1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
/* The MIT License
*
* Copyright (c) 2010 Intel Corporation.
* All rights reserved.
*
* Based on the convexdecomposition library from
* <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
using System.Collections.Generic;
using System.Text;
namespace OpenSim.Region.Physics.ConvexDecompositionDotNet
{
public static class Concavity
{
// compute's how 'concave' this object is and returns the total volume of the
// convex hull as well as the volume of the 'concavity' which was found.
public static float computeConcavity(List<float3> vertices, List<int> indices, ref float4 plane, ref float volume)
{
float cret = 0f;
volume = 1f;
HullResult result = new HullResult();
HullDesc desc = new HullDesc();
desc.MaxFaces = 256;
desc.MaxVertices = 256;
desc.SetHullFlag(HullFlag.QF_TRIANGLES);
desc.Vertices = vertices;
HullError ret = HullUtils.CreateConvexHull(desc, ref result);
if (ret == HullError.QE_OK)
{
volume = computeMeshVolume2(result.OutputVertices, result.Indices);
// ok..now..for each triangle on the original mesh..
// we extrude the points to the nearest point on the hull.
List<CTri> tris = new List<CTri>();
for (int i = 0; i < result.Indices.Count / 3; i++)
{
int i1 = result.Indices[i * 3 + 0];
int i2 = result.Indices[i * 3 + 1];
int i3 = result.Indices[i * 3 + 2];
float3 p1 = result.OutputVertices[i1];
float3 p2 = result.OutputVertices[i2];
float3 p3 = result.OutputVertices[i3];
CTri t = new CTri(p1, p2, p3, i1, i2, i3);
tris.Add(t);
}
// we have not pre-computed the plane equation for each triangle in the convex hull..
float totalVolume = 0;
List<CTri> ftris = new List<CTri>(); // 'feature' triangles.
List<CTri> input_mesh = new List<CTri>();
for (int i = 0; i < indices.Count / 3; i++)
{
int i1 = indices[i * 3 + 0];
int i2 = indices[i * 3 + 1];
int i3 = indices[i * 3 + 2];
float3 p1 = vertices[i1];
float3 p2 = vertices[i2];
float3 p3 = vertices[i3];
CTri t = new CTri(p1, p2, p3, i1, i2, i3);
input_mesh.Add(t);
}
for (int i = 0; i < indices.Count / 3; i++)
{
int i1 = indices[i * 3 + 0];
int i2 = indices[i * 3 + 1];
int i3 = indices[i * 3 + 2];
float3 p1 = vertices[i1];
float3 p2 = vertices[i2];
float3 p3 = vertices[i3];
CTri t = new CTri(p1, p2, p3, i1, i2, i3);
featureMatch(t, tris, input_mesh);
if (t.mConcavity > 0.05f)
{
float v = t.getVolume();
totalVolume += v;
ftris.Add(t);
}
}
SplitPlane.computeSplitPlane(vertices, indices, ref plane);
cret = totalVolume;
}
return cret;
}
public static bool featureMatch(CTri m, List<CTri> tris, List<CTri> input_mesh)
{
bool ret = false;
float neardot = 0.707f;
m.mConcavity = 0;
for (int i = 0; i < tris.Count; i++)
{
CTri t = tris[i];
if (t.samePlane(m))
{
ret = false;
break;
}
float dot = float3.dot(t.mNormal, m.mNormal);
if (dot > neardot)
{
float d1 = t.planeDistance(m.mP1);
float d2 = t.planeDistance(m.mP2);
float d3 = t.planeDistance(m.mP3);
if (d1 > 0.001f || d2 > 0.001f || d3 > 0.001f) // can't be near coplaner!
{
neardot = dot;
t.raySect(m.mP1, m.mNormal, ref m.mNear1);
t.raySect(m.mP2, m.mNormal, ref m.mNear2);
t.raySect(m.mP3, m.mNormal, ref m.mNear3);
ret = true;
}
}
}
if (ret)
{
m.mC1 = m.mP1.Distance(m.mNear1);
m.mC2 = m.mP2.Distance(m.mNear2);
m.mC3 = m.mP3.Distance(m.mNear3);
m.mConcavity = m.mC1;
if (m.mC2 > m.mConcavity)
m.mConcavity = m.mC2;
if (m.mC3 > m.mConcavity)
m.mConcavity = m.mC3;
}
return ret;
}
private static float det(float3 p1, float3 p2, float3 p3)
{
return p1.x * p2.y * p3.z + p2.x * p3.y * p1.z + p3.x * p1.y * p2.z - p1.x * p3.y * p2.z - p2.x * p1.y * p3.z - p3.x * p2.y * p1.z;
}
public static float computeMeshVolume(List<float3> vertices, List<int> indices)
{
float volume = 0f;
for (int i = 0; i < indices.Count / 3; i++)
{
float3 p1 = vertices[indices[i * 3 + 0]];
float3 p2 = vertices[indices[i * 3 + 1]];
float3 p3 = vertices[indices[i * 3 + 2]];
volume += det(p1, p2, p3); // compute the volume of the tetrahedran relative to the origin.
}
volume *= (1.0f / 6.0f);
if (volume < 0f)
return -volume;
return volume;
}
public static float computeMeshVolume2(List<float3> vertices, List<int> indices)
{
float volume = 0f;
float3 p0 = vertices[0];
for (int i = 0; i < indices.Count / 3; i++)
{
float3 p1 = vertices[indices[i * 3 + 0]];
float3 p2 = vertices[indices[i * 3 + 1]];
float3 p3 = vertices[indices[i * 3 + 2]];
volume += tetVolume(p0, p1, p2, p3); // compute the volume of the tetrahedron relative to the root vertice
}
return volume * (1.0f / 6.0f);
}
private static float tetVolume(float3 p0, float3 p1, float3 p2, float3 p3)
{
float3 a = p1 - p0;
float3 b = p2 - p0;
float3 c = p3 - p0;
float3 cross = float3.cross(b, c);
float volume = float3.dot(a, cross);
if (volume < 0f)
return -volume;
return volume;
}
}
}
|