aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/UbitMeshing/Mesh.cs
blob: a0a18c45595d2d5801c46d40d05fdd26a1fea916 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/*
 * Copyright (c) Contributors, http://opensimulator.org/
 * See CONTRIBUTORS.TXT for a full list of copyright holders.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the OpenSimulator Project nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.InteropServices;
using OpenSim.Region.Physics.Manager;
using PrimMesher;
using OpenMetaverse;

namespace OpenSim.Region.Physics.Meshing
{
    public class Mesh : IMesh
    {

        private Dictionary<Vertex, int> m_vertices;
        private List<Triangle> m_triangles;
        GCHandle m_pinnedVertexes;
        GCHandle m_pinnedIndex;
        IntPtr m_verticesPtr = IntPtr.Zero;
        int m_vertexCount = 0;
        IntPtr m_indicesPtr = IntPtr.Zero;
        int m_indexCount = 0;
        public float[] m_normals;
        Vector3 m_centroid;
        float m_obbXmin;
        float m_obbXmax;
        float m_obbYmin;
        float m_obbYmax;
        float m_obbZmin;
        float m_obbZmax;

        int m_centroidDiv;

        private class vertexcomp : IEqualityComparer<Vertex>
        {
            public bool Equals(Vertex v1, Vertex v2)
            {
                if (v1.X == v2.X && v1.Y == v2.Y && v1.Z == v2.Z)
                    return true;
                else
                    return false;
            }
            public int GetHashCode(Vertex v)
            {
                int a = v.X.GetHashCode();
                int b = v.Y.GetHashCode();
                int c = v.Z.GetHashCode();
                return (a << 16) ^ (b << 8) ^ c;
            }
        }

        public Mesh()
        {
            vertexcomp vcomp = new vertexcomp();

            m_vertices = new Dictionary<Vertex, int>(vcomp);
            m_triangles = new List<Triangle>();
            m_centroid = Vector3.Zero;
            m_centroidDiv = 0;
            m_obbXmin = float.MaxValue;
            m_obbXmax = float.MinValue;
            m_obbYmin = float.MaxValue;
            m_obbYmax = float.MinValue;
            m_obbZmin = float.MaxValue;
            m_obbZmax = float.MinValue;
        }

        public int RefCount { get; set; }

        public AMeshKey Key { get; set; }

        public void Scale(Vector3 scale)
        {
        }

        public Mesh Clone()
        {
            Mesh result = new Mesh();

            foreach (Triangle t in m_triangles)
            {
                result.Add(new Triangle(t.v1.Clone(), t.v2.Clone(), t.v3.Clone()));
            }
            result.m_centroid = m_centroid;
            result.m_centroidDiv = m_centroidDiv;
            result.m_obbXmin = m_obbXmin;
            result.m_obbXmax = m_obbXmax;
            result.m_obbYmin = m_obbYmin;
            result.m_obbYmax = m_obbYmax;
            result.m_obbZmin = m_obbZmin;
            result.m_obbZmax = m_obbZmax;
            return result;
        }

        public void addVertexLStats(Vertex v)
        {
            float x = v.X;
            float y = v.Y;
            float z = v.Z;

            m_centroid.X += x;
            m_centroid.Y += y;
            m_centroid.Z += z;
            m_centroidDiv++;

            if (x > m_obbXmax)
                m_obbXmax = x;
            else if (x < m_obbXmin)
                m_obbXmin = x;

            if (y > m_obbYmax)
                m_obbYmax = y;
            else if (y < m_obbYmin)
                m_obbYmin = y;

            if (z > m_obbZmax)
                m_obbZmax = z;
            else if (z < m_obbZmin)
                m_obbZmin = z;

        }


        public void Add(Triangle triangle)
        {
            if (m_pinnedIndex.IsAllocated || m_pinnedVertexes.IsAllocated || m_indicesPtr != IntPtr.Zero || m_verticesPtr != IntPtr.Zero)
                throw new NotSupportedException("Attempt to Add to a pinned Mesh");
            // If a vertex of the triangle is not yet in the vertices list,
            // add it and set its index to the current index count
            // vertex == seems broken
            // skip colapsed triangles
            if ((triangle.v1.X == triangle.v2.X && triangle.v1.Y == triangle.v2.Y && triangle.v1.Z == triangle.v2.Z)
                || (triangle.v1.X == triangle.v3.X && triangle.v1.Y == triangle.v3.Y && triangle.v1.Z == triangle.v3.Z)
                || (triangle.v2.X == triangle.v3.X && triangle.v2.Y == triangle.v3.Y && triangle.v2.Z == triangle.v3.Z)
                )               
            {               
                return;
            }

            if (m_vertices.Count == 0)
            {
                m_centroidDiv = 0;
                m_centroid = Vector3.Zero;
            }

            if (!m_vertices.ContainsKey(triangle.v1))
            {
                m_vertices[triangle.v1] = m_vertices.Count;
                addVertexLStats(triangle.v1);
            }
            if (!m_vertices.ContainsKey(triangle.v2))
            {
                m_vertices[triangle.v2] = m_vertices.Count;
                addVertexLStats(triangle.v2);
            }
            if (!m_vertices.ContainsKey(triangle.v3))
            {
                m_vertices[triangle.v3] = m_vertices.Count;
                addVertexLStats(triangle.v3);
            }
            m_triangles.Add(triangle);
        }

        public Vector3 GetCentroid()
        {
            if (m_centroidDiv > 0)
                return new Vector3(m_centroid.X / m_centroidDiv, m_centroid.Y / m_centroidDiv, m_centroid.Z / m_centroidDiv);
            else
                return Vector3.Zero;
        }

        public Vector3 GetOBB()
        {
            float x, y, z;
            if (m_centroidDiv > 0)
            {
                x = (m_obbXmax - m_obbXmin) * 0.5f;
                y = (m_obbYmax - m_obbYmin) * 0.5f;
                z = (m_obbZmax - m_obbZmin) * 0.5f;
            }
            else // ??
            {
                x = 0.5f;
                y = 0.5f;
                z = 0.5f;
            }
            return new Vector3(x, y, z);
        }

        public void CalcNormals()
        {
            int iTriangles = m_triangles.Count;

            this.m_normals = new float[iTriangles * 3];

            int i = 0;
            foreach (Triangle t in m_triangles)
            {
                float ux, uy, uz;
                float vx, vy, vz;
                float wx, wy, wz;

                ux = t.v1.X;
                uy = t.v1.Y;
                uz = t.v1.Z;

                vx = t.v2.X;
                vy = t.v2.Y;
                vz = t.v2.Z;

                wx = t.v3.X;
                wy = t.v3.Y;
                wz = t.v3.Z;


                // Vectors for edges
                float e1x, e1y, e1z;
                float e2x, e2y, e2z;

                e1x = ux - vx;
                e1y = uy - vy;
                e1z = uz - vz;

                e2x = ux - wx;
                e2y = uy - wy;
                e2z = uz - wz;


                // Cross product for normal
                float nx, ny, nz;
                nx = e1y * e2z - e1z * e2y;
                ny = e1z * e2x - e1x * e2z;
                nz = e1x * e2y - e1y * e2x;

                // Length
                float l = (float)Math.Sqrt(nx * nx + ny * ny + nz * nz);
                float lReciprocal = 1.0f / l;

                // Normalized "normal"
                //nx /= l;
                //ny /= l;
                //nz /= l;

                m_normals[i] = nx * lReciprocal;
                m_normals[i + 1] = ny * lReciprocal;
                m_normals[i + 2] = nz * lReciprocal;

                i += 3;
            }
        }

        public List<Vector3> getVertexList()
        {
            List<Vector3> result = new List<Vector3>();
            foreach (Vertex v in m_vertices.Keys)
            {
                result.Add(new Vector3(v.X, v.Y, v.Z));
            }
            return result;
        }

        private float[] getVertexListAsFloat()
        {
            if (m_vertices == null)
                throw new NotSupportedException();
            float[] result = new float[m_vertices.Count * 3];
            foreach (KeyValuePair<Vertex, int> kvp in m_vertices)
            {
                Vertex v = kvp.Key;
                int i = kvp.Value;
                result[3 * i + 0] = v.X;
                result[3 * i + 1] = v.Y;
                result[3 * i + 2] = v.Z;
            }
            return result;
        }

        public float[] getVertexListAsFloatLocked()
        {
            if (m_pinnedVertexes.IsAllocated)
                return (float[])(m_pinnedVertexes.Target);

            float[] result = getVertexListAsFloat();
            m_pinnedVertexes = GCHandle.Alloc(result, GCHandleType.Pinned);
            // Inform the garbage collector of this unmanaged allocation so it can schedule
            // the next GC round more intelligently
            GC.AddMemoryPressure(Buffer.ByteLength(result));

            return result;
        }

        public void PrepForOde()
        {
            // If there isn't an unmanaged array allocated yet, do it now
            if (m_verticesPtr == IntPtr.Zero)
            {
                float[] vertexList = getVertexListAsFloat();
                // Each vertex is 3 elements (floats)
                m_vertexCount = vertexList.Length / 3;
                int byteCount = m_vertexCount * 3 * sizeof(float);
                m_verticesPtr = System.Runtime.InteropServices.Marshal.AllocHGlobal(byteCount);
                System.Runtime.InteropServices.Marshal.Copy(vertexList, 0, m_verticesPtr, m_vertexCount * 3);
            }

            // If there isn't an unmanaged array allocated yet, do it now
            if (m_indicesPtr == IntPtr.Zero)
            {
                int[] indexList = getIndexListAsInt();
                m_indexCount = indexList.Length;
                int byteCount = m_indexCount * sizeof(int);
                m_indicesPtr = System.Runtime.InteropServices.Marshal.AllocHGlobal(byteCount);
                System.Runtime.InteropServices.Marshal.Copy(indexList, 0, m_indicesPtr, m_indexCount);
            }

            releaseSourceMeshData();
        }

        public void getVertexListAsPtrToFloatArray(out IntPtr vertices, out int vertexStride, out int vertexCount)
        {
            // A vertex is 3 floats
            vertexStride = 3 * sizeof(float);

            // If there isn't an unmanaged array allocated yet, do it now
            if (m_verticesPtr == IntPtr.Zero)
            {
                float[] vertexList = getVertexListAsFloat();
                // Each vertex is 3 elements (floats)
                m_vertexCount = vertexList.Length / 3;
                int byteCount = m_vertexCount * vertexStride;
                m_verticesPtr = System.Runtime.InteropServices.Marshal.AllocHGlobal(byteCount);
                System.Runtime.InteropServices.Marshal.Copy(vertexList, 0, m_verticesPtr, m_vertexCount * 3);
            }
            vertices = m_verticesPtr;
            vertexCount = m_vertexCount;
        }

        public int[] getIndexListAsInt()
        {
            if (m_triangles == null)
                throw new NotSupportedException();
            int[] result = new int[m_triangles.Count * 3];
            for (int i = 0; i < m_triangles.Count; i++)
            {
                Triangle t = m_triangles[i];
                result[3 * i + 0] = m_vertices[t.v1];
                result[3 * i + 1] = m_vertices[t.v2];
                result[3 * i + 2] = m_vertices[t.v3];
            }
            return result;
        }

        /// <summary>
        /// creates a list of index values that defines triangle faces. THIS METHOD FREES ALL NON-PINNED MESH DATA
        /// </summary>
        /// <returns></returns>
        public int[] getIndexListAsIntLocked()
        {
            if (m_pinnedIndex.IsAllocated)
                return (int[])(m_pinnedIndex.Target);
        
            int[] result = getIndexListAsInt();
            m_pinnedIndex = GCHandle.Alloc(result, GCHandleType.Pinned);
            // Inform the garbage collector of this unmanaged allocation so it can schedule
            // the next GC round more intelligently
            GC.AddMemoryPressure(Buffer.ByteLength(result));

            return result;
        }

        public void getIndexListAsPtrToIntArray(out IntPtr indices, out int triStride, out int indexCount)
        {
            // If there isn't an unmanaged array allocated yet, do it now
            if (m_indicesPtr == IntPtr.Zero)
            {
                int[] indexList = getIndexListAsInt();
                m_indexCount = indexList.Length;
                int byteCount = m_indexCount * sizeof(int);
                m_indicesPtr = System.Runtime.InteropServices.Marshal.AllocHGlobal(byteCount);
                System.Runtime.InteropServices.Marshal.Copy(indexList, 0, m_indicesPtr, m_indexCount);
            }
            // A triangle is 3 ints (indices)
            triStride = 3 * sizeof(int);
            indices = m_indicesPtr;
            indexCount = m_indexCount;
        }

        public void releasePinned()
        {
            if (m_pinnedVertexes.IsAllocated)
                m_pinnedVertexes.Free();
            if (m_pinnedIndex.IsAllocated)
                m_pinnedIndex.Free();
            if (m_verticesPtr != IntPtr.Zero)
            {
                System.Runtime.InteropServices.Marshal.FreeHGlobal(m_verticesPtr);
                m_verticesPtr = IntPtr.Zero;
            }
            if (m_indicesPtr != IntPtr.Zero)
            {
                System.Runtime.InteropServices.Marshal.FreeHGlobal(m_indicesPtr);
                m_indicesPtr = IntPtr.Zero;
            }
        }

        /// <summary>
        /// frees up the source mesh data to minimize memory - call this method after calling get*Locked() functions
        /// </summary>
        public void releaseSourceMeshData()
        {
            m_triangles = null;
            m_vertices = null;
        }

        public void Append(IMesh newMesh)
        {
            if (m_pinnedIndex.IsAllocated || m_pinnedVertexes.IsAllocated || m_indicesPtr != IntPtr.Zero || m_verticesPtr != IntPtr.Zero)
                throw new NotSupportedException("Attempt to Append to a pinned Mesh");
        
            if (!(newMesh is Mesh))
                return;

            foreach (Triangle t in ((Mesh)newMesh).m_triangles)
                Add(t);
        }

        // Do a linear transformation of  mesh.
        public void TransformLinear(float[,] matrix, float[] offset)
        {
            if (m_pinnedIndex.IsAllocated || m_pinnedVertexes.IsAllocated || m_indicesPtr != IntPtr.Zero || m_verticesPtr != IntPtr.Zero)
                throw new NotSupportedException("Attempt to TransformLinear a pinned Mesh");
        
            foreach (Vertex v in m_vertices.Keys)
            {
                if (v == null)
                    continue;
                float x, y, z;
                x = v.X*matrix[0, 0] + v.Y*matrix[1, 0] + v.Z*matrix[2, 0];
                y = v.X*matrix[0, 1] + v.Y*matrix[1, 1] + v.Z*matrix[2, 1];
                z = v.X*matrix[0, 2] + v.Y*matrix[1, 2] + v.Z*matrix[2, 2];
                v.X = x + offset[0];
                v.Y = y + offset[1];
                v.Z = z + offset[2];
            }
        }

        public void DumpRaw(String path, String name, String title)
        {
            if (path == null)
                return;
            String fileName = name + "_" + title + ".raw";
            String completePath = System.IO.Path.Combine(path, fileName);
            StreamWriter sw = new StreamWriter(completePath);
            foreach (Triangle t in m_triangles)
            {
                String s = t.ToStringRaw();
                sw.WriteLine(s);
            }
            sw.Close();
        }

        public void TrimExcess()
        {
            m_triangles.TrimExcess();
        }
    }
}