aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/PhysicsModules/UbitOde/ODEDynamics.cs
blob: 9f1ab4cf24c378a174e3546ed6eafa854fe0c136 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
/*
 * Copyright (c) Contributors, http://opensimulator.org/
 * See CONTRIBUTORS.TXT for a full list of copyright holders.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the OpenSimulator Project nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
 * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
 * ODEPrim.cs contains methods dealing with Prim editing, Prim
 * characteristics and Kinetic motion.
 * ODEDynamics.cs contains methods dealing with Prim Physical motion
 * (dynamics) and the associated settings. Old Linear and angular
 * motors for dynamic motion have been replace with  MoveLinear()
 * and MoveAngular(); 'Physical' is used only to switch ODE dynamic
 * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
 * switch between 'VEHICLE' parameter use and general dynamics
 * settings use.
 */

// Extensive change Ubit 2012

using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using OdeAPI;
using OpenSim.Framework;
using OpenSim.Region.PhysicsModules.SharedBase;

namespace OpenSim.Region.PhysicsModules.UbitOde
{
    public class ODEDynamics
    {
        public Vehicle Type
        {
            get { return m_type; }
        }

        private OdePrim rootPrim;
        private OdeScene _pParentScene;

        // Vehicle properties
        // WARNING this are working copies for internel use
        // their values may not be the corresponding parameter

        private Quaternion m_referenceFrame = Quaternion.Identity;      // Axis modifier
        private Quaternion m_RollreferenceFrame = Quaternion.Identity;  // what hell is this ?

        private Vehicle m_type = Vehicle.TYPE_NONE;                     // If a 'VEHICLE', and what kind

        private VehicleFlag m_flags = (VehicleFlag) 0;                  // Boolean settings:
                                                                        // HOVER_TERRAIN_ONLY
                                                                        // HOVER_GLOBAL_HEIGHT
                                                                        // NO_DEFLECTION_UP
                                                                        // HOVER_WATER_ONLY
                                                                        // HOVER_UP_ONLY
                                                                        // LIMIT_MOTOR_UP
                                                                        // LIMIT_ROLL_ONLY
        private Vector3 m_BlockingEndPoint = Vector3.Zero;              // not sl

        // Linear properties
        private Vector3 m_linearMotorDirection = Vector3.Zero;          // velocity requested by LSL, decayed by time
        private Vector3 m_linearFrictionTimescale = new Vector3(1000, 1000, 1000);
        private float m_linearMotorDecayTimescale = 120;
        private float m_linearMotorTimescale = 1000;
        private Vector3 m_linearMotorOffset = Vector3.Zero;

        //Angular properties
        private Vector3 m_angularMotorDirection = Vector3.Zero;         // angular velocity requested by LSL motor
        private float m_angularMotorTimescale = 1000;                      // motor angular velocity ramp up rate
        private float m_angularMotorDecayTimescale = 120;                 // motor angular velocity decay rate
        private Vector3 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);      // body angular velocity  decay rate

        //Deflection properties
        private float m_angularDeflectionEfficiency = 0;
        private float m_angularDeflectionTimescale = 1000;
        private float m_linearDeflectionEfficiency = 0;
        private float m_linearDeflectionTimescale = 1000;

        //Banking properties
        private float m_bankingEfficiency = 0;
        private float m_bankingMix = 0;
        private float m_bankingTimescale = 1000;

        //Hover and Buoyancy properties
        private float m_VhoverHeight = 0f;
        private float m_VhoverEfficiency = 0f;
        private float m_VhoverTimescale = 1000f;
        private float m_VehicleBuoyancy = 0f;           //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
                    // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
                    // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
                    // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.

        //Attractor properties
        private float m_verticalAttractionEfficiency = 1.0f;        // damped
        private float m_verticalAttractionTimescale = 1000f;        // Timescale > 300  means no vert attractor.


        // auxiliar
        private float m_lmEfect = 0f;                                            // current linear motor eficiency
        private float m_lmDecay = 0f;                                            // current linear decay

        private float m_amEfect = 0;                                            // current angular motor eficiency
        private float m_amDecay = 0f;                                            // current linear decay

        private float m_ffactor = 1.0f;

        private float m_timestep = 0.02f;
        private float m_invtimestep = 50;


        float m_ampwr;
        float m_amdampX;
        float m_amdampY;
        float m_amdampZ;

        float m_gravmod;

        public float FrictionFactor
        {
            get
            {
                return m_ffactor;
            }
        }

        public float GravMod
        {
            set
            {
                m_gravmod = value;
            }
        }


        public ODEDynamics(OdePrim rootp)
        {
            rootPrim = rootp;
            _pParentScene = rootPrim._parent_scene;
            m_timestep = _pParentScene.ODE_STEPSIZE;
            m_invtimestep = 1.0f / m_timestep;
            m_gravmod = rootPrim.GravModifier;
        }

        public void DoSetVehicle(VehicleData vd)
        {
            m_type = vd.m_type;
            m_flags = vd.m_flags;

            
            // Linear properties
            m_linearMotorDirection = vd.m_linearMotorDirection;

            m_linearFrictionTimescale = vd.m_linearFrictionTimescale;
            if (m_linearFrictionTimescale.X < m_timestep) m_linearFrictionTimescale.X = m_timestep;
            if (m_linearFrictionTimescale.Y < m_timestep) m_linearFrictionTimescale.Y = m_timestep;
            if (m_linearFrictionTimescale.Z < m_timestep) m_linearFrictionTimescale.Z = m_timestep;

            m_linearMotorDecayTimescale = vd.m_linearMotorDecayTimescale;
            if (m_linearMotorDecayTimescale < m_timestep) m_linearMotorDecayTimescale = m_timestep;
            m_linearMotorDecayTimescale += 0.2f;
            m_linearMotorDecayTimescale *= m_invtimestep;

            m_linearMotorTimescale = vd.m_linearMotorTimescale;
            if (m_linearMotorTimescale < m_timestep) m_linearMotorTimescale = m_timestep;

            m_linearMotorOffset = vd.m_linearMotorOffset;

            //Angular properties
            m_angularMotorDirection = vd.m_angularMotorDirection;
            m_angularMotorTimescale = vd.m_angularMotorTimescale;
            if (m_angularMotorTimescale < m_timestep) m_angularMotorTimescale = m_timestep;

            m_angularMotorDecayTimescale = vd.m_angularMotorDecayTimescale;
            if (m_angularMotorDecayTimescale < m_timestep) m_angularMotorDecayTimescale = m_timestep;
            m_angularMotorDecayTimescale *= m_invtimestep;

            m_angularFrictionTimescale = vd.m_angularFrictionTimescale;
            if (m_angularFrictionTimescale.X < m_timestep) m_angularFrictionTimescale.X = m_timestep;
            if (m_angularFrictionTimescale.Y < m_timestep) m_angularFrictionTimescale.Y = m_timestep;
            if (m_angularFrictionTimescale.Z < m_timestep) m_angularFrictionTimescale.Z = m_timestep;

            //Deflection properties
            m_angularDeflectionEfficiency = vd.m_angularDeflectionEfficiency;
            m_angularDeflectionTimescale = vd.m_angularDeflectionTimescale;
            if (m_angularDeflectionTimescale < m_timestep) m_angularDeflectionTimescale = m_timestep;

            m_linearDeflectionEfficiency = vd.m_linearDeflectionEfficiency;
            m_linearDeflectionTimescale = vd.m_linearDeflectionTimescale;
            if (m_linearDeflectionTimescale < m_timestep) m_linearDeflectionTimescale = m_timestep;

            //Banking properties
            m_bankingEfficiency = vd.m_bankingEfficiency;
            m_bankingMix = vd.m_bankingMix;
            m_bankingTimescale = vd.m_bankingTimescale;
            if (m_bankingTimescale < m_timestep) m_bankingTimescale = m_timestep;

            //Hover and Buoyancy properties
            m_VhoverHeight = vd.m_VhoverHeight;
            m_VhoverEfficiency = vd.m_VhoverEfficiency;
            m_VhoverTimescale = vd.m_VhoverTimescale;
            if (m_VhoverTimescale < m_timestep) m_VhoverTimescale = m_timestep;

            m_VehicleBuoyancy = vd.m_VehicleBuoyancy;

            //Attractor properties
            m_verticalAttractionEfficiency = vd.m_verticalAttractionEfficiency;
            m_verticalAttractionTimescale = vd.m_verticalAttractionTimescale;
            if (m_verticalAttractionTimescale < m_timestep) m_verticalAttractionTimescale = m_timestep;

            // Axis
            m_referenceFrame = vd.m_referenceFrame;

            m_lmEfect = 0;
            m_lmDecay = (1.0f - 1.0f / m_linearMotorDecayTimescale);
            m_amEfect = 0;
            m_ffactor = 1.0f;
        }

        internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
        {
            float len;

            switch (pParam)
            {
                case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
                    if (pValue < 0f) pValue = 0f;
                    if (pValue > 1f) pValue = 1f;
                    m_angularDeflectionEfficiency = pValue;
                    break;
                case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_angularDeflectionTimescale = pValue;
                    break;
                case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    else if (pValue > 120) pValue = 120;
                    m_angularMotorDecayTimescale = pValue * m_invtimestep;
                    m_amDecay = 1.0f - 1.0f / m_angularMotorDecayTimescale;
                    break;
                case Vehicle.ANGULAR_MOTOR_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_angularMotorTimescale = pValue;
                    break;
                case Vehicle.BANKING_EFFICIENCY:
                    if (pValue < -1f) pValue = -1f;
                    if (pValue > 1f) pValue = 1f;
                    m_bankingEfficiency = pValue;
                    break;
                case Vehicle.BANKING_MIX:
                    if (pValue < 0f) pValue = 0f;
                    if (pValue > 1f) pValue = 1f;
                    m_bankingMix = pValue;
                    break;
                case Vehicle.BANKING_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_bankingTimescale = pValue;
                    break;
                case Vehicle.BUOYANCY:
                    if (pValue < -1f) pValue = -1f;
                    if (pValue > 1f) pValue = 1f;
                    m_VehicleBuoyancy = pValue;
                    break;
                case Vehicle.HOVER_EFFICIENCY:
                    if (pValue < 0f) pValue = 0f;
                    if (pValue > 1f) pValue = 1f;
                    m_VhoverEfficiency = pValue;
                    break;
                case Vehicle.HOVER_HEIGHT:
                    m_VhoverHeight = pValue;
                    break;
                case Vehicle.HOVER_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_VhoverTimescale = pValue;
                    break;
                case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
                    if (pValue < 0f) pValue = 0f;
                    if (pValue > 1f) pValue = 1f;
                    m_linearDeflectionEfficiency = pValue;
                    break;
                case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_linearDeflectionTimescale = pValue;
                    break;
                case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    else if (pValue > 120) pValue = 120;
                    m_linearMotorDecayTimescale = (0.2f +pValue) * m_invtimestep;
                    m_lmDecay = (1.0f - 1.0f / m_linearMotorDecayTimescale);
                    break;
                case Vehicle.LINEAR_MOTOR_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_linearMotorTimescale = pValue;
                    break;
                case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
                    if (pValue < 0f) pValue = 0f;
                    if (pValue > 1f) pValue = 1f;
                    m_verticalAttractionEfficiency = pValue;
                    break;
                case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_verticalAttractionTimescale = pValue;
                    break;

                // These are vector properties but the engine lets you use a single float value to
                // set all of the components to the same value
                case Vehicle.ANGULAR_FRICTION_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
                    break;
                case Vehicle.ANGULAR_MOTOR_DIRECTION:
                    m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
                    len = m_angularMotorDirection.Length();
                    if (len > 12.566f)
                        m_angularMotorDirection *= (12.566f / len);

                    m_amEfect = 1.0f ; // turn it on
                    m_amDecay = 1.0f - 1.0f / m_angularMotorDecayTimescale;

                    if (rootPrim.Body != IntPtr.Zero && !d.BodyIsEnabled(rootPrim.Body)
                            && !rootPrim.m_isSelected && !rootPrim.m_disabled)
                        d.BodyEnable(rootPrim.Body);
                    break;
                case Vehicle.LINEAR_FRICTION_TIMESCALE:
                    if (pValue < m_timestep) pValue = m_timestep;
                    m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
                    break;
                case Vehicle.LINEAR_MOTOR_DIRECTION:
                    m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
                    len = m_linearMotorDirection.Length();
                    if (len > 100.0f)
                        m_linearMotorDirection *= (100.0f / len);

                    m_lmDecay = 1.0f - 1.0f / m_linearMotorDecayTimescale;
                    m_lmEfect = 1.0f; // turn it on

                    m_ffactor = 0.0f;
                    if (rootPrim.Body != IntPtr.Zero && !d.BodyIsEnabled(rootPrim.Body)
                            && !rootPrim.m_isSelected && !rootPrim.m_disabled)
                        d.BodyEnable(rootPrim.Body);
                    break;
                case Vehicle.LINEAR_MOTOR_OFFSET:
                    m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
                    len = m_linearMotorOffset.Length();
                    if (len > 100.0f)
                        m_linearMotorOffset *= (100.0f / len);
                    break;
            }
        }//end ProcessFloatVehicleParam

        internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
        {
            float len;

            switch (pParam)
            {
                case Vehicle.ANGULAR_FRICTION_TIMESCALE:
                    if (pValue.X < m_timestep) pValue.X = m_timestep;
                    if (pValue.Y < m_timestep) pValue.Y = m_timestep;
                    if (pValue.Z < m_timestep) pValue.Z = m_timestep;

                    m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    break;
                case Vehicle.ANGULAR_MOTOR_DIRECTION:
                    m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    // Limit requested angular speed to 2 rps= 4 pi rads/sec
                    len = m_angularMotorDirection.Length();
                    if (len > 12.566f)
                        m_angularMotorDirection *= (12.566f / len);

                    m_amEfect = 1.0f; // turn it on
                    m_amDecay = 1.0f - 1.0f / m_angularMotorDecayTimescale;

                    if (rootPrim.Body != IntPtr.Zero && !d.BodyIsEnabled(rootPrim.Body)
                            && !rootPrim.m_isSelected && !rootPrim.m_disabled)
                        d.BodyEnable(rootPrim.Body);
                    break;
                case Vehicle.LINEAR_FRICTION_TIMESCALE:
                    if (pValue.X < m_timestep) pValue.X = m_timestep;
                    if (pValue.Y < m_timestep) pValue.Y = m_timestep;
                    if (pValue.Z < m_timestep) pValue.Z = m_timestep;
                    m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    break;
                case Vehicle.LINEAR_MOTOR_DIRECTION:
                    m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    len = m_linearMotorDirection.Length();
                    if (len > 100.0f)
                        m_linearMotorDirection *= (100.0f / len);

                    m_lmEfect = 1.0f; // turn it on
                    m_lmDecay = 1.0f - 1.0f / m_linearMotorDecayTimescale;

                    m_ffactor = 0.0f;
                    if (rootPrim.Body != IntPtr.Zero && !d.BodyIsEnabled(rootPrim.Body)
                            && !rootPrim.m_isSelected && !rootPrim.m_disabled)
                        d.BodyEnable(rootPrim.Body);
                    break;
                case Vehicle.LINEAR_MOTOR_OFFSET:
                    m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    len = m_linearMotorOffset.Length();
                    if (len > 100.0f)
                        m_linearMotorOffset *= (100.0f / len);
                    break;
                case Vehicle.BLOCK_EXIT:
                    m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    break;
            }
        }//end ProcessVectorVehicleParam

        internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
        {
            switch (pParam)
            {
                case Vehicle.REFERENCE_FRAME:
                    //                    m_referenceFrame = Quaternion.Inverse(pValue);
                    m_referenceFrame = pValue;
                    break;
                case Vehicle.ROLL_FRAME:
                    m_RollreferenceFrame = pValue;
                    break;
            }
        }//end ProcessRotationVehicleParam

        internal void ProcessVehicleFlags(int pParam, bool remove)
        {
            if (remove)
            {
                m_flags &= ~((VehicleFlag)pParam);
            }
            else
            {
                m_flags |= (VehicleFlag)pParam;
            }
        }//end ProcessVehicleFlags

        internal void ProcessTypeChange(Vehicle pType)
        {
            m_lmEfect = 0;

            m_amEfect = 0;
            m_ffactor = 1f;

            m_linearMotorDirection = Vector3.Zero;
            m_angularMotorDirection = Vector3.Zero;

            m_BlockingEndPoint = Vector3.Zero;
            m_RollreferenceFrame = Quaternion.Identity;
            m_linearMotorOffset = Vector3.Zero;

            m_referenceFrame = Quaternion.Identity;

            // Set Defaults For Type
            m_type = pType;
            switch (pType)
            {
                case Vehicle.TYPE_NONE:
                    m_linearFrictionTimescale = new Vector3(1000, 1000, 1000);
                    m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
                    m_linearMotorTimescale = 1000;
                    m_linearMotorDecayTimescale = 120 * m_invtimestep;
                    m_angularMotorTimescale = 1000;
                    m_angularMotorDecayTimescale = 1000  * m_invtimestep;
                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 1;
                    m_VhoverTimescale = 1000;
                    m_VehicleBuoyancy = 0;
                    m_linearDeflectionEfficiency = 0;
                    m_linearDeflectionTimescale = 1000;
                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 1000;
                    m_bankingEfficiency = 0;
                    m_bankingMix = 1;
                    m_bankingTimescale = 1000;
                    m_verticalAttractionEfficiency = 0;
                    m_verticalAttractionTimescale = 1000;

                    m_flags = (VehicleFlag)0;
                    break;

                case Vehicle.TYPE_SLED:
                    m_linearFrictionTimescale = new Vector3(30, 1, 1000);
                    m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
                    m_linearMotorTimescale = 1000;
                    m_linearMotorDecayTimescale = 120 * m_invtimestep;
                    m_angularMotorTimescale = 1000;
                    m_angularMotorDecayTimescale = 120 * m_invtimestep;
                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 1;
                    m_VhoverTimescale = 10;
                    m_VehicleBuoyancy = 0;
                    m_linearDeflectionEfficiency = 1;
                    m_linearDeflectionTimescale = 1;
                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 10;
                    m_verticalAttractionEfficiency = 1;
                    m_verticalAttractionTimescale = 1000;
                    m_bankingEfficiency = 0;
                    m_bankingMix = 1;
                    m_bankingTimescale = 10;
                    m_flags &=
                         ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                           VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP |
                        VehicleFlag.LIMIT_ROLL_ONLY |
                        VehicleFlag.LIMIT_MOTOR_UP);
                    break;

                case Vehicle.TYPE_CAR:
                    m_linearFrictionTimescale = new Vector3(100, 2, 1000);
                    m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
                    m_linearMotorTimescale = 1;
                    m_linearMotorDecayTimescale = 60 * m_invtimestep;
                    m_angularMotorTimescale = 1;
                    m_angularMotorDecayTimescale = 0.8f * m_invtimestep;
                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0;
                    m_VhoverTimescale = 1000;
                    m_VehicleBuoyancy = 0;
                    m_linearDeflectionEfficiency = 1;
                    m_linearDeflectionTimescale = 2;
                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 10;
                    m_verticalAttractionEfficiency = 1f;
                    m_verticalAttractionTimescale = 10f;
                    m_bankingEfficiency = -0.2f;
                    m_bankingMix = 1;
                    m_bankingTimescale = 1;
                    m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY |
                                VehicleFlag.HOVER_TERRAIN_ONLY |
                                VehicleFlag.HOVER_GLOBAL_HEIGHT);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP |
                                VehicleFlag.LIMIT_ROLL_ONLY |
                                VehicleFlag.LIMIT_MOTOR_UP |
                                VehicleFlag.HOVER_UP_ONLY);
                    break;
                case Vehicle.TYPE_BOAT:
                    m_linearFrictionTimescale = new Vector3(10, 3, 2);
                    m_angularFrictionTimescale = new Vector3(10, 10, 10);
                    m_linearMotorTimescale = 5;
                    m_linearMotorDecayTimescale = 60 * m_invtimestep;
                    m_angularMotorTimescale = 4;
                    m_angularMotorDecayTimescale = 4 * m_invtimestep;
                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0.5f;
                    m_VhoverTimescale = 2;
                    m_VehicleBuoyancy = 1;
                    m_linearDeflectionEfficiency = 0.5f;
                    m_linearDeflectionTimescale = 3;
                    m_angularDeflectionEfficiency = 0.5f;
                    m_angularDeflectionTimescale = 5;
                    m_verticalAttractionEfficiency = 0.5f;
                    m_verticalAttractionTimescale = 5f;
                    m_bankingEfficiency = -0.3f;
                    m_bankingMix = 0.8f;
                    m_bankingTimescale = 1;
                    m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY |
                            VehicleFlag.HOVER_GLOBAL_HEIGHT |
                            VehicleFlag.HOVER_UP_ONLY); // |
//                            VehicleFlag.LIMIT_ROLL_ONLY);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP |
                                VehicleFlag.LIMIT_MOTOR_UP |
                                VehicleFlag.HOVER_UP_ONLY |  // new sl
                                VehicleFlag.HOVER_WATER_ONLY);
                    break;

                case Vehicle.TYPE_AIRPLANE:
                    m_linearFrictionTimescale = new Vector3(200, 10, 5);
                    m_angularFrictionTimescale = new Vector3(20, 20, 20);
                    m_linearMotorTimescale = 2;
                    m_linearMotorDecayTimescale = 60 * m_invtimestep;
                    m_angularMotorTimescale = 4;
                    m_angularMotorDecayTimescale = 8 * m_invtimestep;
                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0.5f;
                    m_VhoverTimescale = 1000;
                    m_VehicleBuoyancy = 0;
                    m_linearDeflectionEfficiency = 0.5f;
                    m_linearDeflectionTimescale = 0.5f;
                    m_angularDeflectionEfficiency = 1;
                    m_angularDeflectionTimescale = 2;
                    m_verticalAttractionEfficiency = 0.9f;
                    m_verticalAttractionTimescale = 2f;
                    m_bankingEfficiency = 1;
                    m_bankingMix = 0.7f;
                    m_bankingTimescale = 2;
                    m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY |
                        VehicleFlag.HOVER_TERRAIN_ONLY |
                        VehicleFlag.HOVER_GLOBAL_HEIGHT |
                        VehicleFlag.HOVER_UP_ONLY |
                        VehicleFlag.NO_DEFLECTION_UP |
                        VehicleFlag.LIMIT_MOTOR_UP);
                    m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
                    break;

                case Vehicle.TYPE_BALLOON:
                    m_linearFrictionTimescale = new Vector3(5, 5, 5);
                    m_angularFrictionTimescale = new Vector3(10, 10, 10);
                    m_linearMotorTimescale = 5;
                    m_linearMotorDecayTimescale = 60 * m_invtimestep;
                    m_angularMotorTimescale = 6;
                    m_angularMotorDecayTimescale = 10 * m_invtimestep;
                    m_VhoverHeight = 5;
                    m_VhoverEfficiency = 0.8f;
                    m_VhoverTimescale = 10;
                    m_VehicleBuoyancy = 1;
                    m_linearDeflectionEfficiency = 0;
                    m_linearDeflectionTimescale = 5 * m_invtimestep;
                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 5;
                    m_verticalAttractionEfficiency = 1f;
                    m_verticalAttractionTimescale = 1000f;
                    m_bankingEfficiency = 0;
                    m_bankingMix = 0.7f;
                    m_bankingTimescale = 5;
                    m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY |
                        VehicleFlag.HOVER_TERRAIN_ONLY |
                        VehicleFlag.HOVER_UP_ONLY |
                        VehicleFlag.NO_DEFLECTION_UP |
                        VehicleFlag.LIMIT_MOTOR_UP  | //);
                        VehicleFlag.LIMIT_ROLL_ONLY | // new sl
                        VehicleFlag.HOVER_GLOBAL_HEIGHT); // new sl

//                    m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY |
//                        VehicleFlag.HOVER_GLOBAL_HEIGHT);
                    break;

            }

            m_lmDecay = (1.0f - 1.0f / m_linearMotorDecayTimescale);
            m_amDecay = 1.0f - 1.0f / m_angularMotorDecayTimescale;

        }//end SetDefaultsForType

        internal void Stop()
        {
            m_lmEfect = 0;
            m_lmDecay = 0f;
            m_amEfect = 0;
            m_amDecay = 0;
            m_ffactor = 1f;
        }

        public static Vector3 Xrot(Quaternion rot)
        {
            Vector3 vec;
            rot.Normalize(); // just in case
            vec.X = 2 * (rot.X * rot.X + rot.W * rot.W) - 1;
            vec.Y = 2 * (rot.X * rot.Y + rot.Z * rot.W);
            vec.Z = 2 * (rot.X * rot.Z - rot.Y * rot.W);
            return vec;
        }

        public static Vector3 Zrot(Quaternion rot)
        {
            Vector3 vec;
            rot.Normalize(); // just in case
            vec.X = 2 * (rot.X * rot.Z + rot.Y * rot.W);
            vec.Y = 2 * (rot.Y * rot.Z - rot.X * rot.W);
            vec.Z = 2 * (rot.Z * rot.Z + rot.W * rot.W) - 1;

            return vec;
        }

        private const float pi = (float)Math.PI;
        private const float halfpi = 0.5f * (float)Math.PI;
        private const float twopi = 2.0f * pi;

        public static Vector3 ubitRot2Euler(Quaternion rot)
        {
            // returns roll in X
            //         pitch in Y
            //         yaw in Z
            Vector3 vec;

            // assuming rot is normalised
            // rot.Normalize();

            float zX = rot.X * rot.Z + rot.Y * rot.W;

            if (zX < -0.49999f)
            {
                vec.X = 0;
                vec.Y = -halfpi;
                vec.Z = (float)(-2d * Math.Atan(rot.X / rot.W));
            }
            else if (zX > 0.49999f)
            {
                vec.X = 0;
                vec.Y = halfpi;
                vec.Z = (float)(2d * Math.Atan(rot.X / rot.W));
            }
            else
            {
                vec.Y = (float)Math.Asin(2 * zX);

                float sqw = rot.W * rot.W;

                float minuszY = rot.X * rot.W - rot.Y * rot.Z;
                float zZ = rot.Z * rot.Z + sqw - 0.5f;

                vec.X = (float)Math.Atan2(minuszY, zZ);

                float yX = rot.Z * rot.W - rot.X * rot.Y; //( have negative ?)
                float yY = rot.X * rot.X + sqw - 0.5f;
                vec.Z = (float)Math.Atan2(yX, yY);
            }
            return vec;
        }

        public static void GetRollPitch(Quaternion rot, out float roll, out float pitch)
        {
            // assuming rot is normalised
            // rot.Normalize();

            float zX = rot.X * rot.Z + rot.Y * rot.W;

            if (zX < -0.49999f)
            {
                roll = 0;
                pitch = -halfpi;
            }
            else if (zX > 0.49999f)
            {
                roll = 0;
                pitch = halfpi;
            }
            else
            {
                pitch = (float)Math.Asin(2 * zX);

                float minuszY = rot.X * rot.W - rot.Y * rot.Z;
                float zZ = rot.Z * rot.Z + rot.W * rot.W - 0.5f;

                roll = (float)Math.Atan2(minuszY, zZ);
            }
            return ;
        }        
        
        internal void Step()
        {
            IntPtr Body = rootPrim.Body;

            d.Mass dmass;
            d.BodyGetMass(Body, out dmass);

            d.Quaternion rot = d.BodyGetQuaternion(Body);
            Quaternion objrotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);    // rotq = rotation of object
            Quaternion rotq = objrotq;    // rotq = rotation of object
            rotq *= m_referenceFrame; // rotq is now rotation in vehicle reference frame
            Quaternion irotq = Quaternion.Inverse(rotq);

            d.Vector3 dvtmp;
            Vector3 tmpV;
            Vector3 curVel; // velocity in world
            Vector3 curAngVel; // angular velocity in world
            Vector3 force = Vector3.Zero; // actually linear aceleration until mult by mass in world frame
            Vector3 torque = Vector3.Zero;// actually angular aceleration until mult by Inertia in vehicle frame
            d.Vector3 dtorque = new d.Vector3();

            dvtmp = d.BodyGetLinearVel(Body);
            curVel.X = dvtmp.X;
            curVel.Y = dvtmp.Y;
            curVel.Z = dvtmp.Z;
            Vector3 curLocalVel = curVel * irotq; // current velocity in  local

            dvtmp = d.BodyGetAngularVel(Body);
            curAngVel.X = dvtmp.X;
            curAngVel.Y = dvtmp.Y;
            curAngVel.Z = dvtmp.Z;
            Vector3 curLocalAngVel = curAngVel * irotq; // current angular velocity in  local

            float ldampZ = 0;
            
            // linear motor
            if (m_lmEfect > 0.01 && m_linearMotorTimescale < 1000)
            {
                tmpV = m_linearMotorDirection - curLocalVel; // velocity error
                tmpV *= m_lmEfect / m_linearMotorTimescale; // error to correct in this timestep
                tmpV *= rotq; // to world

                if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0)
                    tmpV.Z = 0;

                if (m_linearMotorOffset.X != 0 || m_linearMotorOffset.Y != 0 || m_linearMotorOffset.Z != 0)
                {
                    // have offset, do it now
                    tmpV *= dmass.mass;
                    d.BodyAddForceAtRelPos(Body, tmpV.X, tmpV.Y, tmpV.Z, m_linearMotorOffset.X, m_linearMotorOffset.Y, m_linearMotorOffset.Z);
                }
                else
                {
                    force.X += tmpV.X;
                    force.Y += tmpV.Y;
                    force.Z += tmpV.Z;
                }

                m_lmEfect *= m_lmDecay;
//                m_ffactor = 0.01f + 1e-4f * curVel.LengthSquared();
                m_ffactor = 0.0f;
            }
            else
            {
                m_lmEfect = 0;
                m_ffactor = 1f;
            }
           
            // hover
            if (m_VhoverTimescale < 300 && rootPrim.prim_geom != IntPtr.Zero)
            {
                //                d.Vector3 pos = d.BodyGetPosition(Body);
                d.Vector3 pos = d.GeomGetPosition(rootPrim.prim_geom);
                pos.Z -= 0.21f; // minor offset that seems to be always there in sl

                float t = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
                float perr;

                // default to global but don't go underground
                perr = m_VhoverHeight - pos.Z;

                if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == 0)
                {
                    if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
                    {
                        perr += _pParentScene.GetWaterLevel();
                    }
                    else if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
                    {
                        perr += t;
                    }
                    else
                    {
                        float w = _pParentScene.GetWaterLevel();
                        if (t > w)
                            perr += t;
                        else
                            perr += w;
                    }
                }
                else if (t > m_VhoverHeight)
                        perr = t - pos.Z; ;

                if ((m_flags & VehicleFlag.HOVER_UP_ONLY) == 0 || perr > -0.1)
                {
                    ldampZ = m_VhoverEfficiency * m_invtimestep;

                    perr *= (1.0f + ldampZ) / m_VhoverTimescale;

                    //                    force.Z += perr - curVel.Z * tmp;
                    force.Z += perr;
                    ldampZ *= -curVel.Z;

                    force.Z += _pParentScene.gravityz * m_gravmod * (1f - m_VehicleBuoyancy);
                }
                else // no buoyancy
                    force.Z += _pParentScene.gravityz;
            }
            else
            {
                // default gravity and Buoyancy
                force.Z += _pParentScene.gravityz * m_gravmod * (1f - m_VehicleBuoyancy);
            }

            // linear deflection
            if (m_linearDeflectionEfficiency > 0)
            {
                float len = curVel.Length();
                if (len > 0.01) // if moving
                {
                    Vector3 atAxis;
                    atAxis = Xrot(rotq); // where are we pointing to
                    atAxis *= len; // make it same size as world velocity vector

                    tmpV = -atAxis; // oposite direction
                    atAxis -= curVel; // error to one direction
                    len = atAxis.LengthSquared();

                    tmpV -= curVel; // error to oposite
                    float lens = tmpV.LengthSquared();

                    if (len > 0.01 || lens > 0.01) // do nothing if close enougth
                    {
                        if (len < lens)
                            tmpV = atAxis;

                        tmpV *= (m_linearDeflectionEfficiency / m_linearDeflectionTimescale); // error to correct in this timestep
                        force.X += tmpV.X;
                        force.Y += tmpV.Y;
                        if ((m_flags & VehicleFlag.NO_DEFLECTION_UP) == 0)
                            force.Z += tmpV.Z;
                    }
                }
            }

            // linear friction/damping
            if (curLocalVel.X != 0 || curLocalVel.Y != 0 || curLocalVel.Z != 0)
            {
                tmpV.X = -curLocalVel.X / m_linearFrictionTimescale.X;
                tmpV.Y = -curLocalVel.Y / m_linearFrictionTimescale.Y;
                tmpV.Z = -curLocalVel.Z / m_linearFrictionTimescale.Z;
                tmpV *= rotq; // to world

                if(ldampZ != 0 && Math.Abs(ldampZ) > Math.Abs(tmpV.Z))
                    tmpV.Z = ldampZ;
                force.X += tmpV.X;
                force.Y += tmpV.Y;
                force.Z += tmpV.Z;
            }

            // vertical atractor
            if (m_verticalAttractionTimescale < 300)
            {
                float roll;
                float pitch;



                float ftmp = m_invtimestep / m_verticalAttractionTimescale / m_verticalAttractionTimescale;

                float ftmp2;
                ftmp2 = 0.5f * m_verticalAttractionEfficiency * m_invtimestep;
                m_amdampX = ftmp2;

                m_ampwr = 1.0f - 0.8f * m_verticalAttractionEfficiency;

                GetRollPitch(irotq, out roll, out pitch);

                if (roll > halfpi)
                    roll = pi - roll;
                else if (roll < -halfpi)
                    roll = -pi - roll;

                float effroll = pitch / halfpi;
                effroll *= effroll;
                effroll = 1 - effroll;
                effroll *= roll;


                torque.X += effroll * ftmp;

                if ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) == 0)
                {
                    float effpitch = roll / halfpi;
                    effpitch *= effpitch;
                    effpitch = 1 - effpitch;
                    effpitch *= pitch;

                    torque.Y += effpitch * ftmp;
                }

                if (m_bankingEfficiency != 0 && Math.Abs(effroll) > 0.01)
                {

                    float broll = effroll;
                    /*
                                        if (broll > halfpi)
                                            broll = pi - broll;
                                        else if (broll < -halfpi)
                                            broll = -pi - broll;                           
                    */
                    broll *= m_bankingEfficiency;
                    if (m_bankingMix != 0)
                    {
                        float vfact = Math.Abs(curLocalVel.X) / 10.0f;
                        if (vfact > 1.0f) vfact = 1.0f;

                        if (curLocalVel.X >= 0)
                            broll *= (1 + (vfact - 1) * m_bankingMix);
                        else
                            broll *= -(1 + (vfact - 1) * m_bankingMix);
                    }
                    // make z rot be in world Z not local as seems to be in sl

                    broll = broll / m_bankingTimescale;


                    tmpV = Zrot(irotq);
                    tmpV *= broll;

                    torque.X += tmpV.X;
                    torque.Y += tmpV.Y;
                    torque.Z += tmpV.Z;

                    m_amdampZ = Math.Abs(m_bankingEfficiency) / m_bankingTimescale;
                    m_amdampY = m_amdampZ;

                }
                else
                {
                    m_amdampZ = 1 / m_angularFrictionTimescale.Z;
                    m_amdampY = m_amdampX;
                }
            }
            else
            {
                m_ampwr = 1.0f;
                m_amdampX = 1 / m_angularFrictionTimescale.X;
                m_amdampY = 1 / m_angularFrictionTimescale.Y;
                m_amdampZ = 1 / m_angularFrictionTimescale.Z;
            }

            // angular motor
            if (m_amEfect > 0.01 && m_angularMotorTimescale < 1000)
            {
                tmpV = m_angularMotorDirection - curLocalAngVel; // velocity error
                tmpV *= m_amEfect / m_angularMotorTimescale; // error to correct in this timestep
                torque.X += tmpV.X * m_ampwr;
                torque.Y += tmpV.Y * m_ampwr;
                torque.Z += tmpV.Z;

                m_amEfect *= m_amDecay;
            }
            else
                m_amEfect = 0;

            // angular deflection
            if (m_angularDeflectionEfficiency > 0)
            {
                Vector3 dirv;
                
                if (curLocalVel.X > 0.01f)
                    dirv = curLocalVel;
                else if (curLocalVel.X < -0.01f)
                    // use oposite 
                    dirv = -curLocalVel;
                else
                {
                    // make it fall into small positive x case
                    dirv.X = 0.01f;
                    dirv.Y = curLocalVel.Y;
                    dirv.Z = curLocalVel.Z;
                }

                float ftmp = m_angularDeflectionEfficiency / m_angularDeflectionTimescale;

                if (Math.Abs(dirv.Z) > 0.01)
                {
                    torque.Y += - (float)Math.Atan2(dirv.Z, dirv.X) * ftmp;
                }

                if (Math.Abs(dirv.Y) > 0.01)
                {
                    torque.Z += (float)Math.Atan2(dirv.Y, dirv.X) * ftmp;
                }
            }

            // angular friction
            if (curLocalAngVel.X != 0 || curLocalAngVel.Y != 0 || curLocalAngVel.Z != 0)
            {
                torque.X -= curLocalAngVel.X * m_amdampX;
                torque.Y -= curLocalAngVel.Y * m_amdampY;
                torque.Z -= curLocalAngVel.Z * m_amdampZ;
            }
          

            if (force.X != 0 || force.Y != 0 || force.Z != 0)
            {
                force *= dmass.mass;
                d.BodyAddForce(Body, force.X, force.Y, force.Z);
            }

            if (torque.X != 0 || torque.Y != 0 || torque.Z != 0)
            {
                torque *= m_referenceFrame; // to object frame
                dtorque.X = torque.X ;
                dtorque.Y = torque.Y;
                dtorque.Z = torque.Z;

                d.MultiplyM3V3(out dvtmp, ref dmass.I, ref dtorque);
                d.BodyAddRelTorque(Body, dvtmp.X, dvtmp.Y, dvtmp.Z); // add torque in object frame
            }
        }
    }
}