diff options
Diffstat (limited to 'libraries/ode-0.9/ode/src/collision_trimesh_distance.cpp')
-rw-r--r-- | libraries/ode-0.9/ode/src/collision_trimesh_distance.cpp | 1255 |
1 files changed, 0 insertions, 1255 deletions
diff --git a/libraries/ode-0.9/ode/src/collision_trimesh_distance.cpp b/libraries/ode-0.9/ode/src/collision_trimesh_distance.cpp deleted file mode 100644 index 717c763..0000000 --- a/libraries/ode-0.9/ode/src/collision_trimesh_distance.cpp +++ /dev/null | |||
@@ -1,1255 +0,0 @@ | |||
1 | // This file contains some code based on the code from Magic Software. | ||
2 | // That code is available under a Free Source License Agreement | ||
3 | // that can be found at http://www.magic-software.com/License/free.pdf | ||
4 | |||
5 | #include <ode/common.h> | ||
6 | #include <ode/odemath.h> | ||
7 | #include <ode/collision.h> | ||
8 | #define TRIMESH_INTERNAL | ||
9 | #include "collision_trimesh_internal.h" | ||
10 | |||
11 | //------------------------------------------------------------------------------ | ||
12 | /** | ||
13 | @brief Finds the shortest distance squared between a point and a triangle. | ||
14 | |||
15 | @param pfSParam Barycentric coordinate of triangle at point closest to p (u) | ||
16 | @param pfTParam Barycentric coordinate of triangle at point closest to p (v) | ||
17 | @return Shortest distance squared. | ||
18 | |||
19 | The third Barycentric coordinate is implicit, ie. w = 1.0 - u - v | ||
20 | |||
21 | Taken from: | ||
22 | Magic Software, Inc. | ||
23 | http://www.magic-software.com | ||
24 | */ | ||
25 | dReal SqrDistancePointTri( const dVector3 p, const dVector3 triOrigin, | ||
26 | const dVector3 triEdge0, const dVector3 triEdge1, | ||
27 | dReal* pfSParam, dReal* pfTParam ) | ||
28 | { | ||
29 | dVector3 kDiff; | ||
30 | Vector3Subtract( triOrigin, p, kDiff ); | ||
31 | dReal fA00 = dDOT( triEdge0, triEdge0 ); | ||
32 | dReal fA01 = dDOT( triEdge0, triEdge1 ); | ||
33 | dReal fA11 = dDOT( triEdge1, triEdge1 ); | ||
34 | dReal fB0 = dDOT( kDiff, triEdge0 ); | ||
35 | dReal fB1 = dDOT( kDiff, triEdge1 ); | ||
36 | dReal fC = dDOT( kDiff, kDiff ); | ||
37 | dReal fDet = dReal(fabs(fA00*fA11-fA01*fA01)); | ||
38 | dReal fS = fA01*fB1-fA11*fB0; | ||
39 | dReal fT = fA01*fB0-fA00*fB1; | ||
40 | dReal fSqrDist; | ||
41 | |||
42 | if ( fS + fT <= fDet ) | ||
43 | { | ||
44 | if ( fS < REAL(0.0) ) | ||
45 | { | ||
46 | if ( fT < REAL(0.0) ) // region 4 | ||
47 | { | ||
48 | if ( fB0 < REAL(0.0) ) | ||
49 | { | ||
50 | fT = REAL(0.0); | ||
51 | if ( -fB0 >= fA00 ) | ||
52 | { | ||
53 | fS = REAL(1.0); | ||
54 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
55 | } | ||
56 | else | ||
57 | { | ||
58 | fS = -fB0/fA00; | ||
59 | fSqrDist = fB0*fS+fC; | ||
60 | } | ||
61 | } | ||
62 | else | ||
63 | { | ||
64 | fS = REAL(0.0); | ||
65 | if ( fB1 >= REAL(0.0) ) | ||
66 | { | ||
67 | fT = REAL(0.0); | ||
68 | fSqrDist = fC; | ||
69 | } | ||
70 | else if ( -fB1 >= fA11 ) | ||
71 | { | ||
72 | fT = REAL(1.0); | ||
73 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
74 | } | ||
75 | else | ||
76 | { | ||
77 | fT = -fB1/fA11; | ||
78 | fSqrDist = fB1*fT+fC; | ||
79 | } | ||
80 | } | ||
81 | } | ||
82 | else // region 3 | ||
83 | { | ||
84 | fS = REAL(0.0); | ||
85 | if ( fB1 >= REAL(0.0) ) | ||
86 | { | ||
87 | fT = REAL(0.0); | ||
88 | fSqrDist = fC; | ||
89 | } | ||
90 | else if ( -fB1 >= fA11 ) | ||
91 | { | ||
92 | fT = REAL(1.0); | ||
93 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
94 | } | ||
95 | else | ||
96 | { | ||
97 | fT = -fB1/fA11; | ||
98 | fSqrDist = fB1*fT+fC; | ||
99 | } | ||
100 | } | ||
101 | } | ||
102 | else if ( fT < REAL(0.0) ) // region 5 | ||
103 | { | ||
104 | fT = REAL(0.0); | ||
105 | if ( fB0 >= REAL(0.0) ) | ||
106 | { | ||
107 | fS = REAL(0.0); | ||
108 | fSqrDist = fC; | ||
109 | } | ||
110 | else if ( -fB0 >= fA00 ) | ||
111 | { | ||
112 | fS = REAL(1.0); | ||
113 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
114 | } | ||
115 | else | ||
116 | { | ||
117 | fS = -fB0/fA00; | ||
118 | fSqrDist = fB0*fS+fC; | ||
119 | } | ||
120 | } | ||
121 | else // region 0 | ||
122 | { | ||
123 | // minimum at interior point | ||
124 | if ( fDet == REAL(0.0) ) | ||
125 | { | ||
126 | fS = REAL(0.0); | ||
127 | fT = REAL(0.0); | ||
128 | fSqrDist = dInfinity; | ||
129 | } | ||
130 | else | ||
131 | { | ||
132 | dReal fInvDet = REAL(1.0)/fDet; | ||
133 | fS *= fInvDet; | ||
134 | fT *= fInvDet; | ||
135 | fSqrDist = fS*(fA00*fS+fA01*fT+REAL(2.0)*fB0) + | ||
136 | fT*(fA01*fS+fA11*fT+REAL(2.0)*fB1)+fC; | ||
137 | } | ||
138 | } | ||
139 | } | ||
140 | else | ||
141 | { | ||
142 | dReal fTmp0, fTmp1, fNumer, fDenom; | ||
143 | |||
144 | if ( fS < REAL(0.0) ) // region 2 | ||
145 | { | ||
146 | fTmp0 = fA01 + fB0; | ||
147 | fTmp1 = fA11 + fB1; | ||
148 | if ( fTmp1 > fTmp0 ) | ||
149 | { | ||
150 | fNumer = fTmp1 - fTmp0; | ||
151 | fDenom = fA00-REAL(2.0)*fA01+fA11; | ||
152 | if ( fNumer >= fDenom ) | ||
153 | { | ||
154 | fS = REAL(1.0); | ||
155 | fT = REAL(0.0); | ||
156 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
157 | } | ||
158 | else | ||
159 | { | ||
160 | fS = fNumer/fDenom; | ||
161 | fT = REAL(1.0) - fS; | ||
162 | fSqrDist = fS*(fA00*fS+fA01*fT+REAL(2.0)*fB0) + | ||
163 | fT*(fA01*fS+fA11*fT+REAL(2.0)*fB1)+fC; | ||
164 | } | ||
165 | } | ||
166 | else | ||
167 | { | ||
168 | fS = REAL(0.0); | ||
169 | if ( fTmp1 <= REAL(0.0) ) | ||
170 | { | ||
171 | fT = REAL(1.0); | ||
172 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
173 | } | ||
174 | else if ( fB1 >= REAL(0.0) ) | ||
175 | { | ||
176 | fT = REAL(0.0); | ||
177 | fSqrDist = fC; | ||
178 | } | ||
179 | else | ||
180 | { | ||
181 | fT = -fB1/fA11; | ||
182 | fSqrDist = fB1*fT+fC; | ||
183 | } | ||
184 | } | ||
185 | } | ||
186 | else if ( fT < REAL(0.0) ) // region 6 | ||
187 | { | ||
188 | fTmp0 = fA01 + fB1; | ||
189 | fTmp1 = fA00 + fB0; | ||
190 | if ( fTmp1 > fTmp0 ) | ||
191 | { | ||
192 | fNumer = fTmp1 - fTmp0; | ||
193 | fDenom = fA00-REAL(2.0)*fA01+fA11; | ||
194 | if ( fNumer >= fDenom ) | ||
195 | { | ||
196 | fT = REAL(1.0); | ||
197 | fS = REAL(0.0); | ||
198 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
199 | } | ||
200 | else | ||
201 | { | ||
202 | fT = fNumer/fDenom; | ||
203 | fS = REAL(1.0) - fT; | ||
204 | fSqrDist = fS*(fA00*fS+fA01*fT+REAL(2.0)*fB0) + | ||
205 | fT*(fA01*fS+fA11*fT+REAL(2.0)*fB1)+fC; | ||
206 | } | ||
207 | } | ||
208 | else | ||
209 | { | ||
210 | fT = REAL(0.0); | ||
211 | if ( fTmp1 <= REAL(0.0) ) | ||
212 | { | ||
213 | fS = REAL(1.0); | ||
214 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
215 | } | ||
216 | else if ( fB0 >= REAL(0.0) ) | ||
217 | { | ||
218 | fS = REAL(0.0); | ||
219 | fSqrDist = fC; | ||
220 | } | ||
221 | else | ||
222 | { | ||
223 | fS = -fB0/fA00; | ||
224 | fSqrDist = fB0*fS+fC; | ||
225 | } | ||
226 | } | ||
227 | } | ||
228 | else // region 1 | ||
229 | { | ||
230 | fNumer = fA11 + fB1 - fA01 - fB0; | ||
231 | if ( fNumer <= REAL(0.0) ) | ||
232 | { | ||
233 | fS = REAL(0.0); | ||
234 | fT = REAL(1.0); | ||
235 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
236 | } | ||
237 | else | ||
238 | { | ||
239 | fDenom = fA00-REAL(2.0)*fA01+fA11; | ||
240 | if ( fNumer >= fDenom ) | ||
241 | { | ||
242 | fS = REAL(1.0); | ||
243 | fT = REAL(0.0); | ||
244 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
245 | } | ||
246 | else | ||
247 | { | ||
248 | fS = fNumer/fDenom; | ||
249 | fT = REAL(1.0) - fS; | ||
250 | fSqrDist = fS*(fA00*fS+fA01*fT+REAL(2.0)*fB0) + | ||
251 | fT*(fA01*fS+fA11*fT+REAL(2.0)*fB1)+fC; | ||
252 | } | ||
253 | } | ||
254 | } | ||
255 | } | ||
256 | |||
257 | if ( pfSParam ) | ||
258 | *pfSParam = (float)fS; | ||
259 | |||
260 | if ( pfTParam ) | ||
261 | *pfTParam = (float)fT; | ||
262 | |||
263 | return dReal(fabs(fSqrDist)); | ||
264 | } | ||
265 | |||
266 | //------------------------------------------------------------------------------ | ||
267 | /** | ||
268 | @brief Finds the shortest distance squared between two line segments. | ||
269 | @param pfSegP0 t value for seg1 where the shortest distance between | ||
270 | the segments exists. | ||
271 | @param pfSegP0 t value for seg2 where the shortest distance between | ||
272 | the segments exists. | ||
273 | @return Shortest distance squared. | ||
274 | |||
275 | Taken from: | ||
276 | Magic Software, Inc. | ||
277 | http://www.magic-software.com | ||
278 | */ | ||
279 | dReal SqrDistanceSegments( const dVector3 seg1Origin, const dVector3 seg1Direction, | ||
280 | const dVector3 seg2Origin, const dVector3 seg2Direction, | ||
281 | dReal* pfSegP0, dReal* pfSegP1 ) | ||
282 | { | ||
283 | const dReal gs_fTolerance = 1e-05f; | ||
284 | dVector3 kDiff, kNegDiff, seg1NegDirection; | ||
285 | Vector3Subtract( seg1Origin, seg2Origin, kDiff ); | ||
286 | Vector3Negate( kDiff, kNegDiff ); | ||
287 | dReal fA00 = dDOT( seg1Direction, seg1Direction ); | ||
288 | Vector3Negate( seg1Direction, seg1NegDirection ); | ||
289 | dReal fA01 = dDOT( seg1NegDirection, seg2Direction ); | ||
290 | dReal fA11 = dDOT( seg2Direction, seg2Direction ); | ||
291 | dReal fB0 = dDOT( kDiff, seg1Direction ); | ||
292 | dReal fC = dDOT( kDiff, kDiff ); | ||
293 | dReal fDet = dReal(fabs(fA00*fA11-fA01*fA01)); | ||
294 | dReal fB1, fS, fT, fSqrDist, fTmp; | ||
295 | |||
296 | if ( fDet >= gs_fTolerance ) | ||
297 | { | ||
298 | // line segments are not parallel | ||
299 | fB1 = dDOT( kNegDiff, seg2Direction ); | ||
300 | fS = fA01*fB1-fA11*fB0; | ||
301 | fT = fA01*fB0-fA00*fB1; | ||
302 | |||
303 | if ( fS >= REAL(0.0) ) | ||
304 | { | ||
305 | if ( fS <= fDet ) | ||
306 | { | ||
307 | if ( fT >= REAL(0.0) ) | ||
308 | { | ||
309 | if ( fT <= fDet ) // region 0 (interior) | ||
310 | { | ||
311 | // minimum at two interior points of 3D lines | ||
312 | dReal fInvDet = REAL(1.0)/fDet; | ||
313 | fS *= fInvDet; | ||
314 | fT *= fInvDet; | ||
315 | fSqrDist = fS*(fA00*fS+fA01*fT+REAL(2.0)*fB0) + | ||
316 | fT*(fA01*fS+fA11*fT+REAL(2.0)*fB1)+fC; | ||
317 | } | ||
318 | else // region 3 (side) | ||
319 | { | ||
320 | fT = REAL(1.0); | ||
321 | fTmp = fA01+fB0; | ||
322 | if ( fTmp >= REAL(0.0) ) | ||
323 | { | ||
324 | fS = REAL(0.0); | ||
325 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
326 | } | ||
327 | else if ( -fTmp >= fA00 ) | ||
328 | { | ||
329 | fS = REAL(1.0); | ||
330 | fSqrDist = fA00+fA11+fC+REAL(2.0)*(fB1+fTmp); | ||
331 | } | ||
332 | else | ||
333 | { | ||
334 | fS = -fTmp/fA00; | ||
335 | fSqrDist = fTmp*fS+fA11+REAL(2.0)*fB1+fC; | ||
336 | } | ||
337 | } | ||
338 | } | ||
339 | else // region 7 (side) | ||
340 | { | ||
341 | fT = REAL(0.0); | ||
342 | if ( fB0 >= REAL(0.0) ) | ||
343 | { | ||
344 | fS = REAL(0.0); | ||
345 | fSqrDist = fC; | ||
346 | } | ||
347 | else if ( -fB0 >= fA00 ) | ||
348 | { | ||
349 | fS = REAL(1.0); | ||
350 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
351 | } | ||
352 | else | ||
353 | { | ||
354 | fS = -fB0/fA00; | ||
355 | fSqrDist = fB0*fS+fC; | ||
356 | } | ||
357 | } | ||
358 | } | ||
359 | else | ||
360 | { | ||
361 | if ( fT >= REAL(0.0) ) | ||
362 | { | ||
363 | if ( fT <= fDet ) // region 1 (side) | ||
364 | { | ||
365 | fS = REAL(1.0); | ||
366 | fTmp = fA01+fB1; | ||
367 | if ( fTmp >= REAL(0.0) ) | ||
368 | { | ||
369 | fT = REAL(0.0); | ||
370 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
371 | } | ||
372 | else if ( -fTmp >= fA11 ) | ||
373 | { | ||
374 | fT = REAL(1.0); | ||
375 | fSqrDist = fA00+fA11+fC+REAL(2.0)*(fB0+fTmp); | ||
376 | } | ||
377 | else | ||
378 | { | ||
379 | fT = -fTmp/fA11; | ||
380 | fSqrDist = fTmp*fT+fA00+REAL(2.0)*fB0+fC; | ||
381 | } | ||
382 | } | ||
383 | else // region 2 (corner) | ||
384 | { | ||
385 | fTmp = fA01+fB0; | ||
386 | if ( -fTmp <= fA00 ) | ||
387 | { | ||
388 | fT = REAL(1.0); | ||
389 | if ( fTmp >= REAL(0.0) ) | ||
390 | { | ||
391 | fS = REAL(0.0); | ||
392 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
393 | } | ||
394 | else | ||
395 | { | ||
396 | fS = -fTmp/fA00; | ||
397 | fSqrDist = fTmp*fS+fA11+REAL(2.0)*fB1+fC; | ||
398 | } | ||
399 | } | ||
400 | else | ||
401 | { | ||
402 | fS = REAL(1.0); | ||
403 | fTmp = fA01+fB1; | ||
404 | if ( fTmp >= REAL(0.0) ) | ||
405 | { | ||
406 | fT = REAL(0.0); | ||
407 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
408 | } | ||
409 | else if ( -fTmp >= fA11 ) | ||
410 | { | ||
411 | fT = REAL(1.0); | ||
412 | fSqrDist = fA00+fA11+fC+REAL(2.0)*(fB0+fTmp); | ||
413 | } | ||
414 | else | ||
415 | { | ||
416 | fT = -fTmp/fA11; | ||
417 | fSqrDist = fTmp*fT+fA00+REAL(2.0)*fB0+fC; | ||
418 | } | ||
419 | } | ||
420 | } | ||
421 | } | ||
422 | else // region 8 (corner) | ||
423 | { | ||
424 | if ( -fB0 < fA00 ) | ||
425 | { | ||
426 | fT = REAL(0.0); | ||
427 | if ( fB0 >= REAL(0.0) ) | ||
428 | { | ||
429 | fS = REAL(0.0); | ||
430 | fSqrDist = fC; | ||
431 | } | ||
432 | else | ||
433 | { | ||
434 | fS = -fB0/fA00; | ||
435 | fSqrDist = fB0*fS+fC; | ||
436 | } | ||
437 | } | ||
438 | else | ||
439 | { | ||
440 | fS = REAL(1.0); | ||
441 | fTmp = fA01+fB1; | ||
442 | if ( fTmp >= REAL(0.0) ) | ||
443 | { | ||
444 | fT = REAL(0.0); | ||
445 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
446 | } | ||
447 | else if ( -fTmp >= fA11 ) | ||
448 | { | ||
449 | fT = REAL(1.0); | ||
450 | fSqrDist = fA00+fA11+fC+REAL(2.0)*(fB0+fTmp); | ||
451 | } | ||
452 | else | ||
453 | { | ||
454 | fT = -fTmp/fA11; | ||
455 | fSqrDist = fTmp*fT+fA00+REAL(2.0)*fB0+fC; | ||
456 | } | ||
457 | } | ||
458 | } | ||
459 | } | ||
460 | } | ||
461 | else | ||
462 | { | ||
463 | if ( fT >= REAL(0.0) ) | ||
464 | { | ||
465 | if ( fT <= fDet ) // region 5 (side) | ||
466 | { | ||
467 | fS = REAL(0.0); | ||
468 | if ( fB1 >= REAL(0.0) ) | ||
469 | { | ||
470 | fT = REAL(0.0); | ||
471 | fSqrDist = fC; | ||
472 | } | ||
473 | else if ( -fB1 >= fA11 ) | ||
474 | { | ||
475 | fT = REAL(1.0); | ||
476 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
477 | } | ||
478 | else | ||
479 | { | ||
480 | fT = -fB1/fA11; | ||
481 | fSqrDist = fB1*fT+fC; | ||
482 | } | ||
483 | } | ||
484 | else // region 4 (corner) | ||
485 | { | ||
486 | fTmp = fA01+fB0; | ||
487 | if ( fTmp < REAL(0.0) ) | ||
488 | { | ||
489 | fT = REAL(1.0); | ||
490 | if ( -fTmp >= fA00 ) | ||
491 | { | ||
492 | fS = REAL(1.0); | ||
493 | fSqrDist = fA00+fA11+fC+REAL(2.0)*(fB1+fTmp); | ||
494 | } | ||
495 | else | ||
496 | { | ||
497 | fS = -fTmp/fA00; | ||
498 | fSqrDist = fTmp*fS+fA11+REAL(2.0)*fB1+fC; | ||
499 | } | ||
500 | } | ||
501 | else | ||
502 | { | ||
503 | fS = REAL(0.0); | ||
504 | if ( fB1 >= REAL(0.0) ) | ||
505 | { | ||
506 | fT = REAL(0.0); | ||
507 | fSqrDist = fC; | ||
508 | } | ||
509 | else if ( -fB1 >= fA11 ) | ||
510 | { | ||
511 | fT = REAL(1.0); | ||
512 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
513 | } | ||
514 | else | ||
515 | { | ||
516 | fT = -fB1/fA11; | ||
517 | fSqrDist = fB1*fT+fC; | ||
518 | } | ||
519 | } | ||
520 | } | ||
521 | } | ||
522 | else // region 6 (corner) | ||
523 | { | ||
524 | if ( fB0 < REAL(0.0) ) | ||
525 | { | ||
526 | fT = REAL(0.0); | ||
527 | if ( -fB0 >= fA00 ) | ||
528 | { | ||
529 | fS = REAL(1.0); | ||
530 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
531 | } | ||
532 | else | ||
533 | { | ||
534 | fS = -fB0/fA00; | ||
535 | fSqrDist = fB0*fS+fC; | ||
536 | } | ||
537 | } | ||
538 | else | ||
539 | { | ||
540 | fS = REAL(0.0); | ||
541 | if ( fB1 >= REAL(0.0) ) | ||
542 | { | ||
543 | fT = REAL(0.0); | ||
544 | fSqrDist = fC; | ||
545 | } | ||
546 | else if ( -fB1 >= fA11 ) | ||
547 | { | ||
548 | fT = REAL(1.0); | ||
549 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
550 | } | ||
551 | else | ||
552 | { | ||
553 | fT = -fB1/fA11; | ||
554 | fSqrDist = fB1*fT+fC; | ||
555 | } | ||
556 | } | ||
557 | } | ||
558 | } | ||
559 | } | ||
560 | else | ||
561 | { | ||
562 | // line segments are parallel | ||
563 | if ( fA01 > REAL(0.0) ) | ||
564 | { | ||
565 | // direction vectors form an obtuse angle | ||
566 | if ( fB0 >= REAL(0.0) ) | ||
567 | { | ||
568 | fS = REAL(0.0); | ||
569 | fT = REAL(0.0); | ||
570 | fSqrDist = fC; | ||
571 | } | ||
572 | else if ( -fB0 <= fA00 ) | ||
573 | { | ||
574 | fS = -fB0/fA00; | ||
575 | fT = REAL(0.0); | ||
576 | fSqrDist = fB0*fS+fC; | ||
577 | } | ||
578 | else | ||
579 | { | ||
580 | //fB1 = -kDiff % seg2.m; | ||
581 | fB1 = dDOT( kNegDiff, seg2Direction ); | ||
582 | fS = REAL(1.0); | ||
583 | fTmp = fA00+fB0; | ||
584 | if ( -fTmp >= fA01 ) | ||
585 | { | ||
586 | fT = REAL(1.0); | ||
587 | fSqrDist = fA00+fA11+fC+REAL(2.0)*(fA01+fB0+fB1); | ||
588 | } | ||
589 | else | ||
590 | { | ||
591 | fT = -fTmp/fA01; | ||
592 | fSqrDist = fA00+REAL(2.0)*fB0+fC+fT*(fA11*fT+REAL(2.0)*(fA01+fB1)); | ||
593 | } | ||
594 | } | ||
595 | } | ||
596 | else | ||
597 | { | ||
598 | // direction vectors form an acute angle | ||
599 | if ( -fB0 >= fA00 ) | ||
600 | { | ||
601 | fS = REAL(1.0); | ||
602 | fT = REAL(0.0); | ||
603 | fSqrDist = fA00+REAL(2.0)*fB0+fC; | ||
604 | } | ||
605 | else if ( fB0 <= REAL(0.0) ) | ||
606 | { | ||
607 | fS = -fB0/fA00; | ||
608 | fT = REAL(0.0); | ||
609 | fSqrDist = fB0*fS+fC; | ||
610 | } | ||
611 | else | ||
612 | { | ||
613 | fB1 = dDOT( kNegDiff, seg2Direction ); | ||
614 | fS = REAL(0.0); | ||
615 | if ( fB0 >= -fA01 ) | ||
616 | { | ||
617 | fT = REAL(1.0); | ||
618 | fSqrDist = fA11+REAL(2.0)*fB1+fC; | ||
619 | } | ||
620 | else | ||
621 | { | ||
622 | fT = -fB0/fA01; | ||
623 | fSqrDist = fC+fT*(REAL(2.0)*fB1+fA11*fT); | ||
624 | } | ||
625 | } | ||
626 | } | ||
627 | } | ||
628 | |||
629 | if ( pfSegP0 ) | ||
630 | *pfSegP0 = fS; | ||
631 | |||
632 | if ( pfSegP1 ) | ||
633 | *pfSegP1 = fT; | ||
634 | |||
635 | return dReal(fabs(fSqrDist)); | ||
636 | } | ||
637 | |||
638 | //------------------------------------------------------------------------------ | ||
639 | /** | ||
640 | @brief Finds the shortest distance squared between a line segment and | ||
641 | a triangle. | ||
642 | |||
643 | @param pfSegP t value for the line segment where the shortest distance between | ||
644 | the segment and the triangle occurs. | ||
645 | So the point along the segment that is the shortest distance | ||
646 | away from the triangle can be obtained by (seg.end - seg.start) * t. | ||
647 | @param pfTriP0 Barycentric coordinate of triangle at point closest to seg (u) | ||
648 | @param pfTriP1 Barycentric coordinate of triangle at point closest to seg (v) | ||
649 | @return Shortest distance squared. | ||
650 | |||
651 | The third Barycentric coordinate is implicit, ie. w = 1.0 - u - v | ||
652 | |||
653 | Taken from: | ||
654 | Magic Software, Inc. | ||
655 | http://www.magic-software.com | ||
656 | */ | ||
657 | dReal SqrDistanceSegTri( const dVector3 segOrigin, const dVector3 segEnd, | ||
658 | const dVector3 triOrigin, | ||
659 | const dVector3 triEdge0, const dVector3 triEdge1, | ||
660 | dReal* pfSegP, dReal* pfTriP0, dReal* pfTriP1 ) | ||
661 | { | ||
662 | const dReal gs_fTolerance = 1e-06f; | ||
663 | dVector3 segDirection, segNegDirection, kDiff, kNegDiff; | ||
664 | Vector3Subtract( segEnd, segOrigin, segDirection ); | ||
665 | Vector3Negate( segDirection, segNegDirection ); | ||
666 | Vector3Subtract( triOrigin, segOrigin, kDiff ); | ||
667 | Vector3Negate( kDiff, kNegDiff ); | ||
668 | dReal fA00 = dDOT( segDirection, segDirection ); | ||
669 | dReal fA01 = dDOT( segNegDirection, triEdge0 ); | ||
670 | dReal fA02 = dDOT( segNegDirection, triEdge1 ); | ||
671 | dReal fA11 = dDOT( triEdge0, triEdge0 ); | ||
672 | dReal fA12 = dDOT( triEdge0, triEdge1 ); | ||
673 | dReal fA22 = dDOT( triEdge1, triEdge1 ); | ||
674 | dReal fB0 = dDOT( kNegDiff, segDirection ); | ||
675 | dReal fB1 = dDOT( kDiff, triEdge0 ); | ||
676 | dReal fB2 = dDOT( kDiff, triEdge1 ); | ||
677 | |||
678 | dVector3 kTriSegOrigin, kTriSegDirection, kPt; | ||
679 | dReal fSqrDist, fSqrDist0, fR, fS, fT, fR0, fS0, fT0; | ||
680 | |||
681 | // Set up for a relative error test on the angle between ray direction | ||
682 | // and triangle normal to determine parallel/nonparallel status. | ||
683 | dVector3 kN; | ||
684 | dCROSS( kN, =, triEdge0, triEdge1 ); | ||
685 | dReal fNSqrLen = dDOT( kN, kN ); | ||
686 | dReal fDot = dDOT( segDirection, kN ); | ||
687 | bool bNotParallel = (fDot*fDot >= gs_fTolerance*fA00*fNSqrLen); | ||
688 | |||
689 | if ( bNotParallel ) | ||
690 | { | ||
691 | dReal fCof00 = fA11*fA22-fA12*fA12; | ||
692 | dReal fCof01 = fA02*fA12-fA01*fA22; | ||
693 | dReal fCof02 = fA01*fA12-fA02*fA11; | ||
694 | dReal fCof11 = fA00*fA22-fA02*fA02; | ||
695 | dReal fCof12 = fA02*fA01-fA00*fA12; | ||
696 | dReal fCof22 = fA00*fA11-fA01*fA01; | ||
697 | dReal fInvDet = REAL(1.0)/(fA00*fCof00+fA01*fCof01+fA02*fCof02); | ||
698 | dReal fRhs0 = -fB0*fInvDet; | ||
699 | dReal fRhs1 = -fB1*fInvDet; | ||
700 | dReal fRhs2 = -fB2*fInvDet; | ||
701 | |||
702 | fR = fCof00*fRhs0+fCof01*fRhs1+fCof02*fRhs2; | ||
703 | fS = fCof01*fRhs0+fCof11*fRhs1+fCof12*fRhs2; | ||
704 | fT = fCof02*fRhs0+fCof12*fRhs1+fCof22*fRhs2; | ||
705 | |||
706 | if ( fR < REAL(0.0) ) | ||
707 | { | ||
708 | if ( fS+fT <= REAL(1.0) ) | ||
709 | { | ||
710 | if ( fS < REAL(0.0) ) | ||
711 | { | ||
712 | if ( fT < REAL(0.0) ) // region 4m | ||
713 | { | ||
714 | // min on face s=0 or t=0 or r=0 | ||
715 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
716 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
717 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
718 | kTriSegOrigin, kTriSegDirection, | ||
719 | &fR, &fT ); | ||
720 | fS = REAL(0.0); | ||
721 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
722 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
723 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
724 | kTriSegOrigin, kTriSegDirection, | ||
725 | &fR0, &fS0 ); | ||
726 | fT0 = REAL(0.0); | ||
727 | if ( fSqrDist0 < fSqrDist ) | ||
728 | { | ||
729 | fSqrDist = fSqrDist0; | ||
730 | fR = fR0; | ||
731 | fS = fS0; | ||
732 | fT = fT0; | ||
733 | } | ||
734 | fSqrDist0 = SqrDistancePointTri( segOrigin, triOrigin, triEdge0, triEdge1, | ||
735 | &fS0, &fT0 ); | ||
736 | fR0 = REAL(0.0); | ||
737 | if ( fSqrDist0 < fSqrDist ) | ||
738 | { | ||
739 | fSqrDist = fSqrDist0; | ||
740 | fR = fR0; | ||
741 | fS = fS0; | ||
742 | fT = fT0; | ||
743 | } | ||
744 | } | ||
745 | else // region 3m | ||
746 | { | ||
747 | // min on face s=0 or r=0 | ||
748 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
749 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
750 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
751 | kTriSegOrigin, kTriSegDirection, | ||
752 | &fR,&fT ); | ||
753 | fS = REAL(0.0); | ||
754 | fSqrDist0 = SqrDistancePointTri( segOrigin, triOrigin, triEdge0, triEdge1, | ||
755 | &fS0, &fT0 ); | ||
756 | fR0 = REAL(0.0); | ||
757 | if ( fSqrDist0 < fSqrDist ) | ||
758 | { | ||
759 | fSqrDist = fSqrDist0; | ||
760 | fR = fR0; | ||
761 | fS = fS0; | ||
762 | fT = fT0; | ||
763 | } | ||
764 | } | ||
765 | } | ||
766 | else if ( fT < REAL(0.0) ) // region 5m | ||
767 | { | ||
768 | // min on face t=0 or r=0 | ||
769 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
770 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
771 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
772 | kTriSegOrigin, kTriSegDirection, | ||
773 | &fR, &fS ); | ||
774 | fT = REAL(0.0); | ||
775 | fSqrDist0 = SqrDistancePointTri( segOrigin, triOrigin, triEdge0, triEdge1, | ||
776 | &fS0, &fT0 ); | ||
777 | fR0 = REAL(0.0); | ||
778 | if ( fSqrDist0 < fSqrDist ) | ||
779 | { | ||
780 | fSqrDist = fSqrDist0; | ||
781 | fR = fR0; | ||
782 | fS = fS0; | ||
783 | fT = fT0; | ||
784 | } | ||
785 | } | ||
786 | else // region 0m | ||
787 | { | ||
788 | // min on face r=0 | ||
789 | fSqrDist = SqrDistancePointTri( segOrigin, triOrigin, triEdge0, triEdge1, | ||
790 | &fS, &fT ); | ||
791 | fR = REAL(0.0); | ||
792 | } | ||
793 | } | ||
794 | else | ||
795 | { | ||
796 | if ( fS < REAL(0.0) ) // region 2m | ||
797 | { | ||
798 | // min on face s=0 or s+t=1 or r=0 | ||
799 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
800 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
801 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
802 | kTriSegOrigin, kTriSegDirection, | ||
803 | &fR, &fT ); | ||
804 | fS = REAL(0.0); | ||
805 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
806 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
807 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
808 | kTriSegOrigin, kTriSegDirection, | ||
809 | &fR0, &fT0 ); | ||
810 | fS0 = REAL(1.0) - fT0; | ||
811 | if ( fSqrDist0 < fSqrDist ) | ||
812 | { | ||
813 | fSqrDist = fSqrDist0; | ||
814 | fR = fR0; | ||
815 | fS = fS0; | ||
816 | fT = fT0; | ||
817 | } | ||
818 | fSqrDist0 = SqrDistancePointTri( segOrigin, triOrigin, triEdge0, triEdge1, | ||
819 | &fS0, &fT0 ); | ||
820 | fR0 = REAL(0.0); | ||
821 | if ( fSqrDist0 < fSqrDist ) | ||
822 | { | ||
823 | fSqrDist = fSqrDist0; | ||
824 | fR = fR0; | ||
825 | fS = fS0; | ||
826 | fT = fT0; | ||
827 | } | ||
828 | } | ||
829 | else if ( fT < REAL(0.0) ) // region 6m | ||
830 | { | ||
831 | // min on face t=0 or s+t=1 or r=0 | ||
832 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
833 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
834 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
835 | kTriSegOrigin, kTriSegDirection, | ||
836 | &fR, &fS ); | ||
837 | fT = REAL(0.0); | ||
838 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
839 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
840 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
841 | kTriSegOrigin, kTriSegDirection, | ||
842 | &fR0, &fT0 ); | ||
843 | fS0 = REAL(1.0) - fT0; | ||
844 | if ( fSqrDist0 < fSqrDist ) | ||
845 | { | ||
846 | fSqrDist = fSqrDist0; | ||
847 | fR = fR0; | ||
848 | fS = fS0; | ||
849 | fT = fT0; | ||
850 | } | ||
851 | fSqrDist0 = SqrDistancePointTri( segOrigin, triOrigin, triEdge0, triEdge1, | ||
852 | &fS0, &fT0 ); | ||
853 | fR0 = REAL(0.0); | ||
854 | if ( fSqrDist0 < fSqrDist ) | ||
855 | { | ||
856 | fSqrDist = fSqrDist0; | ||
857 | fR = fR0; | ||
858 | fS = fS0; | ||
859 | fT = fT0; | ||
860 | } | ||
861 | } | ||
862 | else // region 1m | ||
863 | { | ||
864 | // min on face s+t=1 or r=0 | ||
865 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
866 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
867 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
868 | kTriSegOrigin, kTriSegDirection, | ||
869 | &fR, &fT ); | ||
870 | fS = REAL(1.0) - fT; | ||
871 | fSqrDist0 = SqrDistancePointTri( segOrigin, triOrigin, triEdge0, triEdge1, | ||
872 | &fS0, &fT0 ); | ||
873 | fR0 = REAL(0.0); | ||
874 | if ( fSqrDist0 < fSqrDist ) | ||
875 | { | ||
876 | fSqrDist = fSqrDist0; | ||
877 | fR = fR0; | ||
878 | fS = fS0; | ||
879 | fT = fT0; | ||
880 | } | ||
881 | } | ||
882 | } | ||
883 | } | ||
884 | else if ( fR <= REAL(1.0) ) | ||
885 | { | ||
886 | if ( fS+fT <= REAL(1.0) ) | ||
887 | { | ||
888 | if ( fS < REAL(0.0) ) | ||
889 | { | ||
890 | if ( fT < REAL(0.0) ) // region 4 | ||
891 | { | ||
892 | // min on face s=0 or t=0 | ||
893 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
894 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
895 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
896 | kTriSegOrigin, kTriSegDirection, | ||
897 | &fR, &fT ); | ||
898 | fS = REAL(0.0); | ||
899 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
900 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
901 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
902 | kTriSegOrigin, kTriSegDirection, | ||
903 | &fR0, &fS0 ); | ||
904 | fT0 = REAL(0.0); | ||
905 | if ( fSqrDist0 < fSqrDist ) | ||
906 | { | ||
907 | fSqrDist = fSqrDist0; | ||
908 | fR = fR0; | ||
909 | fS = fS0; | ||
910 | fT = fT0; | ||
911 | } | ||
912 | } | ||
913 | else // region 3 | ||
914 | { | ||
915 | // min on face s=0 | ||
916 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
917 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
918 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
919 | kTriSegOrigin, kTriSegDirection, | ||
920 | &fR, &fT ); | ||
921 | fS = REAL(0.0); | ||
922 | } | ||
923 | } | ||
924 | else if ( fT < REAL(0.0) ) // region 5 | ||
925 | { | ||
926 | // min on face t=0 | ||
927 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
928 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
929 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
930 | kTriSegOrigin, kTriSegDirection, | ||
931 | &fR, &fS ); | ||
932 | fT = REAL(0.0); | ||
933 | } | ||
934 | else // region 0 | ||
935 | { | ||
936 | // global minimum is interior, done | ||
937 | fSqrDist = REAL(0.0); | ||
938 | } | ||
939 | } | ||
940 | else | ||
941 | { | ||
942 | if ( fS < REAL(0.0) ) // region 2 | ||
943 | { | ||
944 | // min on face s=0 or s+t=1 | ||
945 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
946 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
947 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
948 | kTriSegOrigin, kTriSegDirection, | ||
949 | &fR, &fT ); | ||
950 | fS = REAL(0.0); | ||
951 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
952 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
953 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
954 | kTriSegOrigin, kTriSegDirection, | ||
955 | &fR0, &fT0 ); | ||
956 | fS0 = REAL(1.0) - fT0; | ||
957 | if ( fSqrDist0 < fSqrDist ) | ||
958 | { | ||
959 | fSqrDist = fSqrDist0; | ||
960 | fR = fR0; | ||
961 | fS = fS0; | ||
962 | fT = fT0; | ||
963 | } | ||
964 | } | ||
965 | else if ( fT < REAL(0.0) ) // region 6 | ||
966 | { | ||
967 | // min on face t=0 or s+t=1 | ||
968 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
969 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
970 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
971 | kTriSegOrigin, kTriSegDirection, | ||
972 | &fR, &fS ); | ||
973 | fT = REAL(0.0); | ||
974 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
975 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
976 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
977 | kTriSegOrigin, kTriSegDirection, | ||
978 | &fR0, &fT0 ); | ||
979 | fS0 = REAL(1.0) - fT0; | ||
980 | if ( fSqrDist0 < fSqrDist ) | ||
981 | { | ||
982 | fSqrDist = fSqrDist0; | ||
983 | fR = fR0; | ||
984 | fS = fS0; | ||
985 | fT = fT0; | ||
986 | } | ||
987 | } | ||
988 | else // region 1 | ||
989 | { | ||
990 | // min on face s+t=1 | ||
991 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
992 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
993 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
994 | kTriSegOrigin, kTriSegDirection, | ||
995 | &fR, &fT ); | ||
996 | fS = REAL(1.0) - fT; | ||
997 | } | ||
998 | } | ||
999 | } | ||
1000 | else // fR > 1 | ||
1001 | { | ||
1002 | if ( fS+fT <= REAL(1.0) ) | ||
1003 | { | ||
1004 | if ( fS < REAL(0.0) ) | ||
1005 | { | ||
1006 | if ( fT < REAL(0.0) ) // region 4p | ||
1007 | { | ||
1008 | // min on face s=0 or t=0 or r=1 | ||
1009 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
1010 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
1011 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
1012 | kTriSegOrigin, kTriSegDirection, | ||
1013 | &fR, &fT ); | ||
1014 | fS = REAL(0.0); | ||
1015 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
1016 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
1017 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
1018 | kTriSegOrigin, kTriSegDirection, | ||
1019 | &fR0, &fS0 ); | ||
1020 | fT0 = REAL(0.0); | ||
1021 | if ( fSqrDist0 < fSqrDist ) | ||
1022 | { | ||
1023 | fSqrDist = fSqrDist0; | ||
1024 | fR = fR0; | ||
1025 | fS = fS0; | ||
1026 | fT = fT0; | ||
1027 | } | ||
1028 | Vector3Add( segOrigin, segDirection, kPt ); | ||
1029 | fSqrDist0 = SqrDistancePointTri( kPt, triOrigin, triEdge0, triEdge1, | ||
1030 | &fS0, &fT0 ); | ||
1031 | fR0 = REAL(1.0); | ||
1032 | if ( fSqrDist0 < fSqrDist ) | ||
1033 | { | ||
1034 | fSqrDist = fSqrDist0; | ||
1035 | fR = fR0; | ||
1036 | fS = fS0; | ||
1037 | fT = fT0; | ||
1038 | } | ||
1039 | } | ||
1040 | else // region 3p | ||
1041 | { | ||
1042 | // min on face s=0 or r=1 | ||
1043 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
1044 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
1045 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
1046 | kTriSegOrigin, kTriSegDirection, | ||
1047 | &fR, &fT ); | ||
1048 | fS = REAL(0.0); | ||
1049 | Vector3Add( segOrigin, segDirection, kPt ); | ||
1050 | fSqrDist0 = SqrDistancePointTri( kPt, triOrigin, triEdge0, triEdge1, | ||
1051 | &fS0, &fT0 ); | ||
1052 | fR0 = REAL(1.0); | ||
1053 | if ( fSqrDist0 < fSqrDist ) | ||
1054 | { | ||
1055 | fSqrDist = fSqrDist0; | ||
1056 | fR = fR0; | ||
1057 | fS = fS0; | ||
1058 | fT = fT0; | ||
1059 | } | ||
1060 | } | ||
1061 | } | ||
1062 | else if ( fT < REAL(0.0) ) // region 5p | ||
1063 | { | ||
1064 | // min on face t=0 or r=1 | ||
1065 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
1066 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
1067 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
1068 | kTriSegOrigin, kTriSegDirection, | ||
1069 | &fR, &fS ); | ||
1070 | fT = REAL(0.0); | ||
1071 | Vector3Add( segOrigin, segDirection, kPt ); | ||
1072 | fSqrDist0 = SqrDistancePointTri( kPt, triOrigin, triEdge0, triEdge1, | ||
1073 | &fS0, &fT0 ); | ||
1074 | fR0 = REAL(1.0); | ||
1075 | if ( fSqrDist0 < fSqrDist ) | ||
1076 | { | ||
1077 | fSqrDist = fSqrDist0; | ||
1078 | fR = fR0; | ||
1079 | fS = fS0; | ||
1080 | fT = fT0; | ||
1081 | } | ||
1082 | } | ||
1083 | else // region 0p | ||
1084 | { | ||
1085 | // min face on r=1 | ||
1086 | Vector3Add( segOrigin, segDirection, kPt ); | ||
1087 | fSqrDist = SqrDistancePointTri( kPt, triOrigin, triEdge0, triEdge1, | ||
1088 | &fS, &fT ); | ||
1089 | fR = REAL(1.0); | ||
1090 | } | ||
1091 | } | ||
1092 | else | ||
1093 | { | ||
1094 | if ( fS < REAL(0.0) ) // region 2p | ||
1095 | { | ||
1096 | // min on face s=0 or s+t=1 or r=1 | ||
1097 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
1098 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
1099 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
1100 | kTriSegOrigin, kTriSegDirection, | ||
1101 | &fR, &fT ); | ||
1102 | fS = REAL(0.0); | ||
1103 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
1104 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
1105 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
1106 | kTriSegOrigin, kTriSegDirection, | ||
1107 | &fR0, &fT0 ); | ||
1108 | fS0 = REAL(1.0) - fT0; | ||
1109 | if ( fSqrDist0 < fSqrDist ) | ||
1110 | { | ||
1111 | fSqrDist = fSqrDist0; | ||
1112 | fR = fR0; | ||
1113 | fS = fS0; | ||
1114 | fT = fT0; | ||
1115 | } | ||
1116 | Vector3Add( segOrigin, segDirection, kPt ); | ||
1117 | fSqrDist0 = SqrDistancePointTri( kPt, triOrigin, triEdge0, triEdge1, | ||
1118 | &fS0, &fT0 ); | ||
1119 | fR0 = REAL(1.0); | ||
1120 | if ( fSqrDist0 < fSqrDist ) | ||
1121 | { | ||
1122 | fSqrDist = fSqrDist0; | ||
1123 | fR = fR0; | ||
1124 | fS = fS0; | ||
1125 | fT = fT0; | ||
1126 | } | ||
1127 | } | ||
1128 | else if ( fT < REAL(0.0) ) // region 6p | ||
1129 | { | ||
1130 | // min on face t=0 or s+t=1 or r=1 | ||
1131 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
1132 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
1133 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
1134 | kTriSegOrigin, kTriSegDirection, | ||
1135 | &fR, &fS ); | ||
1136 | fT = REAL(0.0); | ||
1137 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
1138 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
1139 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
1140 | kTriSegOrigin, kTriSegDirection, | ||
1141 | &fR0, &fT0 ); | ||
1142 | fS0 = REAL(1.0) - fT0; | ||
1143 | if ( fSqrDist0 < fSqrDist ) | ||
1144 | { | ||
1145 | fSqrDist = fSqrDist0; | ||
1146 | fR = fR0; | ||
1147 | fS = fS0; | ||
1148 | fT = fT0; | ||
1149 | } | ||
1150 | Vector3Add( segOrigin, segDirection, kPt ); | ||
1151 | fSqrDist0 = SqrDistancePointTri( kPt, triOrigin, triEdge0, triEdge1, | ||
1152 | &fS0, &fT0 ); | ||
1153 | fR0 = REAL(1.0); | ||
1154 | if ( fSqrDist0 < fSqrDist ) | ||
1155 | { | ||
1156 | fSqrDist = fSqrDist0; | ||
1157 | fR = fR0; | ||
1158 | fS = fS0; | ||
1159 | fT = fT0; | ||
1160 | } | ||
1161 | } | ||
1162 | else // region 1p | ||
1163 | { | ||
1164 | // min on face s+t=1 or r=1 | ||
1165 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
1166 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
1167 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
1168 | kTriSegOrigin, kTriSegDirection, | ||
1169 | &fR, &fT ); | ||
1170 | fS = REAL(1.0) - fT; | ||
1171 | Vector3Add( segOrigin, segDirection, kPt ); | ||
1172 | fSqrDist0 = SqrDistancePointTri( kPt, triOrigin, triEdge0, triEdge1, | ||
1173 | &fS0, &fT0 ); | ||
1174 | fR0 = REAL(1.0); | ||
1175 | if ( fSqrDist0 < fSqrDist ) | ||
1176 | { | ||
1177 | fSqrDist = fSqrDist0; | ||
1178 | fR = fR0; | ||
1179 | fS = fS0; | ||
1180 | fT = fT0; | ||
1181 | } | ||
1182 | } | ||
1183 | } | ||
1184 | } | ||
1185 | } | ||
1186 | else | ||
1187 | { | ||
1188 | // segment and triangle are parallel | ||
1189 | Vector3Copy( triOrigin, kTriSegOrigin ); | ||
1190 | Vector3Copy( triEdge0, kTriSegDirection ); | ||
1191 | fSqrDist = SqrDistanceSegments( segOrigin, segDirection, | ||
1192 | kTriSegOrigin, kTriSegDirection, &fR, &fS ); | ||
1193 | fT = REAL(0.0); | ||
1194 | |||
1195 | Vector3Copy( triEdge1, kTriSegDirection ); | ||
1196 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
1197 | kTriSegOrigin, kTriSegDirection, | ||
1198 | &fR0, &fT0 ); | ||
1199 | fS0 = REAL(0.0); | ||
1200 | if ( fSqrDist0 < fSqrDist ) | ||
1201 | { | ||
1202 | fSqrDist = fSqrDist0; | ||
1203 | fR = fR0; | ||
1204 | fS = fS0; | ||
1205 | fT = fT0; | ||
1206 | } | ||
1207 | |||
1208 | Vector3Add( triOrigin, triEdge0, kTriSegOrigin ); | ||
1209 | Vector3Subtract( triEdge1, triEdge0, kTriSegDirection ); | ||
1210 | fSqrDist0 = SqrDistanceSegments( segOrigin, segDirection, | ||
1211 | kTriSegOrigin, kTriSegDirection, &fR0, &fT0 ); | ||
1212 | fS0 = REAL(1.0) - fT0; | ||
1213 | if ( fSqrDist0 < fSqrDist ) | ||
1214 | { | ||
1215 | fSqrDist = fSqrDist0; | ||
1216 | fR = fR0; | ||
1217 | fS = fS0; | ||
1218 | fT = fT0; | ||
1219 | } | ||
1220 | |||
1221 | fSqrDist0 = SqrDistancePointTri( segOrigin, triOrigin, triEdge0, triEdge1, | ||
1222 | &fS0, &fT0 ); | ||
1223 | fR0 = REAL(0.0); | ||
1224 | if ( fSqrDist0 < fSqrDist ) | ||
1225 | { | ||
1226 | fSqrDist = fSqrDist0; | ||
1227 | fR = fR0; | ||
1228 | fS = fS0; | ||
1229 | fT = fT0; | ||
1230 | } | ||
1231 | |||
1232 | Vector3Add( segOrigin, segDirection, kPt ); | ||
1233 | fSqrDist0 = SqrDistancePointTri( kPt, triOrigin, triEdge0, triEdge1, | ||
1234 | &fS0, &fT0 ); | ||
1235 | fR0 = REAL(1.0); | ||
1236 | if ( fSqrDist0 < fSqrDist ) | ||
1237 | { | ||
1238 | fSqrDist = fSqrDist0; | ||
1239 | fR = fR0; | ||
1240 | fS = fS0; | ||
1241 | fT = fT0; | ||
1242 | } | ||
1243 | } | ||
1244 | |||
1245 | if ( pfSegP ) | ||
1246 | *pfSegP = fR; | ||
1247 | |||
1248 | if ( pfTriP0 ) | ||
1249 | *pfTriP0 = fS; | ||
1250 | |||
1251 | if ( pfTriP1 ) | ||
1252 | *pfTriP1 = fT; | ||
1253 | |||
1254 | return fSqrDist; | ||
1255 | } | ||