aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/ConvexDecompositionDotNet/PlaneTri.cs
blob: 31f01825208e3ae58f0e1ea363dd511ff1c752dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/* The MIT License
 * 
 * Copyright (c) 2010 Intel Corporation.
 * All rights reserved.
 *
 * Based on the convexdecomposition library from 
 * <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

using System;
using System.Collections.Generic;
using System.Diagnostics;

namespace OpenSim.Region.Physics.ConvexDecompositionDotNet
{
    public enum PlaneTriResult : int
    {
        PTR_FRONT,
        PTR_BACK,
        PTR_SPLIT
    }

    public static class PlaneTri
    {
        private static float DistToPt(float3 p, float4 plane)
        {
            return p.x * plane.x + p.y * plane.y + p.z * plane.z + plane.w;
        }

        private static PlaneTriResult getSidePlane(float3 p, float4 plane, float epsilon)
        {
            float d = DistToPt(p, plane);

            if ((d + epsilon) > 0f)
                return PlaneTriResult.PTR_FRONT; // it is 'in front' within the provided epsilon value.

            return PlaneTriResult.PTR_BACK;
        }

        private static void add(float3 p, float3[] dest, ref int pcount)
        {
            dest[pcount++] = new float3(p);
            Debug.Assert(pcount <= 4);
        }

        // assumes that the points are on opposite sides of the plane!
        private static void intersect(float3 p1, float3 p2, float3 split, float4 plane)
        {
            float dp1 = DistToPt(p1, plane);
            float[] dir = new float[3];

            dir[0] = p2[0] - p1[0];
            dir[1] = p2[1] - p1[1];
            dir[2] = p2[2] - p1[2];

            float dot1 = dir[0] * plane[0] + dir[1] * plane[1] + dir[2] * plane[2];
            float dot2 = dp1 - plane[3];

            float t = -(plane[3] + dot2) / dot1;

            split.x = (dir[0] * t) + p1[0];
            split.y = (dir[1] * t) + p1[1];
            split.z = (dir[2] * t) + p1[2];
        }

        public static PlaneTriResult planeTriIntersection(float4 plane, FaceTri triangle, float epsilon, ref float3[] front, out int fcount, ref float3[] back, out int bcount)
        {
            fcount = 0;
            bcount = 0;

            // get the three vertices of the triangle.
            float3 p1 = triangle.P1;
            float3 p2 = triangle.P2;
            float3 p3 = triangle.P3;

            PlaneTriResult r1 = getSidePlane(p1, plane, epsilon); // compute the side of the plane each vertex is on
            PlaneTriResult r2 = getSidePlane(p2, plane, epsilon);
            PlaneTriResult r3 = getSidePlane(p3, plane, epsilon);

            if (r1 == r2 && r1 == r3) // if all three vertices are on the same side of the plane.
            {
                if (r1 == PlaneTriResult.PTR_FRONT) // if all three are in front of the plane, then copy to the 'front' output triangle.
                {
                    add(p1, front, ref fcount);
                    add(p2, front, ref fcount);
                    add(p3, front, ref fcount);
                }
                else
                {
                    add(p1, back, ref bcount); // if all three are in 'back' then copy to the 'back' output triangle.
                    add(p2, back, ref bcount);
                    add(p3, back, ref bcount);
                }
                return r1; // if all three points are on the same side of the plane return result
            }

            // ok.. we need to split the triangle at the plane.

            // First test ray segment P1 to P2
            if (r1 == r2) // if these are both on the same side...
            {
                if (r1 == PlaneTriResult.PTR_FRONT)
                {
                    add(p1, front, ref fcount);
                    add(p2, front, ref fcount);
                }
                else
                {
                    add(p1, back, ref bcount);
                    add(p2, back, ref bcount);
                }
            }
            else
            {
                float3 split = new float3();
                intersect(p1, p2, split, plane);

                if (r1 == PlaneTriResult.PTR_FRONT)
                {

                    add(p1, front, ref fcount);
                    add(split, front, ref fcount);

                    add(split, back, ref bcount);
                    add(p2, back, ref bcount);

                }
                else
                {
                    add(p1, back, ref bcount);
                    add(split, back, ref bcount);

                    add(split, front, ref fcount);
                    add(p2, front, ref fcount);
                }

            }

            // Next test ray segment P2 to P3
            if (r2 == r3) // if these are both on the same side...
            {
                if (r3 == PlaneTriResult.PTR_FRONT)
                {
                    add(p3, front, ref fcount);
                }
                else
                {
                    add(p3, back, ref bcount);
                }
            }
            else
            {
                float3 split = new float3(); // split the point
                intersect(p2, p3, split, plane);

                if (r3 == PlaneTriResult.PTR_FRONT)
                {
                    add(split, front, ref fcount);
                    add(split, back, ref bcount);

                    add(p3, front, ref fcount);
                }
                else
                {
                    add(split, front, ref fcount);
                    add(split, back, ref bcount);

                    add(p3, back, ref bcount);
                }
            }

            // Next test ray segment P3 to P1
            if (r3 != r1) // if these are both on the same side...
            {
                float3 split = new float3(); // split the point
                intersect(p3, p1, split, plane);

                if (r1 == PlaneTriResult.PTR_FRONT)
                {
                    add(split, front, ref fcount);
                    add(split, back, ref bcount);
                }
                else
                {
                    add(split, front, ref fcount);
                    add(split, back, ref bcount);
                }
            }

            return PlaneTriResult.PTR_SPLIT;
        }
    }
}