diff options
Diffstat (limited to 'libraries/ode-0.9/OPCODE/Ice/IcePoint.h')
-rw-r--r-- | libraries/ode-0.9/OPCODE/Ice/IcePoint.h | 528 |
1 files changed, 528 insertions, 0 deletions
diff --git a/libraries/ode-0.9/OPCODE/Ice/IcePoint.h b/libraries/ode-0.9/OPCODE/Ice/IcePoint.h new file mode 100644 index 0000000..a97fbe6 --- /dev/null +++ b/libraries/ode-0.9/OPCODE/Ice/IcePoint.h | |||
@@ -0,0 +1,528 @@ | |||
1 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
2 | /** | ||
3 | * Contains code for 3D vectors. | ||
4 | * \file IcePoint.h | ||
5 | * \author Pierre Terdiman | ||
6 | * \date April, 4, 2000 | ||
7 | */ | ||
8 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
9 | |||
10 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
11 | // Include Guard | ||
12 | #ifndef __ICEPOINT_H__ | ||
13 | #define __ICEPOINT_H__ | ||
14 | |||
15 | // Forward declarations | ||
16 | class HPoint; | ||
17 | class Plane; | ||
18 | class Matrix3x3; | ||
19 | class Matrix4x4; | ||
20 | |||
21 | #define CROSS2D(a, b) (a.x*b.y - b.x*a.y) | ||
22 | |||
23 | const float EPSILON2 = 1.0e-20f; | ||
24 | |||
25 | class ICEMATHS_API Point | ||
26 | { | ||
27 | public: | ||
28 | |||
29 | //! Empty constructor | ||
30 | inline_ Point() {} | ||
31 | //! Constructor from a single float | ||
32 | // inline_ Point(float val) : x(val), y(val), z(val) {} | ||
33 | // Removed since it introduced the nasty "Point T = *Matrix4x4.GetTrans();" bug....... | ||
34 | //! Constructor from floats | ||
35 | inline_ Point(float xx, float yy, float zz) : x(xx), y(yy), z(zz) {} | ||
36 | //! Constructor from array | ||
37 | inline_ Point(const float f[3]) : x(f[X]), y(f[Y]), z(f[Z]) {} | ||
38 | //! Copy constructor | ||
39 | inline_ Point(const Point& p) : x(p.x), y(p.y), z(p.z) {} | ||
40 | //! Destructor | ||
41 | inline_ ~Point() {} | ||
42 | |||
43 | //! Clears the vector | ||
44 | inline_ Point& Zero() { x = y = z = 0.0f; return *this; } | ||
45 | |||
46 | //! + infinity | ||
47 | inline_ Point& SetPlusInfinity() { x = y = z = MAX_FLOAT; return *this; } | ||
48 | //! - infinity | ||
49 | inline_ Point& SetMinusInfinity() { x = y = z = MIN_FLOAT; return *this; } | ||
50 | |||
51 | //! Sets positive unit random vector | ||
52 | Point& PositiveUnitRandomVector(); | ||
53 | //! Sets unit random vector | ||
54 | Point& UnitRandomVector(); | ||
55 | |||
56 | //! Assignment from values | ||
57 | inline_ Point& Set(float xx, float yy, float zz) { x = xx; y = yy; z = zz; return *this; } | ||
58 | //! Assignment from array | ||
59 | inline_ Point& Set(const float f[3]) { x = f[X]; y = f[Y]; z = f[Z]; return *this; } | ||
60 | //! Assignment from another point | ||
61 | inline_ Point& Set(const Point& src) { x = src.x; y = src.y; z = src.z; return *this; } | ||
62 | |||
63 | //! Adds a vector | ||
64 | inline_ Point& Add(const Point& p) { x += p.x; y += p.y; z += p.z; return *this; } | ||
65 | //! Adds a vector | ||
66 | inline_ Point& Add(float xx, float yy, float zz) { x += xx; y += yy; z += zz; return *this; } | ||
67 | //! Adds a vector | ||
68 | inline_ Point& Add(const float f[3]) { x += f[X]; y += f[Y]; z += f[Z]; return *this; } | ||
69 | //! Adds vectors | ||
70 | inline_ Point& Add(const Point& p, const Point& q) { x = p.x+q.x; y = p.y+q.y; z = p.z+q.z; return *this; } | ||
71 | |||
72 | //! Subtracts a vector | ||
73 | inline_ Point& Sub(const Point& p) { x -= p.x; y -= p.y; z -= p.z; return *this; } | ||
74 | //! Subtracts a vector | ||
75 | inline_ Point& Sub(float xx, float yy, float zz) { x -= xx; y -= yy; z -= zz; return *this; } | ||
76 | //! Subtracts a vector | ||
77 | inline_ Point& Sub(const float f[3]) { x -= f[X]; y -= f[Y]; z -= f[Z]; return *this; } | ||
78 | //! Subtracts vectors | ||
79 | inline_ Point& Sub(const Point& p, const Point& q) { x = p.x-q.x; y = p.y-q.y; z = p.z-q.z; return *this; } | ||
80 | |||
81 | //! this = -this | ||
82 | inline_ Point& Neg() { x = -x; y = -y; z = -z; return *this; } | ||
83 | //! this = -a | ||
84 | inline_ Point& Neg(const Point& a) { x = -a.x; y = -a.y; z = -a.z; return *this; } | ||
85 | |||
86 | //! Multiplies by a scalar | ||
87 | inline_ Point& Mult(float s) { x *= s; y *= s; z *= s; return *this; } | ||
88 | |||
89 | //! this = a * scalar | ||
90 | inline_ Point& Mult(const Point& a, float scalar) | ||
91 | { | ||
92 | x = a.x * scalar; | ||
93 | y = a.y * scalar; | ||
94 | z = a.z * scalar; | ||
95 | return *this; | ||
96 | } | ||
97 | |||
98 | //! this = a + b * scalar | ||
99 | inline_ Point& Mac(const Point& a, const Point& b, float scalar) | ||
100 | { | ||
101 | x = a.x + b.x * scalar; | ||
102 | y = a.y + b.y * scalar; | ||
103 | z = a.z + b.z * scalar; | ||
104 | return *this; | ||
105 | } | ||
106 | |||
107 | //! this = this + a * scalar | ||
108 | inline_ Point& Mac(const Point& a, float scalar) | ||
109 | { | ||
110 | x += a.x * scalar; | ||
111 | y += a.y * scalar; | ||
112 | z += a.z * scalar; | ||
113 | return *this; | ||
114 | } | ||
115 | |||
116 | //! this = a - b * scalar | ||
117 | inline_ Point& Msc(const Point& a, const Point& b, float scalar) | ||
118 | { | ||
119 | x = a.x - b.x * scalar; | ||
120 | y = a.y - b.y * scalar; | ||
121 | z = a.z - b.z * scalar; | ||
122 | return *this; | ||
123 | } | ||
124 | |||
125 | //! this = this - a * scalar | ||
126 | inline_ Point& Msc(const Point& a, float scalar) | ||
127 | { | ||
128 | x -= a.x * scalar; | ||
129 | y -= a.y * scalar; | ||
130 | z -= a.z * scalar; | ||
131 | return *this; | ||
132 | } | ||
133 | |||
134 | //! this = a + b * scalarb + c * scalarc | ||
135 | inline_ Point& Mac2(const Point& a, const Point& b, float scalarb, const Point& c, float scalarc) | ||
136 | { | ||
137 | x = a.x + b.x * scalarb + c.x * scalarc; | ||
138 | y = a.y + b.y * scalarb + c.y * scalarc; | ||
139 | z = a.z + b.z * scalarb + c.z * scalarc; | ||
140 | return *this; | ||
141 | } | ||
142 | |||
143 | //! this = a - b * scalarb - c * scalarc | ||
144 | inline_ Point& Msc2(const Point& a, const Point& b, float scalarb, const Point& c, float scalarc) | ||
145 | { | ||
146 | x = a.x - b.x * scalarb - c.x * scalarc; | ||
147 | y = a.y - b.y * scalarb - c.y * scalarc; | ||
148 | z = a.z - b.z * scalarb - c.z * scalarc; | ||
149 | return *this; | ||
150 | } | ||
151 | |||
152 | //! this = mat * a | ||
153 | inline_ Point& Mult(const Matrix3x3& mat, const Point& a); | ||
154 | |||
155 | //! this = mat1 * a1 + mat2 * a2 | ||
156 | inline_ Point& Mult2(const Matrix3x3& mat1, const Point& a1, const Matrix3x3& mat2, const Point& a2); | ||
157 | |||
158 | //! this = this + mat * a | ||
159 | inline_ Point& Mac(const Matrix3x3& mat, const Point& a); | ||
160 | |||
161 | //! this = transpose(mat) * a | ||
162 | inline_ Point& TransMult(const Matrix3x3& mat, const Point& a); | ||
163 | |||
164 | //! Linear interpolate between two vectors: this = a + t * (b - a) | ||
165 | inline_ Point& Lerp(const Point& a, const Point& b, float t) | ||
166 | { | ||
167 | x = a.x + t * (b.x - a.x); | ||
168 | y = a.y + t * (b.y - a.y); | ||
169 | z = a.z + t * (b.z - a.z); | ||
170 | return *this; | ||
171 | } | ||
172 | |||
173 | //! Hermite interpolate between p1 and p2. p0 and p3 are used for finding gradient at p1 and p2. | ||
174 | //! this = p0 * (2t^2 - t^3 - t)/2 | ||
175 | //! + p1 * (3t^3 - 5t^2 + 2)/2 | ||
176 | //! + p2 * (4t^2 - 3t^3 + t)/2 | ||
177 | //! + p3 * (t^3 - t^2)/2 | ||
178 | inline_ Point& Herp(const Point& p0, const Point& p1, const Point& p2, const Point& p3, float t) | ||
179 | { | ||
180 | float t2 = t * t; | ||
181 | float t3 = t2 * t; | ||
182 | float kp0 = (2.0f * t2 - t3 - t) * 0.5f; | ||
183 | float kp1 = (3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f; | ||
184 | float kp2 = (4.0f * t2 - 3.0f * t3 + t) * 0.5f; | ||
185 | float kp3 = (t3 - t2) * 0.5f; | ||
186 | x = p0.x * kp0 + p1.x * kp1 + p2.x * kp2 + p3.x * kp3; | ||
187 | y = p0.y * kp0 + p1.y * kp1 + p2.y * kp2 + p3.y * kp3; | ||
188 | z = p0.z * kp0 + p1.z * kp1 + p2.z * kp2 + p3.z * kp3; | ||
189 | return *this; | ||
190 | } | ||
191 | |||
192 | //! this = rotpos * r + linpos | ||
193 | inline_ Point& Transform(const Point& r, const Matrix3x3& rotpos, const Point& linpos); | ||
194 | |||
195 | //! this = trans(rotpos) * (r - linpos) | ||
196 | inline_ Point& InvTransform(const Point& r, const Matrix3x3& rotpos, const Point& linpos); | ||
197 | |||
198 | //! Returns MIN(x, y, z); | ||
199 | inline_ float Min() const { return MIN(x, MIN(y, z)); } | ||
200 | //! Returns MAX(x, y, z); | ||
201 | inline_ float Max() const { return MAX(x, MAX(y, z)); } | ||
202 | //! Sets each element to be componentwise minimum | ||
203 | inline_ Point& Min(const Point& p) { x = MIN(x, p.x); y = MIN(y, p.y); z = MIN(z, p.z); return *this; } | ||
204 | //! Sets each element to be componentwise maximum | ||
205 | inline_ Point& Max(const Point& p) { x = MAX(x, p.x); y = MAX(y, p.y); z = MAX(z, p.z); return *this; } | ||
206 | |||
207 | //! Clamps each element | ||
208 | inline_ Point& Clamp(float min, float max) | ||
209 | { | ||
210 | if(x<min) x=min; if(x>max) x=max; | ||
211 | if(y<min) y=min; if(y>max) y=max; | ||
212 | if(z<min) z=min; if(z>max) z=max; | ||
213 | return *this; | ||
214 | } | ||
215 | |||
216 | //! Computes square magnitude | ||
217 | inline_ float SquareMagnitude() const { return x*x + y*y + z*z; } | ||
218 | //! Computes magnitude | ||
219 | inline_ float Magnitude() const { return sqrtf(x*x + y*y + z*z); } | ||
220 | //! Computes volume | ||
221 | inline_ float Volume() const { return x * y * z; } | ||
222 | |||
223 | //! Checks the point is near zero | ||
224 | inline_ bool ApproxZero() const { return SquareMagnitude() < EPSILON2; } | ||
225 | |||
226 | //! Tests for exact zero vector | ||
227 | inline_ BOOL IsZero() const | ||
228 | { | ||
229 | if(IR(x) || IR(y) || IR(z)) return FALSE; | ||
230 | return TRUE; | ||
231 | } | ||
232 | |||
233 | //! Checks point validity | ||
234 | inline_ BOOL IsValid() const | ||
235 | { | ||
236 | if(!IsValidFloat(x)) return FALSE; | ||
237 | if(!IsValidFloat(y)) return FALSE; | ||
238 | if(!IsValidFloat(z)) return FALSE; | ||
239 | return TRUE; | ||
240 | } | ||
241 | |||
242 | //! Slighty moves the point | ||
243 | void Tweak(udword coord_mask, udword tweak_mask) | ||
244 | { | ||
245 | if(coord_mask&1) { udword Dummy = IR(x); Dummy^=tweak_mask; x = FR(Dummy); } | ||
246 | if(coord_mask&2) { udword Dummy = IR(y); Dummy^=tweak_mask; y = FR(Dummy); } | ||
247 | if(coord_mask&4) { udword Dummy = IR(z); Dummy^=tweak_mask; z = FR(Dummy); } | ||
248 | } | ||
249 | |||
250 | #define TWEAKMASK 0x3fffff | ||
251 | #define TWEAKNOTMASK ~TWEAKMASK | ||
252 | //! Slighty moves the point out | ||
253 | inline_ void TweakBigger() | ||
254 | { | ||
255 | udword Dummy = (IR(x)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(x)) Dummy+=TWEAKMASK+1; x = FR(Dummy); | ||
256 | Dummy = (IR(y)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(y)) Dummy+=TWEAKMASK+1; y = FR(Dummy); | ||
257 | Dummy = (IR(z)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(z)) Dummy+=TWEAKMASK+1; z = FR(Dummy); | ||
258 | } | ||
259 | |||
260 | //! Slighty moves the point in | ||
261 | inline_ void TweakSmaller() | ||
262 | { | ||
263 | udword Dummy = (IR(x)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(x)) Dummy+=TWEAKMASK+1; x = FR(Dummy); | ||
264 | Dummy = (IR(y)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(y)) Dummy+=TWEAKMASK+1; y = FR(Dummy); | ||
265 | Dummy = (IR(z)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(z)) Dummy+=TWEAKMASK+1; z = FR(Dummy); | ||
266 | } | ||
267 | |||
268 | //! Normalizes the vector | ||
269 | inline_ Point& Normalize() | ||
270 | { | ||
271 | float M = x*x + y*y + z*z; | ||
272 | if(M) | ||
273 | { | ||
274 | M = 1.0f / sqrtf(M); | ||
275 | x *= M; | ||
276 | y *= M; | ||
277 | z *= M; | ||
278 | } | ||
279 | return *this; | ||
280 | } | ||
281 | |||
282 | //! Sets vector length | ||
283 | inline_ Point& SetLength(float length) | ||
284 | { | ||
285 | float NewLength = length / Magnitude(); | ||
286 | x *= NewLength; | ||
287 | y *= NewLength; | ||
288 | z *= NewLength; | ||
289 | return *this; | ||
290 | } | ||
291 | |||
292 | //! Clamps vector length | ||
293 | inline_ Point& ClampLength(float limit_length) | ||
294 | { | ||
295 | if(limit_length>=0.0f) // Magnitude must be positive | ||
296 | { | ||
297 | float CurrentSquareLength = SquareMagnitude(); | ||
298 | |||
299 | if(CurrentSquareLength > limit_length * limit_length) | ||
300 | { | ||
301 | float Coeff = limit_length / sqrtf(CurrentSquareLength); | ||
302 | x *= Coeff; | ||
303 | y *= Coeff; | ||
304 | z *= Coeff; | ||
305 | } | ||
306 | } | ||
307 | return *this; | ||
308 | } | ||
309 | |||
310 | //! Computes distance to another point | ||
311 | inline_ float Distance(const Point& b) const | ||
312 | { | ||
313 | return sqrtf((x - b.x)*(x - b.x) + (y - b.y)*(y - b.y) + (z - b.z)*(z - b.z)); | ||
314 | } | ||
315 | |||
316 | //! Computes square distance to another point | ||
317 | inline_ float SquareDistance(const Point& b) const | ||
318 | { | ||
319 | return ((x - b.x)*(x - b.x) + (y - b.y)*(y - b.y) + (z - b.z)*(z - b.z)); | ||
320 | } | ||
321 | |||
322 | //! Dot product dp = this|a | ||
323 | inline_ float Dot(const Point& p) const { return p.x * x + p.y * y + p.z * z; } | ||
324 | |||
325 | //! Cross product this = a x b | ||
326 | inline_ Point& Cross(const Point& a, const Point& b) | ||
327 | { | ||
328 | x = a.y * b.z - a.z * b.y; | ||
329 | y = a.z * b.x - a.x * b.z; | ||
330 | z = a.x * b.y - a.y * b.x; | ||
331 | return *this; | ||
332 | } | ||
333 | |||
334 | //! Vector code ( bitmask = sign(z) | sign(y) | sign(x) ) | ||
335 | inline_ udword VectorCode() const | ||
336 | { | ||
337 | return (IR(x)>>31) | ((IR(y)&SIGN_BITMASK)>>30) | ((IR(z)&SIGN_BITMASK)>>29); | ||
338 | } | ||
339 | |||
340 | //! Returns largest axis | ||
341 | inline_ PointComponent LargestAxis() const | ||
342 | { | ||
343 | const float* Vals = &x; | ||
344 | PointComponent m = X; | ||
345 | if(Vals[Y] > Vals[m]) m = Y; | ||
346 | if(Vals[Z] > Vals[m]) m = Z; | ||
347 | return m; | ||
348 | } | ||
349 | |||
350 | //! Returns closest axis | ||
351 | inline_ PointComponent ClosestAxis() const | ||
352 | { | ||
353 | const float* Vals = &x; | ||
354 | PointComponent m = X; | ||
355 | if(AIR(Vals[Y]) > AIR(Vals[m])) m = Y; | ||
356 | if(AIR(Vals[Z]) > AIR(Vals[m])) m = Z; | ||
357 | return m; | ||
358 | } | ||
359 | |||
360 | //! Returns smallest axis | ||
361 | inline_ PointComponent SmallestAxis() const | ||
362 | { | ||
363 | const float* Vals = &x; | ||
364 | PointComponent m = X; | ||
365 | if(Vals[Y] < Vals[m]) m = Y; | ||
366 | if(Vals[Z] < Vals[m]) m = Z; | ||
367 | return m; | ||
368 | } | ||
369 | |||
370 | //! Refracts the point | ||
371 | Point& Refract(const Point& eye, const Point& n, float refractindex, Point& refracted); | ||
372 | |||
373 | //! Projects the point onto a plane | ||
374 | Point& ProjectToPlane(const Plane& p); | ||
375 | |||
376 | //! Projects the point onto the screen | ||
377 | void ProjectToScreen(float halfrenderwidth, float halfrenderheight, const Matrix4x4& mat, HPoint& projected) const; | ||
378 | |||
379 | //! Unfolds the point onto a plane according to edge(a,b) | ||
380 | Point& Unfold(Plane& p, Point& a, Point& b); | ||
381 | |||
382 | //! Hash function from Ville Miettinen | ||
383 | inline_ udword GetHashValue() const | ||
384 | { | ||
385 | const udword* h = (const udword*)(this); | ||
386 | udword f = (h[0]+h[1]*11-(h[2]*17)) & 0x7fffffff; // avoid problems with +-0 | ||
387 | return (f>>22)^(f>>12)^(f); | ||
388 | } | ||
389 | |||
390 | //! Stuff magic values in the point, marking it as explicitely not used. | ||
391 | void SetNotUsed(); | ||
392 | //! Checks the point is marked as not used | ||
393 | BOOL IsNotUsed() const; | ||
394 | |||
395 | // Arithmetic operators | ||
396 | |||
397 | //! Unary operator for Point Negate = - Point | ||
398 | inline_ Point operator-() const { return Point(-x, -y, -z); } | ||
399 | |||
400 | //! Operator for Point Plus = Point + Point. | ||
401 | inline_ Point operator+(const Point& p) const { return Point(x + p.x, y + p.y, z + p.z); } | ||
402 | //! Operator for Point Minus = Point - Point. | ||
403 | inline_ Point operator-(const Point& p) const { return Point(x - p.x, y - p.y, z - p.z); } | ||
404 | |||
405 | //! Operator for Point Mul = Point * Point. | ||
406 | inline_ Point operator*(const Point& p) const { return Point(x * p.x, y * p.y, z * p.z); } | ||
407 | //! Operator for Point Scale = Point * float. | ||
408 | inline_ Point operator*(float s) const { return Point(x * s, y * s, z * s ); } | ||
409 | //! Operator for Point Scale = float * Point. | ||
410 | inline_ friend Point operator*(float s, const Point& p) { return Point(s * p.x, s * p.y, s * p.z); } | ||
411 | |||
412 | //! Operator for Point Div = Point / Point. | ||
413 | inline_ Point operator/(const Point& p) const { return Point(x / p.x, y / p.y, z / p.z); } | ||
414 | //! Operator for Point Scale = Point / float. | ||
415 | inline_ Point operator/(float s) const { s = 1.0f / s; return Point(x * s, y * s, z * s); } | ||
416 | //! Operator for Point Scale = float / Point. | ||
417 | inline_ friend Point operator/(float s, const Point& p) { return Point(s / p.x, s / p.y, s / p.z); } | ||
418 | |||
419 | //! Operator for float DotProd = Point | Point. | ||
420 | inline_ float operator|(const Point& p) const { return x*p.x + y*p.y + z*p.z; } | ||
421 | //! Operator for Point VecProd = Point ^ Point. | ||
422 | inline_ Point operator^(const Point& p) const | ||
423 | { | ||
424 | return Point( | ||
425 | y * p.z - z * p.y, | ||
426 | z * p.x - x * p.z, | ||
427 | x * p.y - y * p.x ); | ||
428 | } | ||
429 | |||
430 | //! Operator for Point += Point. | ||
431 | inline_ Point& operator+=(const Point& p) { x += p.x; y += p.y; z += p.z; return *this; } | ||
432 | //! Operator for Point += float. | ||
433 | inline_ Point& operator+=(float s) { x += s; y += s; z += s; return *this; } | ||
434 | |||
435 | //! Operator for Point -= Point. | ||
436 | inline_ Point& operator-=(const Point& p) { x -= p.x; y -= p.y; z -= p.z; return *this; } | ||
437 | //! Operator for Point -= float. | ||
438 | inline_ Point& operator-=(float s) { x -= s; y -= s; z -= s; return *this; } | ||
439 | |||
440 | //! Operator for Point *= Point. | ||
441 | inline_ Point& operator*=(const Point& p) { x *= p.x; y *= p.y; z *= p.z; return *this; } | ||
442 | //! Operator for Point *= float. | ||
443 | inline_ Point& operator*=(float s) { x *= s; y *= s; z *= s; return *this; } | ||
444 | |||
445 | //! Operator for Point /= Point. | ||
446 | inline_ Point& operator/=(const Point& p) { x /= p.x; y /= p.y; z /= p.z; return *this; } | ||
447 | //! Operator for Point /= float. | ||
448 | inline_ Point& operator/=(float s) { s = 1.0f/s; x *= s; y *= s; z *= s; return *this; } | ||
449 | |||
450 | // Logical operators | ||
451 | |||
452 | //! Operator for "if(Point==Point)" | ||
453 | inline_ bool operator==(const Point& p) const { return ( (IR(x)==IR(p.x))&&(IR(y)==IR(p.y))&&(IR(z)==IR(p.z))); } | ||
454 | //! Operator for "if(Point!=Point)" | ||
455 | inline_ bool operator!=(const Point& p) const { return ( (IR(x)!=IR(p.x))||(IR(y)!=IR(p.y))||(IR(z)!=IR(p.z))); } | ||
456 | |||
457 | // Arithmetic operators | ||
458 | |||
459 | //! Operator for Point Mul = Point * Matrix3x3. | ||
460 | inline_ Point operator*(const Matrix3x3& mat) const | ||
461 | { | ||
462 | class ShadowMatrix3x3{ public: float m[3][3]; }; // To allow inlining | ||
463 | const ShadowMatrix3x3* Mat = (const ShadowMatrix3x3*)&mat; | ||
464 | |||
465 | return Point( | ||
466 | x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0], | ||
467 | x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1], | ||
468 | x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] ); | ||
469 | } | ||
470 | |||
471 | //! Operator for Point Mul = Point * Matrix4x4. | ||
472 | inline_ Point operator*(const Matrix4x4& mat) const | ||
473 | { | ||
474 | class ShadowMatrix4x4{ public: float m[4][4]; }; // To allow inlining | ||
475 | const ShadowMatrix4x4* Mat = (const ShadowMatrix4x4*)&mat; | ||
476 | |||
477 | return Point( | ||
478 | x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0] + Mat->m[3][0], | ||
479 | x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1] + Mat->m[3][1], | ||
480 | x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] + Mat->m[3][2]); | ||
481 | } | ||
482 | |||
483 | //! Operator for Point *= Matrix3x3. | ||
484 | inline_ Point& operator*=(const Matrix3x3& mat) | ||
485 | { | ||
486 | class ShadowMatrix3x3{ public: float m[3][3]; }; // To allow inlining | ||
487 | const ShadowMatrix3x3* Mat = (const ShadowMatrix3x3*)&mat; | ||
488 | |||
489 | float xp = x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0]; | ||
490 | float yp = x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1]; | ||
491 | float zp = x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2]; | ||
492 | |||
493 | x = xp; y = yp; z = zp; | ||
494 | |||
495 | return *this; | ||
496 | } | ||
497 | |||
498 | //! Operator for Point *= Matrix4x4. | ||
499 | inline_ Point& operator*=(const Matrix4x4& mat) | ||
500 | { | ||
501 | class ShadowMatrix4x4{ public: float m[4][4]; }; // To allow inlining | ||
502 | const ShadowMatrix4x4* Mat = (const ShadowMatrix4x4*)&mat; | ||
503 | |||
504 | float xp = x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0] + Mat->m[3][0]; | ||
505 | float yp = x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1] + Mat->m[3][1]; | ||
506 | float zp = x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] + Mat->m[3][2]; | ||
507 | |||
508 | x = xp; y = yp; z = zp; | ||
509 | |||
510 | return *this; | ||
511 | } | ||
512 | |||
513 | // Cast operators | ||
514 | |||
515 | //! Cast a Point to a HPoint. w is set to zero. | ||
516 | operator HPoint() const; | ||
517 | |||
518 | inline_ operator const float*() const { return &x; } | ||
519 | inline_ operator float*() { return &x; } | ||
520 | |||
521 | public: | ||
522 | float x, y, z; | ||
523 | }; | ||
524 | |||
525 | FUNCTION ICEMATHS_API void Normalize1(Point& a); | ||
526 | FUNCTION ICEMATHS_API void Normalize2(Point& a); | ||
527 | |||
528 | #endif //__ICEPOINT_H__ | ||