aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/PhysicsModules/BulletS/BSPrim.cs
blob: f085d7055072859b51840fe9b5ca55b6e3a27ce3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
/*
 * Copyright (c) Contributors, http://opensimulator.org/
 * See CONTRIBUTORS.TXT for a full list of copyright holders.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyrightD
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the OpenSimulator Project nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

using System;
using System.Reflection;
using System.Collections.Generic;
using System.Xml;
using log4net;
using OMV = OpenMetaverse;
using OpenSim.Framework;
using OpenSim.Region.PhysicsModules.SharedBase;
using OpenSim.Region.PhysicsModules.ConvexDecompositionDotNet;

namespace OpenSim.Region.PhysicsModule.BulletS
{

    [Serializable]
public class BSPrim : BSPhysObject
{
    protected static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
    private static readonly string LogHeader = "[BULLETS PRIM]";

    // _size is what the user passed. Scale is what we pass to the physics engine with the mesh.
    private OMV.Vector3 _size;  // the multiplier for each mesh dimension as passed by the user

    private bool _grabbed;
    private bool _isSelected;
    private bool _isVolumeDetect;

    private float _mass;    // the mass of this object
    private OMV.Vector3 _acceleration;
    private int _physicsActorType;
    private bool _isPhysical;
    private bool _flying;
    private bool _setAlwaysRun;
    private bool _throttleUpdates;
    private bool _floatOnWater;
    private bool _kinematic;
    private float _buoyancy;

    private int CrossingFailures { get; set; }

    // Keep a handle to the vehicle actor so it is easy to set parameters on same.
    public const string VehicleActorName = "BasicVehicle";

    // Parameters for the hover actor
    public const string HoverActorName = "BSPrim.HoverActor";
    // Parameters for the axis lock actor
    public const String LockedAxisActorName = "BSPrim.LockedAxis";
    // Parameters for the move to target actor
    public const string MoveToTargetActorName = "BSPrim.MoveToTargetActor";
    // Parameters for the setForce and setTorque actors
    public const string SetForceActorName = "BSPrim.SetForceActor";
    public const string SetTorqueActorName = "BSPrim.SetTorqueActor";

    public BSPrim(uint localID, String primName, BSScene parent_scene, OMV.Vector3 pos, OMV.Vector3 size,
                       OMV.Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical)
            : base(parent_scene, localID, primName, "BSPrim")
    {
        // m_log.DebugFormat("{0}: BSPrim creation of {1}, id={2}", LogHeader, primName, localID);
        _physicsActorType = (int)ActorTypes.Prim;
        RawPosition = pos;
        _size = size;
        Scale = size;   // prims are the size the user wants them to be (different for BSCharactes).
        RawOrientation = rotation;
        _buoyancy = 0f;
        RawVelocity = OMV.Vector3.Zero;
        RawRotationalVelocity = OMV.Vector3.Zero;
        BaseShape = pbs;
        _isPhysical = pisPhysical;
        _isVolumeDetect = false;

        _mass = CalculateMass();

        DetailLog("{0},BSPrim.constructor,pbs={1}", LocalID, BSScene.PrimitiveBaseShapeToString(pbs));
        // DetailLog("{0},BSPrim.constructor,call", LocalID);
        // do the actual object creation at taint time
        PhysScene.TaintedObject(LocalID, "BSPrim.create", delegate()
        {
            // Make sure the object is being created with some sanity.
            ExtremeSanityCheck(true /* inTaintTime */);

            CreateGeomAndObject(true);

            CurrentCollisionFlags = PhysScene.PE.GetCollisionFlags(PhysBody);

            IsInitialized = true;
        });
    }

    // called when this prim is being destroyed and we should free all the resources
    public override void Destroy()
    {
        // m_log.DebugFormat("{0}: Destroy, id={1}", LogHeader, LocalID);
        IsInitialized = false;

        base.Destroy();

        // Undo any vehicle properties
        this.VehicleType = (int)Vehicle.TYPE_NONE;

        PhysScene.TaintedObject(LocalID, "BSPrim.Destroy", delegate()
        {
            DetailLog("{0},BSPrim.Destroy,taint,", LocalID);
            // If there are physical body and shape, release my use of same.
            PhysScene.Shapes.DereferenceBody(PhysBody, null);
            PhysBody.Clear();
            PhysShape.Dereference(PhysScene);
            PhysShape = new BSShapeNull();
        });
    }

    // No one uses this property.
    public override bool Stopped {
        get { return false; }
    }

    public override bool IsIncomplete {
        get {
            return ShapeRebuildScheduled;
        }
    }

    // 'true' if this object's shape is in need of a rebuild and a rebuild has been queued.
    // The prim is still available but its underlying shape will change soon.
    // This is protected by a 'lock(this)'.
    public bool ShapeRebuildScheduled { get; protected set; }

    public override OMV.Vector3 Size {
        get { return _size; }
        set {
            // We presume the scale and size are the same. If scale must be changed for
            //     the physical shape, that is done when the geometry is built.
            _size = value;
            Scale = _size;
            ForceBodyShapeRebuild(false);
        }
    }

    public override PrimitiveBaseShape Shape {
        set {
            BaseShape = value;
            DetailLog("{0},BSPrim.changeShape,pbs={1}", LocalID, BSScene.PrimitiveBaseShapeToString(BaseShape));
            PrimAssetState = PrimAssetCondition.Unknown;
            ForceBodyShapeRebuild(false);
        }
    }
    // Cause the body and shape of the prim to be rebuilt if necessary.
    // If there are no changes required, this is quick and does not make changes to the prim.
    // If rebuilding is necessary (like changing from static to physical), that will happen.
    // The 'ShapeRebuildScheduled' tells any checker that the body/shape may change shortly.
    // The return parameter is not used by anyone.
    public override bool ForceBodyShapeRebuild(bool inTaintTime)
    {
        if (inTaintTime)
        {
            // If called in taint time, do the operation immediately
            _mass = CalculateMass();   // changing the shape changes the mass
            CreateGeomAndObject(true);
        }
        else
        {
            lock (this)
            {
                // If a rebuild is not already in the queue
                if (!ShapeRebuildScheduled)
                {
                    // Remember that a rebuild is queued -- this is used to flag an incomplete object
                    ShapeRebuildScheduled = true;
                    PhysScene.TaintedObject(LocalID, "BSPrim.ForceBodyShapeRebuild", delegate()
                    {
                        _mass = CalculateMass();   // changing the shape changes the mass
                        CreateGeomAndObject(true);
                        ShapeRebuildScheduled = false;
                    });
                }
            }
        }
        return true;
    }
    public override bool Grabbed {
        set { _grabbed = value;
        }
    }
    public override bool Selected {
        set
        {
            if (value != _isSelected)
            {
                _isSelected = value;
                PhysScene.TaintedObject(LocalID, "BSPrim.setSelected", delegate()
                {
                    DetailLog("{0},BSPrim.selected,taint,selected={1}", LocalID, _isSelected);
                    SetObjectDynamic(false);
                });
            }
        }
    }
    public override bool IsSelected
    {
        get { return _isSelected; }
    }

    public override void CrossingFailure()
    {
        CrossingFailures++;
        if (CrossingFailures > BSParam.CrossingFailuresBeforeOutOfBounds)
        {
            base.RaiseOutOfBounds(RawPosition);
        }
        else if (CrossingFailures == BSParam.CrossingFailuresBeforeOutOfBounds)
        {
            m_log.WarnFormat("{0} Too many crossing failures for {1}", LogHeader, Name);
        }
        return;
    }

    // link me to the specified parent
    public override void link(PhysicsActor obj) {
    }

    // delink me from my linkset
    public override void delink() {
    }

    // Set motion values to zero.
    // Do it to the properties so the values get set in the physics engine.
    // Push the setting of the values to the viewer.
    // Called at taint time!
    public override void ZeroMotion(bool inTaintTime)
    {
        RawVelocity = OMV.Vector3.Zero;
        _acceleration = OMV.Vector3.Zero;
        RawRotationalVelocity = OMV.Vector3.Zero;

        // Zero some other properties in the physics engine
        PhysScene.TaintedObject(inTaintTime, LocalID, "BSPrim.ZeroMotion", delegate()
        {
            if (PhysBody.HasPhysicalBody)
                PhysScene.PE.ClearAllForces(PhysBody);
        });
    }
    public override void ZeroAngularMotion(bool inTaintTime)
    {
        RawRotationalVelocity = OMV.Vector3.Zero;
        // Zero some other properties in the physics engine
        PhysScene.TaintedObject(inTaintTime, LocalID, "BSPrim.ZeroMotion", delegate()
        {
            // DetailLog("{0},BSPrim.ZeroAngularMotion,call,rotVel={1}", LocalID, _rotationalVelocity);
            if (PhysBody.HasPhysicalBody)
            {
                PhysScene.PE.SetInterpolationAngularVelocity(PhysBody, RawRotationalVelocity);
                PhysScene.PE.SetAngularVelocity(PhysBody, RawRotationalVelocity);
            }
        });
    }

    public override void LockAngularMotion(byte axislocks)
    {
        DetailLog("{0},BSPrim.LockAngularMotion,call,axis={1}", LocalID, axislocks);

        ApplyAxisLimits(ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR, 0f, 0f);
        if ((axislocks & 0x02) != 0)
        {
            ApplyAxisLimits(ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_X, 0f, 0f);
        }
        if ((axislocks & 0x04) != 0)
        {
            ApplyAxisLimits(ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_Y, 0f, 0f);
        }
        if ((axislocks & 0x08) != 0)
        {
            ApplyAxisLimits(ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_Z, 0f, 0f);
        }

        InitializeAxisActor();

        return;
    }

    public override OMV.Vector3 Position {
        get {
            // don't do the GetObjectPosition for root elements because this function is called a zillion times.
            // RawPosition = ForcePosition;
            return RawPosition;
        }
        set {
            // If the position must be forced into the physics engine, use ForcePosition.
            // All positions are given in world positions.
            if (RawPosition == value)
            {
                DetailLog("{0},BSPrim.setPosition,call,positionNotChanging,pos={1},orient={2}", LocalID, RawPosition, RawOrientation);
                return;
            }
            RawPosition = value;
            PositionSanityCheck(false);

            PhysScene.TaintedObject(LocalID, "BSPrim.setPosition", delegate()
            {
                DetailLog("{0},BSPrim.SetPosition,taint,pos={1},orient={2}", LocalID, RawPosition, RawOrientation);
                ForcePosition = RawPosition;
            });
        }
    }

    // NOTE: overloaded by BSPrimDisplaced to handle offset for center-of-gravity.
    public override OMV.Vector3 ForcePosition {
        get {
            RawPosition = PhysScene.PE.GetPosition(PhysBody);
            return RawPosition;
        }
        set {
            RawPosition = value;
            if (PhysBody.HasPhysicalBody)
            {
                PhysScene.PE.SetTranslation(PhysBody, RawPosition, RawOrientation);
                ActivateIfPhysical(false);
            }
        }
    }

    // Check that the current position is sane and, if not, modify the position to make it so.
    // Check for being below terrain and being out of bounds.
    // Returns 'true' of the position was made sane by some action.
    private bool PositionSanityCheck(bool inTaintTime)
    {
        bool ret = false;

        // We don't care where non-physical items are placed
        if (!IsPhysicallyActive)
            return ret;

        if (!PhysScene.TerrainManager.IsWithinKnownTerrain(RawPosition))
        {
            // The physical object is out of the known/simulated area.
            // Upper levels of code will handle the transition to other areas so, for
            //     the time, we just ignore the position.
            return ret;
        }

        float terrainHeight = PhysScene.TerrainManager.GetTerrainHeightAtXYZ(RawPosition);
        OMV.Vector3 upForce = OMV.Vector3.Zero;
        float approxSize = Math.Max(Size.X, Math.Max(Size.Y, Size.Z));
        if ((RawPosition.Z + approxSize / 2f) < terrainHeight)
        {
            DetailLog("{0},BSPrim.PositionAdjustUnderGround,call,pos={1},terrain={2}", LocalID, RawPosition, terrainHeight);
            float targetHeight = terrainHeight + (Size.Z / 2f);
            // If the object is below ground it just has to be moved up because pushing will
            //     not get it through the terrain
            RawPosition = new OMV.Vector3(RawPosition.X, RawPosition.Y, targetHeight);
            if (inTaintTime)
            {
                ForcePosition = RawPosition;
            }
            // If we are throwing the object around, zero its other forces
            ZeroMotion(inTaintTime);
            ret = true;
        }

        if ((CurrentCollisionFlags & CollisionFlags.BS_FLOATS_ON_WATER) != 0)
        {
            float waterHeight = PhysScene.TerrainManager.GetWaterLevelAtXYZ(RawPosition);
            // TODO: a floating motor so object will bob in the water
            if (Math.Abs(RawPosition.Z - waterHeight) > 0.1f)
            {
                // Upforce proportional to the distance away from the water. Correct the error in 1 sec.
                upForce.Z = (waterHeight - RawPosition.Z) * 1f;

                // Apply upforce and overcome gravity.
                OMV.Vector3 correctionForce = upForce - PhysScene.DefaultGravity;
                DetailLog("{0},BSPrim.PositionSanityCheck,applyForce,pos={1},upForce={2},correctionForce={3}", LocalID, RawPosition, upForce, correctionForce);
                AddForce(inTaintTime, correctionForce);
                ret = true;
            }
        }

        return ret;
    }

    // Occasionally things will fly off and really get lost.
    // Find the wanderers and bring them back.
    // Return 'true' if some parameter need some sanity.
    private bool ExtremeSanityCheck(bool inTaintTime)
    {
        bool ret = false;

        int wayOverThere = -1000;
        int wayOutThere = 10000;
        // There have been instances of objects getting thrown way out of bounds and crashing
        //    the border crossing code.
        if (   RawPosition.X < wayOverThere || RawPosition.X > wayOutThere
            || RawPosition.Y < wayOverThere || RawPosition.X > wayOutThere
            || RawPosition.Z < wayOverThere || RawPosition.X > wayOutThere)
        {
            RawPosition = new OMV.Vector3(10, 10, 50);
            ZeroMotion(inTaintTime);
            ret = true;
        }
        if (RawVelocity.LengthSquared() > BSParam.MaxLinearVelocitySquared)
        {
            RawVelocity = Util.ClampV(RawVelocity, BSParam.MaxLinearVelocity);
            ret = true;
        }
        if (RawRotationalVelocity.LengthSquared() > BSParam.MaxAngularVelocitySquared)
        {
            RawRotationalVelocity = Util.ClampV(RawRotationalVelocity, BSParam.MaxAngularVelocity);
            ret = true;
        }

        return ret;
    }

    // Return the effective mass of the object.
        // The definition of this call is to return the mass of the prim.
        // If the simulator cares about the mass of the linkset, it will sum it itself.
    public override float Mass
    {
        get { return _mass; }
    }
    // TotalMass returns the mass of the large object the prim may be in (overridden by linkset code)
    public virtual float TotalMass
    {
        get { return _mass; }
    }
    // used when we only want this prim's mass and not the linkset thing
    public override float RawMass {
        get { return _mass; }
    }
    // Set the physical mass to the passed mass.
    // Note that this does not change _mass!
    public override void UpdatePhysicalMassProperties(float physMass, bool inWorld)
    {
        if (PhysBody.HasPhysicalBody && PhysShape.HasPhysicalShape)
        {
            if (IsStatic)
            {
                PhysScene.PE.SetGravity(PhysBody, PhysScene.DefaultGravity);
                Inertia = OMV.Vector3.Zero;
                PhysScene.PE.SetMassProps(PhysBody, 0f, Inertia);
                PhysScene.PE.UpdateInertiaTensor(PhysBody);
            }
            else
            {
                if (inWorld)
                {
                    // Changing interesting properties doesn't change proxy and collision cache
                    //    information. The Bullet solution is to re-add the object to the world
                    //    after parameters are changed.
                    PhysScene.PE.RemoveObjectFromWorld(PhysScene.World, PhysBody);
                }

                // The computation of mass props requires gravity to be set on the object.
                Gravity = ComputeGravity(Buoyancy);
                PhysScene.PE.SetGravity(PhysBody, Gravity);

                // OMV.Vector3 currentScale = PhysScene.PE.GetLocalScaling(PhysShape.physShapeInfo);   // DEBUG DEBUG
                // DetailLog("{0},BSPrim.UpdateMassProperties,currentScale{1},shape={2}", LocalID, currentScale, PhysShape.physShapeInfo);   // DEBUG DEBUG

                Inertia = PhysScene.PE.CalculateLocalInertia(PhysShape.physShapeInfo, physMass);
                PhysScene.PE.SetMassProps(PhysBody, physMass, Inertia);
                PhysScene.PE.UpdateInertiaTensor(PhysBody);

                DetailLog("{0},BSPrim.UpdateMassProperties,mass={1},localInertia={2},grav={3},inWorld={4}",
                                            LocalID, physMass, Inertia, Gravity, inWorld);

                if (inWorld)
                {
                    AddObjectToPhysicalWorld();
                }
            }
        }
    }

    // Return what gravity should be set to this very moment
    public OMV.Vector3 ComputeGravity(float buoyancy)
    {
        OMV.Vector3 ret = PhysScene.DefaultGravity;

        if (!IsStatic)
        {
            ret *= (1f - buoyancy);
            ret *= GravModifier;
        }

        return ret;
    }

    // Is this used?
    public override OMV.Vector3 CenterOfMass
    {
        get { return RawPosition; }
    }

    // Is this used?
    public override OMV.Vector3 GeometricCenter
    {
        get { return RawPosition; }
    }

    public override OMV.Vector3 Force {
        get { return RawForce; }
        set {
            RawForce = value;
            EnableActor(RawForce != OMV.Vector3.Zero, SetForceActorName, delegate()
            {
                return new BSActorSetForce(PhysScene, this, SetForceActorName);
            });

            // Call update so actor Refresh() is called to start things off
            PhysScene.TaintedObject(LocalID, "BSPrim.setForce", delegate()
            {
                UpdatePhysicalParameters();
            });
        }
    }

    // Find and return a handle to the current vehicle actor.
    // Return 'null' if there is no vehicle actor.
    public BSDynamics GetVehicleActor(bool createIfNone)
    {
        BSDynamics ret = null;
        BSActor actor;
        if (PhysicalActors.TryGetActor(VehicleActorName, out actor))
        {
            ret = actor as BSDynamics;
        }
        else
        {
            if (createIfNone)
            {
                ret = new BSDynamics(PhysScene, this, VehicleActorName);
                PhysicalActors.Add(ret.ActorName, ret);
            }
        }
        return ret;
    }

    public override int VehicleType {
        get {
            int ret = (int)Vehicle.TYPE_NONE;
            BSDynamics vehicleActor = GetVehicleActor(false /* createIfNone */);
            if (vehicleActor != null)
                ret = (int)vehicleActor.Type;
            return ret;
        }
        set {
            Vehicle type = (Vehicle)value;

            PhysScene.TaintedObject(LocalID, "setVehicleType", delegate()
            {
                // Some vehicle scripts change vehicle type on the fly as an easy way to
                //    change all the parameters. Like a plane changing to CAR when on the
                //    ground. In this case, don't want to zero motion.
                // ZeroMotion(true /* inTaintTime */);
                if (type == Vehicle.TYPE_NONE)
                {
                    // Vehicle type is 'none' so get rid of any actor that may have been allocated.
                    BSDynamics vehicleActor = GetVehicleActor(false /* createIfNone */);
                    if (vehicleActor != null)
                    {
                        PhysicalActors.RemoveAndRelease(vehicleActor.ActorName);
                    }
                }
                else
                {
                    // Vehicle type is not 'none' so create an actor and set it running.
                    BSDynamics vehicleActor = GetVehicleActor(true /* createIfNone */);
                    if (vehicleActor != null)
                    {
                        vehicleActor.ProcessTypeChange(type);
                        ActivateIfPhysical(false);
                    }
                }
            });
        }
    }
    public override void VehicleFloatParam(int param, float value)
    {
        PhysScene.TaintedObject(LocalID, "BSPrim.VehicleFloatParam", delegate()
        {
            BSDynamics vehicleActor = GetVehicleActor(true /* createIfNone */);
            if (vehicleActor != null)
            {
                vehicleActor.ProcessFloatVehicleParam((Vehicle)param, value);
                ActivateIfPhysical(false);
            }
        });
    }
    public override void VehicleVectorParam(int param, OMV.Vector3 value)
    {
        PhysScene.TaintedObject(LocalID, "BSPrim.VehicleVectorParam", delegate()
        {
            BSDynamics vehicleActor = GetVehicleActor(true /* createIfNone */);
            if (vehicleActor != null)
            {
                vehicleActor.ProcessVectorVehicleParam((Vehicle)param, value);
                ActivateIfPhysical(false);
            }
        });
    }
    public override void VehicleRotationParam(int param, OMV.Quaternion rotation)
    {
        PhysScene.TaintedObject(LocalID, "BSPrim.VehicleRotationParam", delegate()
        {
            BSDynamics vehicleActor = GetVehicleActor(true /* createIfNone */);
            if (vehicleActor != null)
            {
                vehicleActor.ProcessRotationVehicleParam((Vehicle)param, rotation);
                ActivateIfPhysical(false);
            }
        });
    }
    public override void VehicleFlags(int param, bool remove)
    {
        PhysScene.TaintedObject(LocalID, "BSPrim.VehicleFlags", delegate()
        {
            BSDynamics vehicleActor = GetVehicleActor(true /* createIfNone */);
            if (vehicleActor != null)
            {
                vehicleActor.ProcessVehicleFlags(param, remove);
            }
        });
    }

    public override void SetVehicle(object pvdata)
    {
        PhysScene.TaintedObject(LocalID, "BSPrim.SetVehicle", delegate ()
        {
            BSDynamics vehicleActor = GetVehicleActor(true /* createIfNone */);
            if (vehicleActor != null && (pvdata is VehicleData) )
            {
                VehicleData vdata = (VehicleData)pvdata;
                // vehicleActor.ProcessSetVehicle((VehicleData)vdata);

                vehicleActor.ProcessTypeChange(vdata.m_type);
                vehicleActor.ProcessVehicleFlags(-1, false);
                vehicleActor.ProcessVehicleFlags((int)vdata.m_flags, false);

                // Linear properties
                vehicleActor.ProcessVectorVehicleParam(Vehicle.LINEAR_MOTOR_DIRECTION, vdata.m_linearMotorDirection);
                vehicleActor.ProcessVectorVehicleParam(Vehicle.LINEAR_FRICTION_TIMESCALE, vdata.m_linearFrictionTimescale);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE, vdata.m_linearMotorDecayTimescale);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.LINEAR_MOTOR_TIMESCALE, vdata.m_linearMotorTimescale);
                vehicleActor.ProcessVectorVehicleParam(Vehicle.LINEAR_MOTOR_OFFSET, vdata.m_linearMotorOffset);

                //Angular properties
                vehicleActor.ProcessVectorVehicleParam(Vehicle.ANGULAR_MOTOR_DIRECTION, vdata.m_angularMotorDirection);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.ANGULAR_MOTOR_TIMESCALE, vdata.m_angularMotorTimescale);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE, vdata.m_angularMotorDecayTimescale);
                vehicleActor.ProcessVectorVehicleParam(Vehicle.ANGULAR_FRICTION_TIMESCALE, vdata.m_angularFrictionTimescale);

                //Deflection properties
                vehicleActor.ProcessFloatVehicleParam(Vehicle.ANGULAR_DEFLECTION_EFFICIENCY, vdata.m_angularDeflectionEfficiency);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.ANGULAR_DEFLECTION_TIMESCALE, vdata.m_angularDeflectionTimescale);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.LINEAR_DEFLECTION_EFFICIENCY, vdata.m_linearDeflectionEfficiency);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.LINEAR_DEFLECTION_TIMESCALE, vdata.m_linearDeflectionTimescale);

                //Banking properties
                vehicleActor.ProcessFloatVehicleParam(Vehicle.BANKING_EFFICIENCY, vdata.m_bankingEfficiency);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.BANKING_MIX, vdata.m_bankingMix);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.BANKING_TIMESCALE, vdata.m_bankingTimescale);

                //Hover and Buoyancy properties
                vehicleActor.ProcessFloatVehicleParam(Vehicle.HOVER_HEIGHT, vdata.m_VhoverHeight);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.HOVER_EFFICIENCY, vdata.m_VhoverEfficiency);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.HOVER_TIMESCALE, vdata.m_VhoverTimescale);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.BUOYANCY, vdata.m_VehicleBuoyancy);

                //Attractor properties
                vehicleActor.ProcessFloatVehicleParam(Vehicle.VERTICAL_ATTRACTION_EFFICIENCY, vdata.m_verticalAttractionEfficiency);
                vehicleActor.ProcessFloatVehicleParam(Vehicle.VERTICAL_ATTRACTION_TIMESCALE, vdata.m_verticalAttractionTimescale);

                vehicleActor.ProcessRotationVehicleParam(Vehicle.REFERENCE_FRAME, vdata.m_referenceFrame);
            }
        });
    }

    // Allows the detection of collisions with inherently non-physical prims. see llVolumeDetect for more
    public override void SetVolumeDetect(int param) {
        bool newValue = (param != 0);
        if (_isVolumeDetect != newValue)
        {
            _isVolumeDetect = newValue;
            PhysScene.TaintedObject(LocalID, "BSPrim.SetVolumeDetect", delegate()
            {
                // DetailLog("{0},setVolumeDetect,taint,volDetect={1}", LocalID, _isVolumeDetect);
                SetObjectDynamic(true);
            });
        }
        return;
    }
    public override bool IsVolumeDetect
    {
        get { return _isVolumeDetect; }
    }
    public override void SetMaterial(int material)
    {
        base.SetMaterial(material);
        PhysScene.TaintedObject(LocalID, "BSPrim.SetMaterial", delegate()
        {
            UpdatePhysicalParameters();
        });
    }
    public override float Friction
    {
        get { return base.Friction; }
        set
        {
            if (base.Friction != value)
            {
                base.Friction = value;
                PhysScene.TaintedObject(LocalID, "BSPrim.setFriction", delegate()
                {
                    UpdatePhysicalParameters();
                });
            }
        }
    }
    public override float Restitution
    {
        get { return base.Restitution; }
        set
        {
            if (base.Restitution != value)
            {
                base.Restitution = value;
                PhysScene.TaintedObject(LocalID, "BSPrim.setRestitution", delegate()
                {
                    UpdatePhysicalParameters();
                });
            }
        }
    }
    // The simulator/viewer keep density as 100kg/m3.
    // Remember to use BSParam.DensityScaleFactor to create the physical density.
    public override float Density
    {
        get { return base.Density; }
        set
        {
            if (base.Density != value)
            {
                base.Density = value;
                PhysScene.TaintedObject(LocalID, "BSPrim.setDensity", delegate()
                {
                    UpdatePhysicalParameters();
                });
            }
        }
    }
    public override float GravModifier
    {
        get { return base.GravModifier; }
        set
        {
            if (base.GravModifier != value)
            {
                base.GravModifier = value;
                PhysScene.TaintedObject(LocalID, "BSPrim.setGravityModifier", delegate()
                {
                    UpdatePhysicalParameters();
                });
            }
        }
    }
    public override OMV.Vector3 ForceVelocity {
        get { return RawVelocity; }
        set {
            RawVelocity = Util.ClampV(value, BSParam.MaxLinearVelocity);
            if (PhysBody.HasPhysicalBody)
            {
                DetailLog("{0},BSPrim.ForceVelocity,taint,vel={1}", LocalID, RawVelocity);
                PhysScene.PE.SetLinearVelocity(PhysBody, RawVelocity);
                ActivateIfPhysical(false);
            }
        }
    }
    public override OMV.Vector3 Torque {
        get { return RawTorque; }
        set {
            RawTorque = value;
            EnableActor(RawTorque != OMV.Vector3.Zero, SetTorqueActorName, delegate()
            {
                return new BSActorSetTorque(PhysScene, this, SetTorqueActorName);
            });
            DetailLog("{0},BSPrim.SetTorque,call,torque={1}", LocalID, RawTorque);

            // Call update so actor Refresh() is called to start things off
            PhysScene.TaintedObject(LocalID, "BSPrim.setTorque", delegate()
            {
                UpdatePhysicalParameters();
            });
        }
    }
    public override OMV.Vector3 Acceleration {
        get { return _acceleration; }
        set { _acceleration = value; }
    }

    public override OMV.Quaternion Orientation {
        get {
            return RawOrientation;
        }
        set {
            if (RawOrientation == value)
                return;
            RawOrientation = value;

            PhysScene.TaintedObject(LocalID, "BSPrim.setOrientation", delegate()
            {
                ForceOrientation = RawOrientation;
            });
        }
    }
    // Go directly to Bullet to get/set the value.
    public override OMV.Quaternion ForceOrientation
    {
        get
        {
            RawOrientation = PhysScene.PE.GetOrientation(PhysBody);
            return RawOrientation;
        }
        set
        {
            RawOrientation = value;
            if (PhysBody.HasPhysicalBody)
                PhysScene.PE.SetTranslation(PhysBody, RawPosition, RawOrientation);
        }
    }
    public override int PhysicsActorType {
        get { return _physicsActorType; }
        set { _physicsActorType = value; }
    }
    public override bool IsPhysical {
        get { return _isPhysical; }
        set {
            if (_isPhysical != value)
            {
                _isPhysical = value;
                PhysScene.TaintedObject(LocalID, "BSPrim.setIsPhysical", delegate()
                {
                    DetailLog("{0},setIsPhysical,taint,isPhys={1}", LocalID, _isPhysical);
                    SetObjectDynamic(true);
                    // whether phys-to-static or static-to-phys, the object is not moving.
                    ZeroMotion(true);

                });
            }
        }
    }

    // An object is static (does not move) if selected or not physical
    public override bool IsStatic
    {
        get { return _isSelected || !IsPhysical; }
    }

    // An object is solid if it's not phantom and if it's not doing VolumeDetect
    public override bool IsSolid
    {
        get { return !IsPhantom && !_isVolumeDetect; }
    }

    // The object is moving and is actively being dynamic in the physical world
    public override bool IsPhysicallyActive
    {
        get { return !_isSelected && IsPhysical; }
    }

    // Make gravity work if the object is physical and not selected
    // Called at taint-time!!
    private void SetObjectDynamic(bool forceRebuild)
    {
        // Recreate the physical object if necessary
        CreateGeomAndObject(forceRebuild);
    }

    // Convert the simulator's physical properties into settings on BulletSim objects.
    // There are four flags we're interested in:
    //     IsStatic: Object does not move, otherwise the object has mass and moves
    //     isSolid: other objects bounce off of this object
    //     isVolumeDetect: other objects pass through but can generate collisions
    //     collisionEvents: whether this object returns collision events
    // NOTE: overloaded by BSPrimLinkable to also update linkset physical parameters.
    public virtual void UpdatePhysicalParameters()
    {
        if (!PhysBody.HasPhysicalBody)
        {
            // This would only happen if updates are called for during initialization when the body is not set up yet.
            // DetailLog("{0},BSPrim.UpdatePhysicalParameters,taint,calledWithNoPhysBody", LocalID);
            return;
        }

        // Mangling all the physical properties requires the object not be in the physical world.
        // This is a NOOP if the object is not in the world (BulletSim and Bullet ignore objects not found).
        PhysScene.PE.RemoveObjectFromWorld(PhysScene.World, PhysBody);

        // Set up the object physicalness (does gravity and collisions move this object)
        MakeDynamic(IsStatic);

        // Update vehicle specific parameters (after MakeDynamic() so can change physical parameters)
        PhysicalActors.Refresh();

        // Arrange for collision events if the simulator wants them
        EnableCollisions(SubscribedEvents());

        // Make solid or not (do things bounce off or pass through this object).
        MakeSolid(IsSolid);

        AddObjectToPhysicalWorld();

        // Rebuild its shape
        PhysScene.PE.UpdateSingleAabb(PhysScene.World, PhysBody);

        DetailLog("{0},BSPrim.UpdatePhysicalParameters,taintExit,static={1},solid={2},mass={3},collide={4},cf={5:X},cType={6},body={7},shape={8}",
                                    LocalID, IsStatic, IsSolid, Mass, SubscribedEvents(),
                                    CurrentCollisionFlags, PhysBody.collisionType, PhysBody, PhysShape);
    }

    // "Making dynamic" means changing to and from static.
    // When static, gravity does not effect the object and it is fixed in space.
    // When dynamic, the object can fall and be pushed by others.
    // This is independent of its 'solidness' which controls what passes through
    //    this object and what interacts with it.
    protected virtual void MakeDynamic(bool makeStatic)
    {
        if (makeStatic)
        {
            // Become a Bullet 'static' object type
            CurrentCollisionFlags = PhysScene.PE.AddToCollisionFlags(PhysBody, CollisionFlags.CF_STATIC_OBJECT);
            // Stop all movement
            ZeroMotion(true);

            // Set various physical properties so other object interact properly
            PhysScene.PE.SetFriction(PhysBody, Friction);
            PhysScene.PE.SetRestitution(PhysBody, Restitution);
            PhysScene.PE.SetContactProcessingThreshold(PhysBody, BSParam.ContactProcessingThreshold);

            // Mass is zero which disables a bunch of physics stuff in Bullet
            UpdatePhysicalMassProperties(0f, false);
            // Set collision detection parameters
            if (BSParam.CcdMotionThreshold > 0f)
            {
                PhysScene.PE.SetCcdMotionThreshold(PhysBody, BSParam.CcdMotionThreshold);
                PhysScene.PE.SetCcdSweptSphereRadius(PhysBody, BSParam.CcdSweptSphereRadius);
            }

            // The activation state is 'disabled' so Bullet will not try to act on it.
            // PhysicsScene.PE.ForceActivationState(PhysBody, ActivationState.DISABLE_SIMULATION);
            // Start it out sleeping and physical actions could wake it up.
            PhysScene.PE.ForceActivationState(PhysBody, ActivationState.ISLAND_SLEEPING);

            // This collides like a static object
            PhysBody.collisionType = CollisionType.Static;
        }
        else
        {
            // Not a Bullet static object
            CurrentCollisionFlags = PhysScene.PE.RemoveFromCollisionFlags(PhysBody, CollisionFlags.CF_STATIC_OBJECT);

            // Set various physical properties so other object interact properly
            PhysScene.PE.SetFriction(PhysBody, Friction);
            PhysScene.PE.SetRestitution(PhysBody, Restitution);
            // DetailLog("{0},BSPrim.MakeDynamic,frict={1},rest={2}", LocalID, Friction, Restitution);

            // per http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?t=3382
            // Since this can be called multiple times, only zero forces when becoming physical
            // PhysicsScene.PE.ClearAllForces(BSBody);

            // For good measure, make sure the transform is set through to the motion state
            ForcePosition = RawPosition;
            ForceVelocity = RawVelocity;
            ForceRotationalVelocity = RawRotationalVelocity;

            // A dynamic object has mass
            UpdatePhysicalMassProperties(RawMass, false);

            // Set collision detection parameters
            if (BSParam.CcdMotionThreshold > 0f)
            {
                PhysScene.PE.SetCcdMotionThreshold(PhysBody, BSParam.CcdMotionThreshold);
                PhysScene.PE.SetCcdSweptSphereRadius(PhysBody, BSParam.CcdSweptSphereRadius);
            }

            // Various values for simulation limits
            PhysScene.PE.SetDamping(PhysBody, BSParam.LinearDamping, BSParam.AngularDamping);
            PhysScene.PE.SetDeactivationTime(PhysBody, BSParam.DeactivationTime);
            PhysScene.PE.SetSleepingThresholds(PhysBody, BSParam.LinearSleepingThreshold, BSParam.AngularSleepingThreshold);
            PhysScene.PE.SetContactProcessingThreshold(PhysBody, BSParam.ContactProcessingThreshold);

            // This collides like an object.
            PhysBody.collisionType = CollisionType.Dynamic;

            // Force activation of the object so Bullet will act on it.
            // Must do the ForceActivationState2() to overcome the DISABLE_SIMULATION from static objects.
            PhysScene.PE.ForceActivationState(PhysBody, ActivationState.ACTIVE_TAG);
        }
    }

    // "Making solid" means that other object will not pass through this object.
    // To make transparent, we create a Bullet ghost object.
    // Note: This expects to be called from the UpdatePhysicalParameters() routine as
    //     the functions after this one set up the state of a possibly newly created collision body.
    private void MakeSolid(bool makeSolid)
    {
        CollisionObjectTypes bodyType = (CollisionObjectTypes)PhysScene.PE.GetBodyType(PhysBody);
        if (makeSolid)
        {
            // Verify the previous code created the correct shape for this type of thing.
            if ((bodyType & CollisionObjectTypes.CO_RIGID_BODY) == 0)
            {
                m_log.ErrorFormat("{0} MakeSolid: physical body of wrong type for solidity. id={1}, type={2}", LogHeader, LocalID, bodyType);
            }
            CurrentCollisionFlags = PhysScene.PE.RemoveFromCollisionFlags(PhysBody, CollisionFlags.CF_NO_CONTACT_RESPONSE);
        }
        else
        {
            if ((bodyType & CollisionObjectTypes.CO_GHOST_OBJECT) == 0)
            {
                m_log.ErrorFormat("{0} MakeSolid: physical body of wrong type for non-solidness. id={1}, type={2}", LogHeader, LocalID, bodyType);
            }
            CurrentCollisionFlags = PhysScene.PE.AddToCollisionFlags(PhysBody, CollisionFlags.CF_NO_CONTACT_RESPONSE);

            // Change collision info from a static object to a ghosty collision object
            PhysBody.collisionType = CollisionType.VolumeDetect;
        }
    }

    // Turn on or off the flag controlling whether collision events are returned to the simulator.
    private void EnableCollisions(bool wantsCollisionEvents)
    {
        if (wantsCollisionEvents)
        {
            CurrentCollisionFlags = PhysScene.PE.AddToCollisionFlags(PhysBody, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS);
        }
        else
        {
            CurrentCollisionFlags = PhysScene.PE.RemoveFromCollisionFlags(PhysBody, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS);
        }
    }

    // Add me to the physical world.
    // Object MUST NOT already be in the world.
    // This routine exists because some assorted properties get mangled by adding to the world.
    internal void AddObjectToPhysicalWorld()
    {
        if (PhysBody.HasPhysicalBody)
        {
            PhysScene.PE.AddObjectToWorld(PhysScene.World, PhysBody);
        }
        else
        {
            m_log.ErrorFormat("{0} Attempt to add physical object without body. id={1}", LogHeader, LocalID);
            DetailLog("{0},BSPrim.AddObjectToPhysicalWorld,addObjectWithoutBody,cType={1}", LocalID, PhysBody.collisionType);
        }
    }

    // prims don't fly
    public override bool Flying {
        get { return _flying; }
        set {
            _flying = value;
        }
    }
    public override bool SetAlwaysRun {
        get { return _setAlwaysRun; }
        set { _setAlwaysRun = value; }
    }
    public override bool ThrottleUpdates {
        get { return _throttleUpdates; }
        set { _throttleUpdates = value; }
    }
    public bool IsPhantom {
        get {
            // SceneObjectPart removes phantom objects from the physics scene
            // so, although we could implement touching and such, we never
            // are invoked as a phantom object
            return false;
        }
    }
    public override bool FloatOnWater {
        set {
            _floatOnWater = value;
            PhysScene.TaintedObject(LocalID, "BSPrim.setFloatOnWater", delegate()
            {
                if (_floatOnWater)
                    CurrentCollisionFlags = PhysScene.PE.AddToCollisionFlags(PhysBody, CollisionFlags.BS_FLOATS_ON_WATER);
                else
                    CurrentCollisionFlags = PhysScene.PE.RemoveFromCollisionFlags(PhysBody, CollisionFlags.BS_FLOATS_ON_WATER);
            });
        }
    }
    public override bool Kinematic {
        get { return _kinematic; }
        set { _kinematic = value;
            // m_log.DebugFormat("{0}: Kinematic={1}", LogHeader, _kinematic);
        }
    }
    public override float Buoyancy {
        get { return _buoyancy; }
        set {
            _buoyancy = value;
            PhysScene.TaintedObject(LocalID, "BSPrim.setBuoyancy", delegate()
            {
                ForceBuoyancy = _buoyancy;
            });
        }
    }
    public override float ForceBuoyancy {
        get { return _buoyancy; }
        set {
            _buoyancy = value;
            // DetailLog("{0},BSPrim.setForceBuoyancy,taint,buoy={1}", LocalID, _buoyancy);
            // Force the recalculation of the various inertia,etc variables in the object
            UpdatePhysicalMassProperties(RawMass, true);
            DetailLog("{0},BSPrim.ForceBuoyancy,buoy={1},mass={2},grav={3}", LocalID, _buoyancy, RawMass, Gravity);
            ActivateIfPhysical(false);
        }
    }

    public override bool PIDActive
    {
        get
        {
            return MoveToTargetActive;
        }

        set
        {
            MoveToTargetActive = value;

            EnableActor(MoveToTargetActive, MoveToTargetActorName, delegate()
            {
                return new BSActorMoveToTarget(PhysScene, this, MoveToTargetActorName);
            });

            // Call update so actor Refresh() is called to start things off
            PhysScene.TaintedObject(LocalID, "BSPrim.PIDActive", delegate()
            {
                UpdatePhysicalParameters();
            });
        }
    }

    public override OMV.Vector3 PIDTarget
    {
        set
        {
            base.PIDTarget = value;
            BSActor actor;
            if (PhysicalActors.TryGetActor(MoveToTargetActorName, out actor))
            {
                // if the actor exists, tell it to refresh its values.
                actor.Refresh();
            }

        }
    }
    // Used for llSetHoverHeight and maybe vehicle height
    // Hover Height will override MoveTo target's Z
    public override bool PIDHoverActive {
        get
        {
        return base.HoverActive;
        }
        set {
            base.HoverActive = value;
            EnableActor(HoverActive, HoverActorName, delegate()
            {
                return new BSActorHover(PhysScene, this, HoverActorName);
            });

            // Call update so actor Refresh() is called to start things off
            PhysScene.TaintedObject(LocalID, "BSPrim.PIDHoverActive", delegate()
            {
                UpdatePhysicalParameters();
            });
        }
    }

    public override void AddForce(OMV.Vector3 force, bool pushforce) {
        // Per documentation, max force is limited.
        OMV.Vector3 addForce = Util.ClampV(force, BSParam.MaxAddForceMagnitude);

        // Push forces seem to be scaled differently (follow pattern in ubODE)
        if (!pushforce) {
            // Since this force is being applied in only one step, make this a force per second.
            addForce /= PhysScene.LastTimeStep;
        }

        AddForce(false /* inTaintTime */, addForce);
    }

    // Applying a force just adds this to the total force on the object.
    // This added force will only last the next simulation tick.
    public override void AddForce(bool inTaintTime, OMV.Vector3 force) {
        // for an object, doesn't matter if force is a pushforce or not
        if (IsPhysicallyActive)
        {
            if (force.IsFinite())
            {
                // DetailLog("{0},BSPrim.addForce,call,force={1}", LocalID, addForce);

                OMV.Vector3 addForce = force;
                PhysScene.TaintedObject(inTaintTime, LocalID, "BSPrim.AddForce", delegate()
                {
                    // Bullet adds this central force to the total force for this tick.
                    // Deep down in Bullet:
                    //      linearVelocity += totalForce / mass * timeStep;
                    DetailLog("{0},BSPrim.addForce,taint,force={1}", LocalID, addForce);
                    if (PhysBody.HasPhysicalBody)
                    {
                        PhysScene.PE.ApplyCentralForce(PhysBody, addForce);
                        ActivateIfPhysical(false);
                    }
                });
            }
            else
            {
                m_log.WarnFormat("{0}: AddForce: Got a NaN force applied to a prim. LocalID={1}", LogHeader, LocalID);
                return;
            }
        }
    }

    public void AddForceImpulse(OMV.Vector3 impulse, bool pushforce, bool inTaintTime) {
        // for an object, doesn't matter if force is a pushforce or not
        if (!IsPhysicallyActive)
        {
            if (impulse.IsFinite())
            {
                OMV.Vector3 addImpulse = Util.ClampV(impulse, BSParam.MaxAddForceMagnitude);
                // DetailLog("{0},BSPrim.addForceImpulse,call,impulse={1}", LocalID, impulse);

                PhysScene.TaintedObject(inTaintTime, LocalID, "BSPrim.AddImpulse", delegate()
                {
                    // Bullet adds this impulse immediately to the velocity
                    DetailLog("{0},BSPrim.addForceImpulse,taint,impulseforce={1}", LocalID, addImpulse);
                    if (PhysBody.HasPhysicalBody)
                    {
                        PhysScene.PE.ApplyCentralImpulse(PhysBody, addImpulse);
                        ActivateIfPhysical(false);
                    }
                });
            }
            else
            {
                m_log.WarnFormat("{0}: AddForceImpulse: Got a NaN impulse applied to a prim. LocalID={1}", LogHeader, LocalID);
                return;
            }
        }
    }

    // BSPhysObject.AddAngularForce()
    public override void AddAngularForce(bool inTaintTime, OMV.Vector3 force)
    {
        if (force.IsFinite())
        {
            OMV.Vector3 angForce = force;
            PhysScene.TaintedObject(inTaintTime, LocalID, "BSPrim.AddAngularForce", delegate()
            {
                if (PhysBody.HasPhysicalBody)
                {
                    DetailLog("{0},BSPrim.AddAngularForce,taint,angForce={1}", LocalID, angForce);
                    PhysScene.PE.ApplyTorque(PhysBody, angForce);
                    ActivateIfPhysical(false);
                }
            });
        }
        else
        {
            m_log.WarnFormat("{0}: Got a NaN force applied to a prim. LocalID={1}", LogHeader, LocalID);
            return;
        }
    }

    // A torque impulse.
    // ApplyTorqueImpulse adds torque directly to the angularVelocity.
    // AddAngularForce accumulates the force and applied it to the angular velocity all at once.
    // Computed as: angularVelocity += impulse * inertia;
    public void ApplyTorqueImpulse(OMV.Vector3 impulse, bool inTaintTime)
    {
        OMV.Vector3 applyImpulse = impulse;
        PhysScene.TaintedObject(inTaintTime, LocalID, "BSPrim.ApplyTorqueImpulse", delegate()
        {
            if (PhysBody.HasPhysicalBody)
            {
                PhysScene.PE.ApplyTorqueImpulse(PhysBody, applyImpulse);
                ActivateIfPhysical(false);
            }
        });
    }

    #region Mass Calculation

    private float CalculateMass()
    {
        float volume = _size.X * _size.Y * _size.Z; // default
        float tmp;

        float returnMass = 0;
        float hollowAmount = (float)BaseShape.ProfileHollow * 2.0e-5f;
        float hollowVolume = hollowAmount * hollowAmount;

        switch (BaseShape.ProfileShape)
        {
            case ProfileShape.Square:
                // default box

                if (BaseShape.PathCurve == (byte)Extrusion.Straight)
                    {
                    if (hollowAmount > 0.0)
                        {
                        switch (BaseShape.HollowShape)
                            {
                            case HollowShape.Square:
                            case HollowShape.Same:
                                break;

                            case HollowShape.Circle:

                                hollowVolume *= 0.78539816339f;
                                break;

                            case HollowShape.Triangle:

                                hollowVolume *= (0.5f * .5f);
                                break;

                            default:
                                hollowVolume = 0;
                                break;
                            }
                        volume *= (1.0f - hollowVolume);
                        }
                    }

                else if (BaseShape.PathCurve == (byte)Extrusion.Curve1)
                    {
                    //a tube

                    volume *= 0.78539816339e-2f * (float)(200 - BaseShape.PathScaleX);
                    tmp= 1.0f -2.0e-2f * (float)(200 - BaseShape.PathScaleY);
                    volume -= volume*tmp*tmp;

                    if (hollowAmount > 0.0)
                        {
                        hollowVolume *= hollowAmount;

                        switch (BaseShape.HollowShape)
                            {
                            case HollowShape.Square:
                            case HollowShape.Same:
                                break;

                            case HollowShape.Circle:
                                hollowVolume *= 0.78539816339f;;
                                break;

                            case HollowShape.Triangle:
                                hollowVolume *= 0.5f * 0.5f;
                                break;
                            default:
                                hollowVolume = 0;
                                break;
                            }
                        volume *= (1.0f - hollowVolume);
                        }
                    }

                break;

            case ProfileShape.Circle:

                if (BaseShape.PathCurve == (byte)Extrusion.Straight)
                    {
                    volume *= 0.78539816339f; // elipse base

                    if (hollowAmount > 0.0)
                        {
                        switch (BaseShape.HollowShape)
                            {
                            case HollowShape.Same:
                            case HollowShape.Circle:
                                break;

                            case HollowShape.Square:
                                hollowVolume *= 0.5f * 2.5984480504799f;
                                break;

                            case HollowShape.Triangle:
                                hollowVolume *= .5f * 1.27323954473516f;
                                break;

                            default:
                                hollowVolume = 0;
                                break;
                            }
                        volume *= (1.0f - hollowVolume);
                        }
                    }

                else if (BaseShape.PathCurve == (byte)Extrusion.Curve1)
                    {
                    volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - BaseShape.PathScaleX);
                    tmp = 1.0f - .02f * (float)(200 - BaseShape.PathScaleY);
                    volume *= (1.0f - tmp * tmp);

                    if (hollowAmount > 0.0)
                        {

                        // calculate the hollow volume by it's shape compared to the prim shape
                        hollowVolume *= hollowAmount;

                        switch (BaseShape.HollowShape)
                            {
                            case HollowShape.Same:
                            case HollowShape.Circle:
                                break;

                            case HollowShape.Square:
                                hollowVolume *= 0.5f * 2.5984480504799f;
                                break;

                            case HollowShape.Triangle:
                                hollowVolume *= .5f * 1.27323954473516f;
                                break;

                            default:
                                hollowVolume = 0;
                                break;
                            }
                        volume *= (1.0f - hollowVolume);
                        }
                    }
                break;

            case ProfileShape.HalfCircle:
                if (BaseShape.PathCurve == (byte)Extrusion.Curve1)
                {
                volume *= 0.52359877559829887307710723054658f;
                }
                break;

            case ProfileShape.EquilateralTriangle:

                if (BaseShape.PathCurve == (byte)Extrusion.Straight)
                    {
                    volume *= 0.32475953f;

                    if (hollowAmount > 0.0)
                        {

                        // calculate the hollow volume by it's shape compared to the prim shape
                        switch (BaseShape.HollowShape)
                            {
                            case HollowShape.Same:
                            case HollowShape.Triangle:
                                hollowVolume *= .25f;
                                break;

                            case HollowShape.Square:
                                hollowVolume *= 0.499849f * 3.07920140172638f;
                                break;

                            case HollowShape.Circle:
                                // Hollow shape is a perfect cyllinder in respect to the cube's scale
                                // Cyllinder hollow volume calculation

                                hollowVolume *= 0.1963495f * 3.07920140172638f;
                                break;

                            default:
                                hollowVolume = 0;
                                break;
                            }
                        volume *= (1.0f - hollowVolume);
                        }
                    }
                else if (BaseShape.PathCurve == (byte)Extrusion.Curve1)
                    {
                    volume *= 0.32475953f;
                    volume *= 0.01f * (float)(200 - BaseShape.PathScaleX);
                    tmp = 1.0f - .02f * (float)(200 - BaseShape.PathScaleY);
                    volume *= (1.0f - tmp * tmp);

                    if (hollowAmount > 0.0)
                        {

                        hollowVolume *= hollowAmount;

                        switch (BaseShape.HollowShape)
                            {
                            case HollowShape.Same:
                            case HollowShape.Triangle:
                                hollowVolume *= .25f;
                                break;

                            case HollowShape.Square:
                                hollowVolume *= 0.499849f * 3.07920140172638f;
                                break;

                            case HollowShape.Circle:

                                hollowVolume *= 0.1963495f * 3.07920140172638f;
                                break;

                            default:
                                hollowVolume = 0;
                                break;
                            }
                        volume *= (1.0f - hollowVolume);
                        }
                    }
                    break;

            default:
                break;
            }



        float taperX1;
        float taperY1;
        float taperX;
        float taperY;
        float pathBegin;
        float pathEnd;
        float profileBegin;
        float profileEnd;

        if (BaseShape.PathCurve == (byte)Extrusion.Straight || BaseShape.PathCurve == (byte)Extrusion.Flexible)
            {
            taperX1 = BaseShape.PathScaleX * 0.01f;
            if (taperX1 > 1.0f)
                taperX1 = 2.0f - taperX1;
            taperX = 1.0f - taperX1;

            taperY1 = BaseShape.PathScaleY * 0.01f;
            if (taperY1 > 1.0f)
                taperY1 = 2.0f - taperY1;
            taperY = 1.0f - taperY1;
            }
        else
            {
            taperX = BaseShape.PathTaperX * 0.01f;
            if (taperX < 0.0f)
                taperX = -taperX;
            taperX1 = 1.0f - taperX;

            taperY = BaseShape.PathTaperY * 0.01f;
            if (taperY < 0.0f)
                taperY = -taperY;
            taperY1 = 1.0f - taperY;

            }


        volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY);

        pathBegin = (float)BaseShape.PathBegin * 2.0e-5f;
        pathEnd = 1.0f - (float)BaseShape.PathEnd * 2.0e-5f;
        volume *= (pathEnd - pathBegin);

        // this is crude aproximation
        profileBegin = (float)BaseShape.ProfileBegin * 2.0e-5f;
        profileEnd = 1.0f - (float)BaseShape.ProfileEnd * 2.0e-5f;
        volume *= (profileEnd - profileBegin);

        returnMass = Density * BSParam.DensityScaleFactor * volume;

        returnMass = Util.Clamp(returnMass, BSParam.MinimumObjectMass, BSParam.MaximumObjectMass);
        // DetailLog("{0},BSPrim.CalculateMass,den={1},vol={2},mass={3}", LocalID, Density, volume, returnMass);
        DetailLog("{0},BSPrim.CalculateMass,den={1},vol={2},mass={3},pathB={4},pathE={5},profB={6},profE={7},siz={8}",
                            LocalID, Density, volume, returnMass, pathBegin, pathEnd, profileBegin, profileEnd, _size);

        return returnMass;
    }// end CalculateMass
    #endregion Mass Calculation

    // Rebuild the geometry and object.
    // This is called when the shape changes so we need to recreate the mesh/hull.
    // Called at taint-time!!!
    public void CreateGeomAndObject(bool forceRebuild)
    {
        // Create the correct physical representation for this type of object.
        // Updates base.PhysBody and base.PhysShape with the new information.
        // Ignore 'forceRebuild'. 'GetBodyAndShape' makes the right choices and changes of necessary.
        PhysScene.Shapes.GetBodyAndShape(false /*forceRebuild */, PhysScene.World, this, delegate(BulletBody pBody, BulletShape pShape)
        {
            // Called if the current prim body is about to be destroyed.
            // Remove all the physical dependencies on the old body.
            // (Maybe someday make the changing of BSShape an event to be subscribed to by BSLinkset, ...)
            // Note: this virtual function is overloaded by BSPrimLinkable to remove linkset constraints.
            RemoveDependencies();
        });

        // Make sure the properties are set on the new object
        UpdatePhysicalParameters();
        return;
    }

    // Called at taint-time
    protected virtual void RemoveDependencies()
    {
        PhysicalActors.RemoveDependencies();
    }

    #region Extension
    public override object Extension(string pFunct, params object[] pParams)
    {
        DetailLog("{0} BSPrim.Extension,op={1}", LocalID, pFunct);
        object ret = null;
        switch (pFunct)
        {
            case ExtendedPhysics.PhysFunctAxisLockLimits:
                ret = SetAxisLockLimitsExtension(pParams);
                break;
            default:
                ret = base.Extension(pFunct, pParams);
                break;
        }
        return ret;
    }

    private void InitializeAxisActor()
    {
        EnableActor(LockedAngularAxis != LockedAxisFree || LockedLinearAxis != LockedAxisFree,
                                    LockedAxisActorName, delegate()
        {
            return new BSActorLockAxis(PhysScene, this, LockedAxisActorName);
        });

        // Update parameters so the new actor's Refresh() action is called at the right time.
        PhysScene.TaintedObject(LocalID, "BSPrim.LockAxis", delegate()
        {
            UpdatePhysicalParameters();
        });
    }

    // Passed an array of an array of parameters, set the axis locking.
    // This expects an int (PHYS_AXIS_*) followed by none or two limit floats
    //    followed by another int and floats, etc.
    private object SetAxisLockLimitsExtension(object[] pParams)
    {
        DetailLog("{0} SetAxisLockLimitsExtension. parmlen={1}", LocalID, pParams.GetLength(0));
        object ret = null;
        try
        {
            if (pParams.GetLength(0) > 1)
            {
                int index = 2;
                while (index < pParams.GetLength(0))
                {
                    var funct = pParams[index];
                    DetailLog("{0} SetAxisLockLimitsExtension. op={1}, index={2}", LocalID, funct, index);
                    if (funct is Int32 || funct is Int64)
                    {
                        switch ((int)funct)
                        {
                            // Those that take no parameters
                            case ExtendedPhysics.PHYS_AXIS_LOCK_LINEAR:
                            case ExtendedPhysics.PHYS_AXIS_LOCK_LINEAR_X:
                            case ExtendedPhysics.PHYS_AXIS_LOCK_LINEAR_Y:
                            case ExtendedPhysics.PHYS_AXIS_LOCK_LINEAR_Z:
                            case ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR:
                            case ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_X:
                            case ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_Y:
                            case ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_Z:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR_X:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR_Y:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR_Z:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR_X:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR_Y:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR_Z:
                            case ExtendedPhysics.PHYS_AXIS_UNLOCK:
                                ApplyAxisLimits((int)funct, 0f, 0f);
                                index += 1;
                                break;
                            // Those that take two parameters (the limits)
                            case ExtendedPhysics.PHYS_AXIS_LIMIT_LINEAR_X:
                            case ExtendedPhysics.PHYS_AXIS_LIMIT_LINEAR_Y:
                            case ExtendedPhysics.PHYS_AXIS_LIMIT_LINEAR_Z:
                            case ExtendedPhysics.PHYS_AXIS_LIMIT_ANGULAR_X:
                            case ExtendedPhysics.PHYS_AXIS_LIMIT_ANGULAR_Y:
                            case ExtendedPhysics.PHYS_AXIS_LIMIT_ANGULAR_Z:
                                ApplyAxisLimits((int)funct, (float)pParams[index + 1], (float)pParams[index + 2]);
                                index += 3;
                                break;
                            default:
                                m_log.WarnFormat("{0} SetSxisLockLimitsExtension. Unknown op={1}", LogHeader, funct);
                                index += 1;
                                break;
                        }
                    }
                }
                InitializeAxisActor();
                ret = (object)index;
            }
        }
        catch (Exception e)
        {
            m_log.WarnFormat("{0} SetSxisLockLimitsExtension exception in object {1}: {2}", LogHeader, this.Name, e);
            ret = null;
        }
        return ret;    // not implemented yet
    }

        // Set the locking parameters.
        // If an axis is locked, the limits for the axis are set to zero,
        // If the axis is being constrained, the high and low value are passed and set.
        // When done here, LockedXXXAxis flags are set and LockedXXXAxixLow/High are set to the range.
    protected void ApplyAxisLimits(int funct, float low, float high)
    {
        DetailLog("{0} ApplyAxisLimits. op={1}, low={2}, high={3}", LocalID, funct, low, high);
        float linearMax = 23000f;
        float angularMax = (float)Math.PI;

        switch (funct)
        {
            case ExtendedPhysics.PHYS_AXIS_LOCK_LINEAR:
                this.LockedLinearAxis = new OMV.Vector3(LockedAxis, LockedAxis, LockedAxis);
                this.LockedLinearAxisLow = OMV.Vector3.Zero;
                this.LockedLinearAxisHigh = OMV.Vector3.Zero;
                break;
            case ExtendedPhysics.PHYS_AXIS_LOCK_LINEAR_X:
                this.LockedLinearAxis.X = LockedAxis;
                this.LockedLinearAxisLow.X = 0f;
                this.LockedLinearAxisHigh.X = 0f;
                break;
            case ExtendedPhysics.PHYS_AXIS_LIMIT_LINEAR_X:
                this.LockedLinearAxis.X = LockedAxis;
                this.LockedLinearAxisLow.X = Util.Clip(low, -linearMax, linearMax);
                this.LockedLinearAxisHigh.X = Util.Clip(high, -linearMax, linearMax);
                break;
            case ExtendedPhysics.PHYS_AXIS_LOCK_LINEAR_Y:
                this.LockedLinearAxis.Y = LockedAxis;
                this.LockedLinearAxisLow.Y = 0f;
                this.LockedLinearAxisHigh.Y = 0f;
                break;
            case ExtendedPhysics.PHYS_AXIS_LIMIT_LINEAR_Y:
                this.LockedLinearAxis.Y = LockedAxis;
                this.LockedLinearAxisLow.Y = Util.Clip(low, -linearMax, linearMax);
                this.LockedLinearAxisHigh.Y = Util.Clip(high, -linearMax, linearMax);
                break;
            case ExtendedPhysics.PHYS_AXIS_LOCK_LINEAR_Z:
                this.LockedLinearAxis.Z = LockedAxis;
                this.LockedLinearAxisLow.Z = 0f;
                this.LockedLinearAxisHigh.Z = 0f;
                break;
            case ExtendedPhysics.PHYS_AXIS_LIMIT_LINEAR_Z:
                this.LockedLinearAxis.Z = LockedAxis;
                this.LockedLinearAxisLow.Z = Util.Clip(low, -linearMax, linearMax);
                this.LockedLinearAxisHigh.Z = Util.Clip(high, -linearMax, linearMax);
                break;
            case ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR:
                this.LockedAngularAxis = new OMV.Vector3(LockedAxis, LockedAxis, LockedAxis);
                this.LockedAngularAxisLow = OMV.Vector3.Zero;
                this.LockedAngularAxisHigh = OMV.Vector3.Zero;
                break;
            case ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_X:
                this.LockedAngularAxis.X = LockedAxis;
                this.LockedAngularAxisLow.X = 0;
                this.LockedAngularAxisHigh.X = 0;
                break;
            case ExtendedPhysics.PHYS_AXIS_LIMIT_ANGULAR_X:
                this.LockedAngularAxis.X = LockedAxis;
                this.LockedAngularAxisLow.X = Util.Clip(low, -angularMax, angularMax);
                this.LockedAngularAxisHigh.X = Util.Clip(high, -angularMax, angularMax);
                break;
            case ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_Y:
                this.LockedAngularAxis.Y = LockedAxis;
                this.LockedAngularAxisLow.Y = 0;
                this.LockedAngularAxisHigh.Y = 0;
                break;
            case ExtendedPhysics.PHYS_AXIS_LIMIT_ANGULAR_Y:
                this.LockedAngularAxis.Y = LockedAxis;
                this.LockedAngularAxisLow.Y = Util.Clip(low, -angularMax, angularMax);
                this.LockedAngularAxisHigh.Y = Util.Clip(high, -angularMax, angularMax);
                break;
            case ExtendedPhysics.PHYS_AXIS_LOCK_ANGULAR_Z:
                this.LockedAngularAxis.Z = LockedAxis;
                this.LockedAngularAxisLow.Z = 0;
                this.LockedAngularAxisHigh.Z = 0;
                break;
            case ExtendedPhysics.PHYS_AXIS_LIMIT_ANGULAR_Z:
                this.LockedAngularAxis.Z = LockedAxis;
                this.LockedAngularAxisLow.Z = Util.Clip(low, -angularMax, angularMax);
                this.LockedAngularAxisHigh.Z = Util.Clip(high, -angularMax, angularMax);
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR:
                this.LockedLinearAxis = LockedAxisFree;
                this.LockedLinearAxisLow = new OMV.Vector3(-linearMax, -linearMax, -linearMax);
                this.LockedLinearAxisHigh = new OMV.Vector3(linearMax, linearMax, linearMax);
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR_X:
                this.LockedLinearAxis.X = FreeAxis;
                this.LockedLinearAxisLow.X = -linearMax;
                this.LockedLinearAxisHigh.X = linearMax;
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR_Y:
                this.LockedLinearAxis.Y = FreeAxis;
                this.LockedLinearAxisLow.Y = -linearMax;
                this.LockedLinearAxisHigh.Y = linearMax;
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR_Z:
                this.LockedLinearAxis.Z = FreeAxis;
                this.LockedLinearAxisLow.Z = -linearMax;
                this.LockedLinearAxisHigh.Z = linearMax;
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR:
                this.LockedAngularAxis = LockedAxisFree;
                this.LockedAngularAxisLow = new OMV.Vector3(-angularMax, -angularMax, -angularMax);
                this.LockedAngularAxisHigh = new OMV.Vector3(angularMax, angularMax, angularMax);
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR_X:
                this.LockedAngularAxis.X = FreeAxis;
                this.LockedAngularAxisLow.X = -angularMax;
                this.LockedAngularAxisHigh.X = angularMax;
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR_Y:
                this.LockedAngularAxis.Y = FreeAxis;
                this.LockedAngularAxisLow.Y = -angularMax;
                this.LockedAngularAxisHigh.Y = angularMax;
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR_Z:
                this.LockedAngularAxis.Z = FreeAxis;
                this.LockedAngularAxisLow.Z = -angularMax;
                this.LockedAngularAxisHigh.Z = angularMax;
                break;
            case ExtendedPhysics.PHYS_AXIS_UNLOCK:
                ApplyAxisLimits(ExtendedPhysics.PHYS_AXIS_UNLOCK_LINEAR, 0f, 0f);
                ApplyAxisLimits(ExtendedPhysics.PHYS_AXIS_UNLOCK_ANGULAR, 0f, 0f);
                break;
            default:
                break;
        }
        return;
    }
    #endregion  // Extension

    // The physics engine says that properties have updated. Update same and inform
    // the world that things have changed.
    // NOTE: BSPrim.UpdateProperties is overloaded by BSPrimLinkable which modifies updates from root and children prims.
    // NOTE: BSPrim.UpdateProperties is overloaded by BSPrimDisplaced which handles mapping physical position to simulator position.
    public override void UpdateProperties(EntityProperties entprop)
    {
        // Let anyone (like the actors) modify the updated properties before they are pushed into the object and the simulator.
        TriggerPreUpdatePropertyAction(ref entprop);

        // DetailLog("{0},BSPrim.UpdateProperties,entry,entprop={1}", LocalID, entprop);   // DEBUG DEBUG

        // Assign directly to the local variables so the normal set actions do not happen
        RawPosition = entprop.Position;
        RawOrientation = entprop.Rotation;
        // DEBUG DEBUG DEBUG -- smooth velocity changes a bit. The simulator seems to be
        //    very sensitive to velocity changes.
        if (entprop.Velocity == OMV.Vector3.Zero || !entprop.Velocity.ApproxEquals(RawVelocity, BSParam.UpdateVelocityChangeThreshold))
            RawVelocity = entprop.Velocity;
        _acceleration = entprop.Acceleration;
        RawRotationalVelocity = entprop.RotationalVelocity;

        // DetailLog("{0},BSPrim.UpdateProperties,afterAssign,entprop={1}", LocalID, entprop);   // DEBUG DEBUG

        // The sanity check can change the velocity and/or position.
        if (PositionSanityCheck(true /* inTaintTime */ ))
        {
            entprop.Position = RawPosition;
            entprop.Velocity = RawVelocity;
            entprop.RotationalVelocity = RawRotationalVelocity;
            entprop.Acceleration = _acceleration;
        }

        OMV.Vector3 direction = OMV.Vector3.UnitX * RawOrientation;   // DEBUG DEBUG DEBUG
        DetailLog("{0},BSPrim.UpdateProperties,call,entProp={1},dir={2}", LocalID, entprop, direction);

        // remember the current and last set values
        LastEntityProperties = CurrentEntityProperties;
        CurrentEntityProperties = entprop;

        PhysScene.PostUpdate(this);
    }
}
}