1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
using System;
using System.Collections.Generic;
using log4net;
using Nini.Config;
using OpenSim.Framework;
using OpenMetaverse;
using OpenSim.Region.Physics.Manager;
/*
* Steps to add a new prioritization policy:
*
* - Add a new value to the UpdatePrioritizationSchemes enum.
* - Specify this new value in the [InterestManagement] section of your
* OpenSim.ini. The name in the config file must match the enum value name
* (although it is not case sensitive).
* - Write a new GetPriorityBy*() method in this class.
* - Add a new entry to the switch statement in GetUpdatePriority() that calls
* your method.
*/
namespace OpenSim.Region.Framework.Scenes
{
public enum UpdatePrioritizationSchemes
{
Time = 0,
Distance = 1,
SimpleAngularDistance = 2,
FrontBack = 3,
BestAvatarResponsiveness = 4,
}
public class Prioritizer
{
private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
/// <summary>
/// This is added to the priority of all child prims, to make sure that the root prim update is sent to the
/// viewer before child prim updates.
/// The adjustment is added to child prims and subtracted from root prims, so the gap ends up
/// being double. We do it both ways so that there is a still a priority delta even if the priority is already
/// double.MinValue or double.MaxValue.
/// </summary>
private double m_childPrimAdjustmentFactor = 0.05;
private Scene m_scene;
public Prioritizer(Scene scene)
{
m_scene = scene;
}
public double GetUpdatePriority(IClientAPI client, ISceneEntity entity)
{
double priority = 0;
if (entity == null)
return 100000;
switch (m_scene.UpdatePrioritizationScheme)
{
case UpdatePrioritizationSchemes.Time:
priority = GetPriorityByTime();
break;
case UpdatePrioritizationSchemes.Distance:
priority = GetPriorityByDistance(client, entity);
break;
case UpdatePrioritizationSchemes.SimpleAngularDistance:
priority = GetPriorityByDistance(client, entity); // TODO: Reimplement SimpleAngularDistance
break;
case UpdatePrioritizationSchemes.FrontBack:
priority = GetPriorityByFrontBack(client, entity);
break;
case UpdatePrioritizationSchemes.BestAvatarResponsiveness:
priority = GetPriorityByBestAvatarResponsiveness(client, entity);
break;
default:
throw new InvalidOperationException("UpdatePrioritizationScheme not defined.");
break;
}
// Adjust priority so that root prims are sent to the viewer first. This is especially important for
// attachments acting as huds, since current viewers fail to display hud child prims if their updates
// arrive before the root one.
if (entity is SceneObjectPart)
{
SceneObjectPart sop = ((SceneObjectPart)entity);
if (sop.IsRoot)
{
if (priority >= double.MinValue + m_childPrimAdjustmentFactor)
priority -= m_childPrimAdjustmentFactor;
}
else
{
if (priority <= double.MaxValue - m_childPrimAdjustmentFactor)
priority += m_childPrimAdjustmentFactor;
}
}
return priority;
}
private double GetPriorityByTime()
{
return DateTime.UtcNow.ToOADate();
}
private double GetPriorityByDistance(IClientAPI client, ISceneEntity entity)
{
ScenePresence presence = m_scene.GetScenePresence(client.AgentId);
if (presence != null)
{
// If this is an update for our own avatar give it the highest priority
if (presence == entity)
return 0.0;
// Use the camera position for local agents and avatar position for remote agents
Vector3 presencePos = (presence.IsChildAgent) ?
presence.AbsolutePosition :
presence.CameraPosition;
// Use group position for child prims
Vector3 entityPos;
if (entity is SceneObjectPart)
entityPos = m_scene.GetGroupByPrim(entity.LocalId).AbsolutePosition;
else
entityPos = entity.AbsolutePosition;
return Vector3.DistanceSquared(presencePos, entityPos);
}
return double.NaN;
}
private double GetPriorityByFrontBack(IClientAPI client, ISceneEntity entity)
{
ScenePresence presence = m_scene.GetScenePresence(client.AgentId);
if (presence != null)
{
// If this is an update for our own avatar give it the highest priority
if (presence == entity)
return 0.0;
// Use group position for child prims
Vector3 entityPos = entity.AbsolutePosition;
if (entity is SceneObjectPart)
entityPos = m_scene.GetGroupByPrim(entity.LocalId).AbsolutePosition;
else
entityPos = entity.AbsolutePosition;
if (!presence.IsChildAgent)
{
// Root agent. Use distance from camera and a priority decrease for objects behind us
Vector3 camPosition = presence.CameraPosition;
Vector3 camAtAxis = presence.CameraAtAxis;
// Distance
double priority = Vector3.DistanceSquared(camPosition, entityPos);
// Plane equation
float d = -Vector3.Dot(camPosition, camAtAxis);
float p = Vector3.Dot(camAtAxis, entityPos) + d;
if (p < 0.0f) priority *= 2.0;
return priority;
}
else
{
// Child agent. Use the normal distance method
Vector3 presencePos = presence.AbsolutePosition;
return Vector3.DistanceSquared(presencePos, entityPos);
}
}
return double.NaN;
}
private double GetPriorityByBestAvatarResponsiveness(IClientAPI client, ISceneEntity entity)
{
ScenePresence presence = m_scene.GetScenePresence(client.AgentId);
if (presence != null)
{
// If this is an update for our own avatar give it the highest priority
if (presence == entity)
return 0.0;
// Use group position for child prims
Vector3 entityPos;
if (entity is SceneObjectPart)
entityPos = ((SceneObjectPart)entity).ParentGroup.AbsolutePosition;
else
entityPos = entity.AbsolutePosition;
if (!presence.IsChildAgent)
{
if (entity is ScenePresence)
return 1.0;
// Root agent. Use distance from camera and a priority decrease for objects behind us
Vector3 camPosition = presence.CameraPosition;
Vector3 camAtAxis = presence.CameraAtAxis;
// Distance
double priority = Vector3.DistanceSquared(camPosition, entityPos);
// Plane equation
float d = -Vector3.Dot(camPosition, camAtAxis);
float p = Vector3.Dot(camAtAxis, entityPos) + d;
if (p < 0.0f) priority *= 2.0;
if (entity is SceneObjectPart)
{
if (((SceneObjectPart)entity).ParentGroup.RootPart.IsAttachment)
{
priority = 1.0;
}
else
{
PhysicsActor physActor = ((SceneObjectPart)entity).ParentGroup.RootPart.PhysActor;
if (physActor == null || !physActor.IsPhysical)
priority += 100;
}
if (((SceneObjectPart)entity).ParentGroup.RootPart != (SceneObjectPart)entity)
priority +=1;
}
return priority;
}
else
{
// Child agent. Use the normal distance method
Vector3 presencePos = presence.AbsolutePosition;
return Vector3.DistanceSquared(presencePos, entityPos);
}
}
return double.NaN;
}
}
}
|