offset = yy * (meshX + 1) + xx;
// Each vertices is presumed to be the upper left corner of a box of two triangles
indices[indicesCount + 0] = offset;
indices[indicesCount + 1] = offset + 1;
indices[indicesCount + 2] = offset + meshX + 1; // accounting for the extra column
indices[indicesCount + 3] = offset + 1;
indices[indicesCount + 4] = offset + meshX + 2;
indices[indicesCount + 5] = offset + meshX + 1;
indicesCount += 6;
}
}
ret = true;
}
catch (Exception e)
{
if (physicsScene != null)
physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}",
LogHeader, physicsScene.RegionName, extentBase, e);
}
indicesCountO = indicesCount;
indicesO = indices;
verticesCountO = verticesCount;
verticesO = vertices;
return ret;
}
}
}
|