aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/sqlite/win32/btreeInt.h
blob: 09f14742390dec5e1d2d7e92c276c9d8bd25fa98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btreeInt.h,v 1.13 2007/08/30 01:19:59 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database
** entries and N+1 pointers to subpages.
**
**   ----------------------------------------------------------------
**   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
**   ----------------------------------------------------------------
**
** All of the keys on the page that Ptr(0) points to have values less
** than Key(0).  All of the keys on page Ptr(1) and its subpages have
** values greater than Key(0) and less than Key(1).  All of the keys
** on Ptr(N) and its subpages have values greater than Key(N-1).  And
** so forth.
**
** Finding a particular key requires reading O(log(M)) pages from the 
** disk where M is the number of entries in the tree.
**
** In this implementation, a single file can hold one or more separate 
** BTrees.  Each BTree is identified by the index of its root page.  The
** key and data for any entry are combined to form the "payload".  A
** fixed amount of payload can be carried directly on the database
** page.  If the payload is larger than the preset amount then surplus
** bytes are stored on overflow pages.  The payload for an entry
** and the preceding pointer are combined to form a "Cell".  Each 
** page has a small header which contains the Ptr(N) pointer and other
** information such as the size of key and data.
**
** FORMAT DETAILS
**
** The file is divided into pages.  The first page is called page 1,
** the second is page 2, and so forth.  A page number of zero indicates
** "no such page".  The page size can be anything between 512 and 65536.
** Each page can be either a btree page, a freelist page or an overflow
** page.
**
** The first page is always a btree page.  The first 100 bytes of the first
** page contain a special header (the "file header") that describes the file.
** The format of the file header is as follows:
**
**   OFFSET   SIZE    DESCRIPTION
**      0      16     Header string: "SQLite format 3\000"
**     16       2     Page size in bytes.  
**     18       1     File format write version
**     19       1     File format read version
**     20       1     Bytes of unused space at the end of each page
**     21       1     Max embedded payload fraction
**     22       1     Min embedded payload fraction
**     23       1     Min leaf payload fraction
**     24       4     File change counter
**     28       4     Reserved for future use
**     32       4     First freelist page
**     36       4     Number of freelist pages in the file
**     40      60     15 4-byte meta values passed to higher layers
**
** All of the integer values are big-endian (most significant byte first).
**
** The file change counter is incremented when the database is changed
** This counter allows other processes to know when the file has changed
** and thus when they need to flush their cache.
**
** The max embedded payload fraction is the amount of the total usable
** space in a page that can be consumed by a single cell for standard
** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
** is to limit the maximum cell size so that at least 4 cells will fit
** on one page.  Thus the default max embedded payload fraction is 64.
**
** If the payload for a cell is larger than the max payload, then extra
** payload is spilled to overflow pages.  Once an overflow page is allocated,
** as many bytes as possible are moved into the overflow pages without letting
** the cell size drop below the min embedded payload fraction.
**
** The min leaf payload fraction is like the min embedded payload fraction
** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
** not specified in the header.
**
** Each btree pages is divided into three sections:  The header, the
** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
** file header that occurs before the page header.
**
**      |----------------|
**      | file header    |   100 bytes.  Page 1 only.
**      |----------------|
**      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
**      |----------------|
**      | cell pointer   |   |  2 bytes per cell.  Sorted order.
**      | array          |   |  Grows downward
**      |                |   v
**      |----------------|
**      | unallocated    |
**      | space          |
**      |----------------|   ^  Grows upwards
**      | cell content   |   |  Arbitrary order interspersed with freeblocks.
**      | area           |   |  and free space fragments.
**      |----------------|
**
** The page headers looks like this:
**
**   OFFSET   SIZE     DESCRIPTION
**      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
**      1       2      byte offset to the first freeblock
**      3       2      number of cells on this page
**      5       2      first byte of the cell content area
**      7       1      number of fragmented free bytes
**      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
**
** The flags define the format of this btree page.  The leaf flag means that
** this page has no children.  The zerodata flag means that this page carries
** only keys and no data.  The intkey flag means that the key is a integer
** which is stored in the key size entry of the cell header rather than in
** the payload area.
**
** The cell pointer array begins on the first byte after the page header.
** The cell pointer array contains zero or more 2-byte numbers which are
** offsets from the beginning of the page to the cell content in the cell
** content area.  The cell pointers occur in sorted order.  The system strives
** to keep free space after the last cell pointer so that new cells can
** be easily added without having to defragment the page.
**
** Cell content is stored at the very end of the page and grows toward the
** beginning of the page.
**
** Unused space within the cell content area is collected into a linked list of
** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
** to the first freeblock is given in the header.  Freeblocks occur in
** increasing order.  Because a freeblock must be at least 4 bytes in size,
** any group of 3 or fewer unused bytes in the cell content area cannot
** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
** a fragment.  The total number of bytes in all fragments is recorded.
** in the page header at offset 7.
**
**    SIZE    DESCRIPTION
**      2     Byte offset of the next freeblock
**      2     Bytes in this freeblock
**
** Cells are of variable length.  Cells are stored in the cell content area at
** the end of the page.  Pointers to the cells are in the cell pointer array
** that immediately follows the page header.  Cells is not necessarily
** contiguous or in order, but cell pointers are contiguous and in order.
**
** Cell content makes use of variable length integers.  A variable
** length integer is 1 to 9 bytes where the lower 7 bits of each 
** byte are used.  The integer consists of all bytes that have bit 8 set and
** the first byte with bit 8 clear.  The most significant byte of the integer
** appears first.  A variable-length integer may not be more than 9 bytes long.
** As a special case, all 8 bytes of the 9th byte are used as data.  This
** allows a 64-bit integer to be encoded in 9 bytes.
**
**    0x00                      becomes  0x00000000
**    0x7f                      becomes  0x0000007f
**    0x81 0x00                 becomes  0x00000080
**    0x82 0x00                 becomes  0x00000100
**    0x80 0x7f                 becomes  0x0000007f
**    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
**    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
**
** Variable length integers are used for rowids and to hold the number of
** bytes of key and data in a btree cell.
**
** The content of a cell looks like this:
**
**    SIZE    DESCRIPTION
**      4     Page number of the left child. Omitted if leaf flag is set.
**     var    Number of bytes of data. Omitted if the zerodata flag is set.
**     var    Number of bytes of key. Or the key itself if intkey flag is set.
**      *     Payload
**      4     First page of the overflow chain.  Omitted if no overflow
**
** Overflow pages form a linked list.  Each page except the last is completely
** filled with data (pagesize - 4 bytes).  The last page can have as little
** as 1 byte of data.
**
**    SIZE    DESCRIPTION
**      4     Page number of next overflow page
**      *     Data
**
** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
** file header points to the first in a linked list of trunk page.  Each trunk
** page points to multiple leaf pages.  The content of a leaf page is
** unspecified.  A trunk page looks like this:
**
**    SIZE    DESCRIPTION
**      4     Page number of next trunk page
**      4     Number of leaf pointers on this page
**      *     zero or more pages numbers of leaves
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include "os.h"
#include <assert.h>

/* Round up a number to the next larger multiple of 8.  This is used
** to force 8-byte alignment on 64-bit architectures.
*/
#define ROUND8(x)   ((x+7)&~7)


/* The following value is the maximum cell size assuming a maximum page
** size give above.
*/
#define MX_CELL_SIZE(pBt)  (pBt->pageSize-8)

/* The maximum number of cells on a single page of the database.  This
** assumes a minimum cell size of 3 bytes.  Such small cells will be
** exceedingly rare, but they are possible.
*/
#define MX_CELL(pBt) ((pBt->pageSize-8)/3)

/* Forward declarations */
typedef struct MemPage MemPage;
typedef struct BtLock BtLock;

/*
** This is a magic string that appears at the beginning of every
** SQLite database in order to identify the file as a real database.
**
** You can change this value at compile-time by specifying a
** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
** header must be exactly 16 bytes including the zero-terminator so
** the string itself should be 15 characters long.  If you change
** the header, then your custom library will not be able to read 
** databases generated by the standard tools and the standard tools
** will not be able to read databases created by your custom library.
*/
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
#  define SQLITE_FILE_HEADER "SQLite format 3"
#endif

/*
** Page type flags.  An ORed combination of these flags appear as the
** first byte of on-disk image of every BTree page.
*/
#define PTF_INTKEY    0x01
#define PTF_ZERODATA  0x02
#define PTF_LEAFDATA  0x04
#define PTF_LEAF      0x08

/*
** As each page of the file is loaded into memory, an instance of the following
** structure is appended and initialized to zero.  This structure stores
** information about the page that is decoded from the raw file page.
**
** The pParent field points back to the parent page.  This allows us to
** walk up the BTree from any leaf to the root.  Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
**
** Access to all fields of this structure is controlled by the mutex
** stored in MemPage.pBt->mutex.
*/
struct MemPage {
  u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
  u8 idxShift;         /* True if Cell indices have changed */
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
  u8 intKey;           /* True if intkey flag is set */
  u8 leaf;             /* True if leaf flag is set */
  u8 zeroData;         /* True if table stores keys only */
  u8 leafData;         /* True if tables stores data on leaves only */
  u8 hasData;          /* True if this page stores data */
  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
  u16 cellOffset;      /* Index in aData of first cell pointer */
  u16 idxParent;       /* Index in parent of this node */
  u16 nFree;           /* Number of free bytes on the page */
  u16 nCell;           /* Number of cells on this page, local and ovfl */
  struct _OvflCell {   /* Cells that will not fit on aData[] */
    u8 *pCell;          /* Pointers to the body of the overflow cell */
    u16 idx;            /* Insert this cell before idx-th non-overflow cell */
  } aOvfl[5];
  BtShared *pBt;       /* Pointer to BtShared that this page is part of */
  u8 *aData;           /* Pointer to disk image of the page data */
  DbPage *pDbPage;     /* Pager page handle */
  Pgno pgno;           /* Page number for this page */
  MemPage *pParent;    /* The parent of this page.  NULL for root */
};

/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
#define EXTRA_SIZE sizeof(MemPage)

/* A Btree handle
**
** A database connection contains a pointer to an instance of
** this object for every database file that it has open.  This structure
** is opaque to the database connection.  The database connection cannot
** see the internals of this structure and only deals with pointers to
** this structure.
**
** For some database files, the same underlying database cache might be 
** shared between multiple connections.  In that case, each contection
** has it own pointer to this object.  But each instance of this object
** points to the same BtShared object.  The database cache and the
** schema associated with the database file are all contained within
** the BtShared object.
**
** All fields in this structure are accessed under sqlite3.mutex.
** The pBt pointer itself may not be changed while there exists cursors 
** in the referenced BtShared that point back to this Btree since those
** cursors have to do go through this Btree to find their BtShared and
** they often do so without holding sqlite3.mutex.
*/
struct Btree {
  sqlite3 *pSqlite;  /* The database connection holding this btree */
  BtShared *pBt;     /* Sharable content of this btree */
  u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
  u8 sharable;       /* True if we can share pBt with other pSqlite */
  u8 locked;         /* True if pSqlite currently has pBt locked */
  int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
  Btree *pNext;      /* List of other sharable Btrees from the same pSqlite */
  Btree *pPrev;      /* Back pointer of the same list */
};

/*
** Btree.inTrans may take one of the following values.
**
** If the shared-data extension is enabled, there may be multiple users
** of the Btree structure. At most one of these may open a write transaction,
** but any number may have active read transactions.
*/
#define TRANS_NONE  0
#define TRANS_READ  1
#define TRANS_WRITE 2

/*
** An instance of this object represents a single database file.
** 
** A single database file can be in use as the same time by two
** or more database connections.  When two or more connections are
** sharing the same database file, each connection has it own
** private Btree object for the file and each of those Btrees points
** to this one BtShared object.  BtShared.nRef is the number of
** connections currently sharing this database file.
**
** Fields in this structure are accessed under the BtShared.mutex
** mutex, except for nRef and pNext which are accessed under the
** global SQLITE_MUTEX_STATIC_MASTER mutex.  The pPager field
** may not be modified once it is initially set as long as nRef>0.
** The pSchema field may be set once under BtShared.mutex and
** thereafter is unchanged as long as nRef>0.
*/
struct BtShared {
  Pager *pPager;        /* The page cache */
  BtCursor *pCursor;    /* A list of all open cursors */
  MemPage *pPage1;      /* First page of the database */
  u8 inStmt;            /* True if we are in a statement subtransaction */
  u8 readOnly;          /* True if the underlying file is readonly */
  u8 maxEmbedFrac;      /* Maximum payload as % of total page size */
  u8 minEmbedFrac;      /* Minimum payload as % of total page size */
  u8 minLeafFrac;       /* Minimum leaf payload as % of total page size */
  u8 pageSizeFixed;     /* True if the page size can no longer be changed */
#ifndef SQLITE_OMIT_AUTOVACUUM
  u8 autoVacuum;        /* True if auto-vacuum is enabled */
  u8 incrVacuum;        /* True if incr-vacuum is enabled */
  Pgno nTrunc;          /* Non-zero if the db will be truncated (incr vacuum) */
#endif
  u16 pageSize;         /* Total number of bytes on a page */
  u16 usableSize;       /* Number of usable bytes on each page */
  int maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
  int minLocal;         /* Minimum local payload in non-LEAFDATA tables */
  int maxLeaf;          /* Maximum local payload in a LEAFDATA table */
  int minLeaf;          /* Minimum local payload in a LEAFDATA table */
  BusyHandler *pBusyHandler;   /* Callback for when there is lock contention */
  u8 inTransaction;     /* Transaction state */
  int nTransaction;     /* Number of open transactions (read + write) */
  void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
  void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
  sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
#ifndef SQLITE_OMIT_SHARED_CACHE
  int nRef;             /* Number of references to this structure */
  BtShared *pNext;      /* Next on a list of sharable BtShared structs */
  BtLock *pLock;        /* List of locks held on this shared-btree struct */
#endif
};

/*
** An instance of the following structure is used to hold information
** about a cell.  The parseCellPtr() function fills in this structure
** based on information extract from the raw disk page.
*/
typedef struct CellInfo CellInfo;
struct CellInfo {
  u8 *pCell;     /* Pointer to the start of cell content */
  i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
  u32 nData;     /* Number of bytes of data */
  u32 nPayload;  /* Total amount of payload */
  u16 nHeader;   /* Size of the cell content header in bytes */
  u16 nLocal;    /* Amount of payload held locally */
  u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
  u16 nSize;     /* Size of the cell content on the main b-tree page */
};

/*
** A cursor is a pointer to a particular entry within a particular
** b-tree within a database file.
**
** The entry is identified by its MemPage and the index in
** MemPage.aCell[] of the entry.
**
** When a single database file can shared by two more database connections,
** but cursors cannot be shared.  Each cursor is associated with a
** particular database connection identified BtCursor.pBtree.pSqlite.
**
** Fields in this structure are accessed under the BtShared.mutex
** found at self->pBt->mutex. 
*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
  void *pArg;               /* First arg to xCompare() */
  Pgno pgnoRoot;            /* The root page of this tree */
  MemPage *pPage;           /* Page that contains the entry */
  int idx;                  /* Index of the entry in pPage->aCell[] */
  CellInfo info;            /* A parse of the cell we are pointing at */
  u8 wrFlag;                /* True if writable */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  void *pKey;      /* Saved key that was cursor's last known position */
  i64 nKey;        /* Size of pKey, or last integer key */
  int skip;        /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
#ifndef SQLITE_OMIT_INCRBLOB
  u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
  Pgno *aOverflow;          /* Cache of overflow page locations */
#endif
};

/*
** Potential values for BtCursor.eState.
**
** CURSOR_VALID:
**   Cursor points to a valid entry. getPayload() etc. may be called.
**
** CURSOR_INVALID:
**   Cursor does not point to a valid entry. This can happen (for example) 
**   because the table is empty or because BtreeCursorFirst() has not been
**   called.
**
** CURSOR_REQUIRESEEK:
**   The table that this cursor was opened on still exists, but has been 
**   modified since the cursor was last used. The cursor position is saved
**   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
**   this state, restoreOrClearCursorPosition() can be called to attempt to
**   seek the cursor to the saved position.
**
** CURSOR_FAULT:
**   A unrecoverable error (an I/O error or a malloc failure) has occurred
**   on a different connection that shares the BtShared cache with this
**   cursor.  The error has left the cache in an inconsistent state.
**   Do nothing else with this cursor.  Any attempt to use the cursor
**   should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1
#define CURSOR_REQUIRESEEK       2
#define CURSOR_FAULT             3

/*
** The TRACE macro will print high-level status information about the
** btree operation when the global variable sqlite3_btree_trace is
** enabled.
*/
#if SQLITE_TEST
# define TRACE(X)   if( sqlite3_btree_trace ){ printf X; fflush(stdout); }
#else
# define TRACE(X)
#endif

/*
** Routines to read and write variable-length integers.  These used to
** be defined locally, but now we use the varint routines in the util.c
** file.
*/
#define getVarint    sqlite3GetVarint
#define getVarint32(A,B)  ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
#define putVarint    sqlite3PutVarint

/* The database page the PENDING_BYTE occupies. This page is never used.
** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
** should possibly be consolidated (presumably in pager.h).
**
** If disk I/O is omitted (meaning that the database is stored purely
** in memory) then there is no pending byte.
*/
#ifdef SQLITE_OMIT_DISKIO
# define PENDING_BYTE_PAGE(pBt)  0x7fffffff
#else
# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
#endif

/*
** A linked list of the following structures is stored at BtShared.pLock.
** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor 
** is opened on the table with root page BtShared.iTable. Locks are removed
** from this list when a transaction is committed or rolled back, or when
** a btree handle is closed.
*/
struct BtLock {
  Btree *pBtree;        /* Btree handle holding this lock */
  Pgno iTable;          /* Root page of table */
  u8 eLock;             /* READ_LOCK or WRITE_LOCK */
  BtLock *pNext;        /* Next in BtShared.pLock list */
};

/* Candidate values for BtLock.eLock */
#define READ_LOCK     1
#define WRITE_LOCK    2

/*
** These macros define the location of the pointer-map entry for a 
** database page. The first argument to each is the number of usable
** bytes on each page of the database (often 1024). The second is the
** page number to look up in the pointer map.
**
** PTRMAP_PAGENO returns the database page number of the pointer-map
** page that stores the required pointer. PTRMAP_PTROFFSET returns
** the offset of the requested map entry.
**
** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
** this test.
*/
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))

/*
** The pointer map is a lookup table that identifies the parent page for
** each child page in the database file.  The parent page is the page that
** contains a pointer to the child.  Every page in the database contains
** 0 or 1 parent pages.  (In this context 'database page' refers
** to any page that is not part of the pointer map itself.)  Each pointer map
** entry consists of a single byte 'type' and a 4 byte parent page number.
** The PTRMAP_XXX identifiers below are the valid types.
**
** The purpose of the pointer map is to facility moving pages from one
** position in the file to another as part of autovacuum.  When a page
** is moved, the pointer in its parent must be updated to point to the
** new location.  The pointer map is used to locate the parent page quickly.
**
** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
**                  used in this case.
**
** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number 
**                  is not used in this case.
**
** PTRMAP_OVERFLOW1: The database page is the first page in a list of 
**                   overflow pages. The page number identifies the page that
**                   contains the cell with a pointer to this overflow page.
**
** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
**                   overflow pages. The page-number identifies the previous
**                   page in the overflow page list.
**
** PTRMAP_BTREE: The database page is a non-root btree page. The page number
**               identifies the parent page in the btree.
*/
#define PTRMAP_ROOTPAGE 1
#define PTRMAP_FREEPAGE 2
#define PTRMAP_OVERFLOW1 3
#define PTRMAP_OVERFLOW2 4
#define PTRMAP_BTREE 5

/* A bunch of assert() statements to check the transaction state variables
** of handle p (type Btree*) are internally consistent.
*/
#define btreeIntegrity(p) \
  assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
  assert( p->pBt->inTransaction>=p->inTrans ); 


/*
** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
** if the database supports auto-vacuum or not. Because it is used
** within an expression that is an argument to another macro 
** (sqliteMallocRaw), it is not possible to use conditional compilation.
** So, this macro is defined instead.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
#define ISAUTOVACUUM (pBt->autoVacuum)
#else
#define ISAUTOVACUUM 0
#endif


/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  int nPage;        /* Number of pages in the database */
  int *anRef;       /* Number of times each page is referenced */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  char *zErrMsg;    /* An error message.  NULL if no errors seen. */
  int nErr;         /* Number of messages written to zErrMsg so far */
};

/*
** Read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
#define get4byte sqlite3Get4byte
#define put4byte sqlite3Put4byte

/*
** Internal routines that should be accessed by the btree layer only.
*/
int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
#ifdef SQLITE_TEST
u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
#endif
int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
int sqlite3BtreeIsRootPage(MemPage *pPage);
void sqlite3BtreeMoveToParent(BtCursor *pCur);