aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/BulletSNPlugin/BSParam.cs
diff options
context:
space:
mode:
Diffstat (limited to 'OpenSim/Region/Physics/BulletSNPlugin/BSParam.cs')
-rw-r--r--OpenSim/Region/Physics/BulletSNPlugin/BSParam.cs559
1 files changed, 559 insertions, 0 deletions
diff --git a/OpenSim/Region/Physics/BulletSNPlugin/BSParam.cs b/OpenSim/Region/Physics/BulletSNPlugin/BSParam.cs
new file mode 100644
index 0000000..0bb1674
--- /dev/null
+++ b/OpenSim/Region/Physics/BulletSNPlugin/BSParam.cs
@@ -0,0 +1,559 @@
1/*
2 * Copyright (c) Contributors, http://opensimulator.org/
3 * See CONTRIBUTORS.TXT for a full list of copyright holders.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyrightD
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the OpenSimulator Project nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27using System;
28using System.Collections.Generic;
29using System.Text;
30
31using OpenSim.Region.Physics.Manager;
32
33using OpenMetaverse;
34using Nini.Config;
35
36namespace OpenSim.Region.Physics.BulletSNPlugin
37{
38public static class BSParam
39{
40 // Level of Detail values kept as float because that's what the Meshmerizer wants
41 public static float MeshLOD { get; private set; }
42 public static float MeshMegaPrimLOD { get; private set; }
43 public static float MeshMegaPrimThreshold { get; private set; }
44 public static float SculptLOD { get; private set; }
45
46 public static float MinimumObjectMass { get; private set; }
47 public static float MaximumObjectMass { get; private set; }
48
49 public static float LinearDamping { get; private set; }
50 public static float AngularDamping { get; private set; }
51 public static float DeactivationTime { get; private set; }
52 public static float LinearSleepingThreshold { get; private set; }
53 public static float AngularSleepingThreshold { get; private set; }
54 public static float CcdMotionThreshold { get; private set; }
55 public static float CcdSweptSphereRadius { get; private set; }
56 public static float ContactProcessingThreshold { get; private set; }
57
58 public static bool ShouldMeshSculptedPrim { get; private set; } // cause scuplted prims to get meshed
59 public static bool ShouldForceSimplePrimMeshing { get; private set; } // if a cube or sphere, let Bullet do internal shapes
60 public static bool ShouldUseHullsForPhysicalObjects { get; private set; } // 'true' if should create hulls for physical objects
61
62 public static float TerrainImplementation { get; private set; }
63 public static float TerrainFriction { get; private set; }
64 public static float TerrainHitFraction { get; private set; }
65 public static float TerrainRestitution { get; private set; }
66 public static float TerrainCollisionMargin { get; private set; }
67
68 // Avatar parameters
69 public static float AvatarFriction { get; private set; }
70 public static float AvatarStandingFriction { get; private set; }
71 public static float AvatarDensity { get; private set; }
72 public static float AvatarRestitution { get; private set; }
73 public static float AvatarCapsuleWidth { get; private set; }
74 public static float AvatarCapsuleDepth { get; private set; }
75 public static float AvatarCapsuleHeight { get; private set; }
76 public static float AvatarContactProcessingThreshold { get; private set; }
77
78 public static float VehicleAngularDamping { get; private set; }
79
80 public static float LinksetImplementation { get; private set; }
81 public static float LinkConstraintUseFrameOffset { get; private set; }
82 public static float LinkConstraintEnableTransMotor { get; private set; }
83 public static float LinkConstraintTransMotorMaxVel { get; private set; }
84 public static float LinkConstraintTransMotorMaxForce { get; private set; }
85 public static float LinkConstraintERP { get; private set; }
86 public static float LinkConstraintCFM { get; private set; }
87 public static float LinkConstraintSolverIterations { get; private set; }
88
89 public static float PID_D { get; private set; } // derivative
90 public static float PID_P { get; private set; } // proportional
91
92 public delegate void ParamUser(BSScene scene, IConfig conf, string paramName, float val);
93 public delegate float ParamGet(BSScene scene);
94 public delegate void ParamSet(BSScene scene, string paramName, uint localID, float val);
95 public delegate void SetOnObject(BSScene scene, BSPhysObject obj, float val);
96
97 public struct ParameterDefn
98 {
99 public string name; // string name of the parameter
100 public string desc; // a short description of what the parameter means
101 public float defaultValue; // default value if not specified anywhere else
102 public ParamUser userParam; // get the value from the configuration file
103 public ParamGet getter; // return the current value stored for this parameter
104 public ParamSet setter; // set the current value for this parameter
105 public SetOnObject onObject; // set the value on an object in the physical domain
106 public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s)
107 {
108 name = n;
109 desc = d;
110 defaultValue = v;
111 userParam = u;
112 getter = g;
113 setter = s;
114 onObject = null;
115 }
116 public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s, SetOnObject o)
117 {
118 name = n;
119 desc = d;
120 defaultValue = v;
121 userParam = u;
122 getter = g;
123 setter = s;
124 onObject = o;
125 }
126 }
127
128 // List of all of the externally visible parameters.
129 // For each parameter, this table maps a text name to getter and setters.
130 // To add a new externally referencable/settable parameter, add the paramter storage
131 // location somewhere in the program and make an entry in this table with the
132 // getters and setters.
133 // It is easiest to find an existing definition and copy it.
134 // Parameter values are floats. Booleans are converted to a floating value.
135 //
136 // A ParameterDefn() takes the following parameters:
137 // -- the text name of the parameter. This is used for console input and ini file.
138 // -- a short text description of the parameter. This shows up in the console listing.
139 // -- a default value (float)
140 // -- a delegate for fetching the parameter from the ini file.
141 // Should handle fetching the right type from the ini file and converting it.
142 // -- a delegate for getting the value as a float
143 // -- a delegate for setting the value from a float
144 // -- an optional delegate to update the value in the world. Most often used to
145 // push the new value to an in-world object.
146 //
147 // The single letter parameters for the delegates are:
148 // s = BSScene
149 // o = BSPhysObject
150 // p = string parameter name
151 // l = localID of referenced object
152 // v = value (float)
153 // cf = parameter configuration class (for fetching values from ini file)
154 private static ParameterDefn[] ParameterDefinitions =
155 {
156 new ParameterDefn("MeshSculptedPrim", "Whether to create meshes for sculpties",
157 ConfigurationParameters.numericTrue,
158 (s,cf,p,v) => { ShouldMeshSculptedPrim = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
159 (s) => { return BSParam.NumericBool(ShouldMeshSculptedPrim); },
160 (s,p,l,v) => { ShouldMeshSculptedPrim = BSParam.BoolNumeric(v); } ),
161 new ParameterDefn("ForceSimplePrimMeshing", "If true, only use primitive meshes for objects",
162 ConfigurationParameters.numericFalse,
163 (s,cf,p,v) => { ShouldForceSimplePrimMeshing = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
164 (s) => { return BSParam.NumericBool(ShouldForceSimplePrimMeshing); },
165 (s,p,l,v) => { ShouldForceSimplePrimMeshing = BSParam.BoolNumeric(v); } ),
166 new ParameterDefn("UseHullsForPhysicalObjects", "If true, create hulls for physical objects",
167 ConfigurationParameters.numericTrue,
168 (s,cf,p,v) => { ShouldUseHullsForPhysicalObjects = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
169 (s) => { return BSParam.NumericBool(ShouldUseHullsForPhysicalObjects); },
170 (s,p,l,v) => { ShouldUseHullsForPhysicalObjects = BSParam.BoolNumeric(v); } ),
171
172 new ParameterDefn("MeshLevelOfDetail", "Level of detail to render meshes (32, 16, 8 or 4. 32=most detailed)",
173 8f,
174 (s,cf,p,v) => { MeshLOD = (float)cf.GetInt(p, (int)v); },
175 (s) => { return MeshLOD; },
176 (s,p,l,v) => { MeshLOD = v; } ),
177 new ParameterDefn("MeshLevelOfDetailMegaPrim", "Level of detail to render meshes larger than threshold meters",
178 16f,
179 (s,cf,p,v) => { MeshMegaPrimLOD = (float)cf.GetInt(p, (int)v); },
180 (s) => { return MeshMegaPrimLOD; },
181 (s,p,l,v) => { MeshMegaPrimLOD = v; } ),
182 new ParameterDefn("MeshLevelOfDetailMegaPrimThreshold", "Size (in meters) of a mesh before using MeshMegaPrimLOD",
183 10f,
184 (s,cf,p,v) => { MeshMegaPrimThreshold = (float)cf.GetInt(p, (int)v); },
185 (s) => { return MeshMegaPrimThreshold; },
186 (s,p,l,v) => { MeshMegaPrimThreshold = v; } ),
187 new ParameterDefn("SculptLevelOfDetail", "Level of detail to render sculpties (32, 16, 8 or 4. 32=most detailed)",
188 32f,
189 (s,cf,p,v) => { SculptLOD = (float)cf.GetInt(p, (int)v); },
190 (s) => { return SculptLOD; },
191 (s,p,l,v) => { SculptLOD = v; } ),
192
193 new ParameterDefn("MaxSubStep", "In simulation step, maximum number of substeps",
194 10f,
195 (s,cf,p,v) => { s.m_maxSubSteps = cf.GetInt(p, (int)v); },
196 (s) => { return (float)s.m_maxSubSteps; },
197 (s,p,l,v) => { s.m_maxSubSteps = (int)v; } ),
198 new ParameterDefn("FixedTimeStep", "In simulation step, seconds of one substep (1/60)",
199 1f / 60f,
200 (s,cf,p,v) => { s.m_fixedTimeStep = cf.GetFloat(p, v); },
201 (s) => { return (float)s.m_fixedTimeStep; },
202 (s,p,l,v) => { s.m_fixedTimeStep = v; } ),
203 new ParameterDefn("MaxCollisionsPerFrame", "Max collisions returned at end of each frame",
204 2048f,
205 (s,cf,p,v) => { s.m_maxCollisionsPerFrame = cf.GetInt(p, (int)v); },
206 (s) => { return (float)s.m_maxCollisionsPerFrame; },
207 (s,p,l,v) => { s.m_maxCollisionsPerFrame = (int)v; } ),
208 new ParameterDefn("MaxUpdatesPerFrame", "Max updates returned at end of each frame",
209 8000f,
210 (s,cf,p,v) => { s.m_maxUpdatesPerFrame = cf.GetInt(p, (int)v); },
211 (s) => { return (float)s.m_maxUpdatesPerFrame; },
212 (s,p,l,v) => { s.m_maxUpdatesPerFrame = (int)v; } ),
213 new ParameterDefn("MaxTaintsToProcessPerStep", "Number of update taints to process before each simulation step",
214 500f,
215 (s,cf,p,v) => { s.m_taintsToProcessPerStep = cf.GetInt(p, (int)v); },
216 (s) => { return (float)s.m_taintsToProcessPerStep; },
217 (s,p,l,v) => { s.m_taintsToProcessPerStep = (int)v; } ),
218 new ParameterDefn("MinObjectMass", "Minimum object mass (0.0001)",
219 0.0001f,
220 (s,cf,p,v) => { MinimumObjectMass = cf.GetFloat(p, v); },
221 (s) => { return (float)MinimumObjectMass; },
222 (s,p,l,v) => { MinimumObjectMass = v; } ),
223 new ParameterDefn("MaxObjectMass", "Maximum object mass (10000.01)",
224 10000.01f,
225 (s,cf,p,v) => { MaximumObjectMass = cf.GetFloat(p, v); },
226 (s) => { return (float)MaximumObjectMass; },
227 (s,p,l,v) => { MaximumObjectMass = v; } ),
228
229 new ParameterDefn("PID_D", "Derivitive factor for motion smoothing",
230 2200f,
231 (s,cf,p,v) => { PID_D = cf.GetFloat(p, v); },
232 (s) => { return (float)PID_D; },
233 (s,p,l,v) => { PID_D = v; } ),
234 new ParameterDefn("PID_P", "Parameteric factor for motion smoothing",
235 900f,
236 (s,cf,p,v) => { PID_P = cf.GetFloat(p, v); },
237 (s) => { return (float)PID_P; },
238 (s,p,l,v) => { PID_P = v; } ),
239
240 new ParameterDefn("DefaultFriction", "Friction factor used on new objects",
241 0.2f,
242 (s,cf,p,v) => { s.UnmanagedParams[0].defaultFriction = cf.GetFloat(p, v); },
243 (s) => { return s.UnmanagedParams[0].defaultFriction; },
244 (s,p,l,v) => { s.UnmanagedParams[0].defaultFriction = v; } ),
245 new ParameterDefn("DefaultDensity", "Density for new objects" ,
246 10.000006836f, // Aluminum g/cm3
247 (s,cf,p,v) => { s.UnmanagedParams[0].defaultDensity = cf.GetFloat(p, v); },
248 (s) => { return s.UnmanagedParams[0].defaultDensity; },
249 (s,p,l,v) => { s.UnmanagedParams[0].defaultDensity = v; } ),
250 new ParameterDefn("DefaultRestitution", "Bouncyness of an object" ,
251 0f,
252 (s,cf,p,v) => { s.UnmanagedParams[0].defaultRestitution = cf.GetFloat(p, v); },
253 (s) => { return s.UnmanagedParams[0].defaultRestitution; },
254 (s,p,l,v) => { s.UnmanagedParams[0].defaultRestitution = v; } ),
255 new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)",
256 0.04f,
257 (s,cf,p,v) => { s.UnmanagedParams[0].collisionMargin = cf.GetFloat(p, v); },
258 (s) => { return s.UnmanagedParams[0].collisionMargin; },
259 (s,p,l,v) => { s.UnmanagedParams[0].collisionMargin = v; } ),
260 new ParameterDefn("Gravity", "Vertical force of gravity (negative means down)",
261 -9.80665f,
262 (s,cf,p,v) => { s.UnmanagedParams[0].gravity = cf.GetFloat(p, v); },
263 (s) => { return s.UnmanagedParams[0].gravity; },
264 (s,p,l,v) => { s.UpdateParameterObject((x)=>{s.UnmanagedParams[0].gravity=x;}, p, PhysParameterEntry.APPLY_TO_NONE, v); },
265 (s,o,v) => { BulletSimAPI.SetGravity2(s.World.ptr, new Vector3(0f,0f,v)); } ),
266
267
268 new ParameterDefn("LinearDamping", "Factor to damp linear movement per second (0.0 - 1.0)",
269 0f,
270 (s,cf,p,v) => { LinearDamping = cf.GetFloat(p, v); },
271 (s) => { return LinearDamping; },
272 (s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearDamping=x;}, p, l, v); },
273 (s,o,v) => { BulletSimAPI.SetDamping2(o.PhysBody.ptr, v, AngularDamping); } ),
274 new ParameterDefn("AngularDamping", "Factor to damp angular movement per second (0.0 - 1.0)",
275 0f,
276 (s,cf,p,v) => { AngularDamping = cf.GetFloat(p, v); },
277 (s) => { return AngularDamping; },
278 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularDamping=x;}, p, l, v); },
279 (s,o,v) => { BulletSimAPI.SetDamping2(o.PhysBody.ptr, LinearDamping, v); } ),
280 new ParameterDefn("DeactivationTime", "Seconds before considering an object potentially static",
281 0.2f,
282 (s,cf,p,v) => { DeactivationTime = cf.GetFloat(p, v); },
283 (s) => { return DeactivationTime; },
284 (s,p,l,v) => { s.UpdateParameterObject((x)=>{DeactivationTime=x;}, p, l, v); },
285 (s,o,v) => { BulletSimAPI.SetDeactivationTime2(o.PhysBody.ptr, v); } ),
286 new ParameterDefn("LinearSleepingThreshold", "Seconds to measure linear movement before considering static",
287 0.8f,
288 (s,cf,p,v) => { LinearSleepingThreshold = cf.GetFloat(p, v); },
289 (s) => { return LinearSleepingThreshold; },
290 (s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearSleepingThreshold=x;}, p, l, v); },
291 (s,o,v) => { BulletSimAPI.SetSleepingThresholds2(o.PhysBody.ptr, v, v); } ),
292 new ParameterDefn("AngularSleepingThreshold", "Seconds to measure angular movement before considering static",
293 1.0f,
294 (s,cf,p,v) => { AngularSleepingThreshold = cf.GetFloat(p, v); },
295 (s) => { return AngularSleepingThreshold; },
296 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularSleepingThreshold=x;}, p, l, v); },
297 (s,o,v) => { BulletSimAPI.SetSleepingThresholds2(o.PhysBody.ptr, v, v); } ),
298 new ParameterDefn("CcdMotionThreshold", "Continuious collision detection threshold (0 means no CCD)" ,
299 0f, // set to zero to disable
300 (s,cf,p,v) => { CcdMotionThreshold = cf.GetFloat(p, v); },
301 (s) => { return CcdMotionThreshold; },
302 (s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdMotionThreshold=x;}, p, l, v); },
303 (s,o,v) => { BulletSimAPI.SetCcdMotionThreshold2(o.PhysBody.ptr, v); } ),
304 new ParameterDefn("CcdSweptSphereRadius", "Continuious collision detection test radius" ,
305 0f,
306 (s,cf,p,v) => { CcdSweptSphereRadius = cf.GetFloat(p, v); },
307 (s) => { return CcdSweptSphereRadius; },
308 (s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdSweptSphereRadius=x;}, p, l, v); },
309 (s,o,v) => { BulletSimAPI.SetCcdSweptSphereRadius2(o.PhysBody.ptr, v); } ),
310 new ParameterDefn("ContactProcessingThreshold", "Distance between contacts before doing collision check" ,
311 0.1f,
312 (s,cf,p,v) => { ContactProcessingThreshold = cf.GetFloat(p, v); },
313 (s) => { return ContactProcessingThreshold; },
314 (s,p,l,v) => { s.UpdateParameterObject((x)=>{ContactProcessingThreshold=x;}, p, l, v); },
315 (s,o,v) => { BulletSimAPI.SetContactProcessingThreshold2(o.PhysBody.ptr, v); } ),
316
317 new ParameterDefn("TerrainImplementation", "Type of shape to use for terrain (0=heightmap, 1=mesh)",
318 (float)BSTerrainPhys.TerrainImplementation.Mesh,
319 (s,cf,p,v) => { TerrainImplementation = cf.GetFloat(p,v); },
320 (s) => { return TerrainImplementation; },
321 (s,p,l,v) => { TerrainImplementation = v; } ),
322 new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" ,
323 0.3f,
324 (s,cf,p,v) => { TerrainFriction = cf.GetFloat(p, v); },
325 (s) => { return TerrainFriction; },
326 (s,p,l,v) => { TerrainFriction = v; /* TODO: set on real terrain */} ),
327 new ParameterDefn("TerrainHitFraction", "Distance to measure hit collisions" ,
328 0.8f,
329 (s,cf,p,v) => { TerrainHitFraction = cf.GetFloat(p, v); },
330 (s) => { return TerrainHitFraction; },
331 (s,p,l,v) => { TerrainHitFraction = v; /* TODO: set on real terrain */ } ),
332 new ParameterDefn("TerrainRestitution", "Bouncyness" ,
333 0f,
334 (s,cf,p,v) => { TerrainRestitution = cf.GetFloat(p, v); },
335 (s) => { return TerrainRestitution; },
336 (s,p,l,v) => { TerrainRestitution = v; /* TODO: set on real terrain */ } ),
337 new ParameterDefn("TerrainCollisionMargin", "Margin where collision checking starts" ,
338 0.04f,
339 (s,cf,p,v) => { TerrainCollisionMargin = cf.GetFloat(p, v); },
340 (s) => { return TerrainCollisionMargin; },
341 (s,p,l,v) => { TerrainCollisionMargin = v; /* TODO: set on real terrain */ } ),
342
343 new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.",
344 0.2f,
345 (s,cf,p,v) => { AvatarFriction = cf.GetFloat(p, v); },
346 (s) => { return AvatarFriction; },
347 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarFriction=x;}, p, l, v); } ),
348 new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.",
349 10.0f,
350 (s,cf,p,v) => { AvatarStandingFriction = cf.GetFloat(p, v); },
351 (s) => { return AvatarStandingFriction; },
352 (s,p,l,v) => { AvatarStandingFriction = v; } ),
353 new ParameterDefn("AvatarDensity", "Density of an avatar. Changed on avatar recreation.",
354 60f,
355 (s,cf,p,v) => { AvatarDensity = cf.GetFloat(p, v); },
356 (s) => { return AvatarDensity; },
357 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarDensity=x;}, p, l, v); } ),
358 new ParameterDefn("AvatarRestitution", "Bouncyness. Changed on avatar recreation.",
359 0f,
360 (s,cf,p,v) => { AvatarRestitution = cf.GetFloat(p, v); },
361 (s) => { return AvatarRestitution; },
362 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarRestitution=x;}, p, l, v); } ),
363 new ParameterDefn("AvatarCapsuleWidth", "The distance between the sides of the avatar capsule",
364 0.6f,
365 (s,cf,p,v) => { AvatarCapsuleWidth = cf.GetFloat(p, v); },
366 (s) => { return AvatarCapsuleWidth; },
367 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleWidth=x;}, p, l, v); } ),
368 new ParameterDefn("AvatarCapsuleDepth", "The distance between the front and back of the avatar capsule",
369 0.45f,
370 (s,cf,p,v) => { AvatarCapsuleDepth = cf.GetFloat(p, v); },
371 (s) => { return AvatarCapsuleDepth; },
372 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleDepth=x;}, p, l, v); } ),
373 new ParameterDefn("AvatarCapsuleHeight", "Default height of space around avatar",
374 1.5f,
375 (s,cf,p,v) => { AvatarCapsuleHeight = cf.GetFloat(p, v); },
376 (s) => { return AvatarCapsuleHeight; },
377 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleHeight=x;}, p, l, v); } ),
378 new ParameterDefn("AvatarContactProcessingThreshold", "Distance from capsule to check for collisions",
379 0.1f,
380 (s,cf,p,v) => { AvatarContactProcessingThreshold = cf.GetFloat(p, v); },
381 (s) => { return AvatarContactProcessingThreshold; },
382 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarContactProcessingThreshold=x;}, p, l, v); } ),
383
384 new ParameterDefn("VehicleAngularDamping", "Factor to damp vehicle angular movement per second (0.0 - 1.0)",
385 0.95f,
386 (s,cf,p,v) => { VehicleAngularDamping = cf.GetFloat(p, v); },
387 (s) => { return VehicleAngularDamping; },
388 (s,p,l,v) => { VehicleAngularDamping = v; } ),
389
390 new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)",
391 0f,
392 (s,cf,p,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = cf.GetFloat(p, v); },
393 (s) => { return s.UnmanagedParams[0].maxPersistantManifoldPoolSize; },
394 (s,p,l,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = v; } ),
395 new ParameterDefn("MaxCollisionAlgorithmPoolSize", "Number of collisions pooled (0 means default of 4096)",
396 0f,
397 (s,cf,p,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = cf.GetFloat(p, v); },
398 (s) => { return s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize; },
399 (s,p,l,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = v; } ),
400 new ParameterDefn("ShouldDisableContactPoolDynamicAllocation", "Enable to allow large changes in object count",
401 ConfigurationParameters.numericFalse,
402 (s,cf,p,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
403 (s) => { return s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation; },
404 (s,p,l,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = v; } ),
405 new ParameterDefn("ShouldForceUpdateAllAabbs", "Enable to recomputer AABBs every simulator step",
406 ConfigurationParameters.numericFalse,
407 (s,cf,p,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
408 (s) => { return s.UnmanagedParams[0].shouldForceUpdateAllAabbs; },
409 (s,p,l,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = v; } ),
410 new ParameterDefn("ShouldRandomizeSolverOrder", "Enable for slightly better stacking interaction",
411 ConfigurationParameters.numericTrue,
412 (s,cf,p,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
413 (s) => { return s.UnmanagedParams[0].shouldRandomizeSolverOrder; },
414 (s,p,l,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = v; } ),
415 new ParameterDefn("ShouldSplitSimulationIslands", "Enable splitting active object scanning islands",
416 ConfigurationParameters.numericTrue,
417 (s,cf,p,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
418 (s) => { return s.UnmanagedParams[0].shouldSplitSimulationIslands; },
419 (s,p,l,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = v; } ),
420 new ParameterDefn("ShouldEnableFrictionCaching", "Enable friction computation caching",
421 ConfigurationParameters.numericFalse,
422 (s,cf,p,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
423 (s) => { return s.UnmanagedParams[0].shouldEnableFrictionCaching; },
424 (s,p,l,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = v; } ),
425 new ParameterDefn("NumberOfSolverIterations", "Number of internal iterations (0 means default)",
426 0f, // zero says use Bullet default
427 (s,cf,p,v) => { s.UnmanagedParams[0].numberOfSolverIterations = cf.GetFloat(p, v); },
428 (s) => { return s.UnmanagedParams[0].numberOfSolverIterations; },
429 (s,p,l,v) => { s.UnmanagedParams[0].numberOfSolverIterations = v; } ),
430
431 new ParameterDefn("LinksetImplementation", "Type of linkset implementation (0=Constraint, 1=Compound, 2=Manual)",
432 (float)BSLinkset.LinksetImplementation.Compound,
433 (s,cf,p,v) => { LinksetImplementation = cf.GetFloat(p,v); },
434 (s) => { return LinksetImplementation; },
435 (s,p,l,v) => { LinksetImplementation = v; } ),
436 new ParameterDefn("LinkConstraintUseFrameOffset", "For linksets built with constraints, enable frame offsetFor linksets built with constraints, enable frame offset.",
437 ConfigurationParameters.numericFalse,
438 (s,cf,p,v) => { LinkConstraintUseFrameOffset = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
439 (s) => { return LinkConstraintUseFrameOffset; },
440 (s,p,l,v) => { LinkConstraintUseFrameOffset = v; } ),
441 new ParameterDefn("LinkConstraintEnableTransMotor", "Whether to enable translational motor on linkset constraints",
442 ConfigurationParameters.numericTrue,
443 (s,cf,p,v) => { LinkConstraintEnableTransMotor = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
444 (s) => { return LinkConstraintEnableTransMotor; },
445 (s,p,l,v) => { LinkConstraintEnableTransMotor = v; } ),
446 new ParameterDefn("LinkConstraintTransMotorMaxVel", "Maximum velocity to be applied by translational motor in linkset constraints",
447 5.0f,
448 (s,cf,p,v) => { LinkConstraintTransMotorMaxVel = cf.GetFloat(p, v); },
449 (s) => { return LinkConstraintTransMotorMaxVel; },
450 (s,p,l,v) => { LinkConstraintTransMotorMaxVel = v; } ),
451 new ParameterDefn("LinkConstraintTransMotorMaxForce", "Maximum force to be applied by translational motor in linkset constraints",
452 0.1f,
453 (s,cf,p,v) => { LinkConstraintTransMotorMaxForce = cf.GetFloat(p, v); },
454 (s) => { return LinkConstraintTransMotorMaxForce; },
455 (s,p,l,v) => { LinkConstraintTransMotorMaxForce = v; } ),
456 new ParameterDefn("LinkConstraintCFM", "Amount constraint can be violated. 0=no violation, 1=infinite. Default=0.1",
457 0.1f,
458 (s,cf,p,v) => { LinkConstraintCFM = cf.GetFloat(p, v); },
459 (s) => { return LinkConstraintCFM; },
460 (s,p,l,v) => { LinkConstraintCFM = v; } ),
461 new ParameterDefn("LinkConstraintERP", "Amount constraint is corrected each tick. 0=none, 1=all. Default = 0.2",
462 0.1f,
463 (s,cf,p,v) => { LinkConstraintERP = cf.GetFloat(p, v); },
464 (s) => { return LinkConstraintERP; },
465 (s,p,l,v) => { LinkConstraintERP = v; } ),
466 new ParameterDefn("LinkConstraintSolverIterations", "Number of solver iterations when computing constraint. (0 = Bullet default)",
467 40,
468 (s,cf,p,v) => { LinkConstraintSolverIterations = cf.GetFloat(p, v); },
469 (s) => { return LinkConstraintSolverIterations; },
470 (s,p,l,v) => { LinkConstraintSolverIterations = v; } ),
471
472 new ParameterDefn("LogPhysicsStatisticsFrames", "Frames between outputting detailed phys stats. (0 is off)",
473 0f,
474 (s,cf,p,v) => { s.UnmanagedParams[0].physicsLoggingFrames = cf.GetInt(p, (int)v); },
475 (s) => { return (float)s.UnmanagedParams[0].physicsLoggingFrames; },
476 (s,p,l,v) => { s.UnmanagedParams[0].physicsLoggingFrames = (int)v; } ),
477 };
478
479 // Convert a boolean to our numeric true and false values
480 public static float NumericBool(bool b)
481 {
482 return (b ? ConfigurationParameters.numericTrue : ConfigurationParameters.numericFalse);
483 }
484
485 // Convert numeric true and false values to a boolean
486 public static bool BoolNumeric(float b)
487 {
488 return (b == ConfigurationParameters.numericTrue ? true : false);
489 }
490
491 // Search through the parameter definitions and return the matching
492 // ParameterDefn structure.
493 // Case does not matter as names are compared after converting to lower case.
494 // Returns 'false' if the parameter is not found.
495 internal static bool TryGetParameter(string paramName, out ParameterDefn defn)
496 {
497 bool ret = false;
498 ParameterDefn foundDefn = new ParameterDefn();
499 string pName = paramName.ToLower();
500
501 foreach (ParameterDefn parm in ParameterDefinitions)
502 {
503 if (pName == parm.name.ToLower())
504 {
505 foundDefn = parm;
506 ret = true;
507 break;
508 }
509 }
510 defn = foundDefn;
511 return ret;
512 }
513
514 // Pass through the settable parameters and set the default values
515 internal static void SetParameterDefaultValues(BSScene physicsScene)
516 {
517 foreach (ParameterDefn parm in ParameterDefinitions)
518 {
519 parm.setter(physicsScene, parm.name, PhysParameterEntry.APPLY_TO_NONE, parm.defaultValue);
520 }
521 }
522
523 // Get user set values out of the ini file.
524 internal static void SetParameterConfigurationValues(BSScene physicsScene, IConfig cfg)
525 {
526 foreach (ParameterDefn parm in ParameterDefinitions)
527 {
528 parm.userParam(physicsScene, cfg, parm.name, parm.defaultValue);
529 }
530 }
531
532 internal static PhysParameterEntry[] SettableParameters = new PhysParameterEntry[1];
533
534 // This creates an array in the correct format for returning the list of
535 // parameters. This is used by the 'list' option of the 'physics' command.
536 internal static void BuildParameterTable()
537 {
538 if (SettableParameters.Length < ParameterDefinitions.Length)
539 {
540 List<PhysParameterEntry> entries = new List<PhysParameterEntry>();
541 for (int ii = 0; ii < ParameterDefinitions.Length; ii++)
542 {
543 ParameterDefn pd = ParameterDefinitions[ii];
544 entries.Add(new PhysParameterEntry(pd.name, pd.desc));
545 }
546
547 // make the list in alphabetical order for estetic reasons
548 entries.Sort(delegate(PhysParameterEntry ppe1, PhysParameterEntry ppe2)
549 {
550 return ppe1.name.CompareTo(ppe2.name);
551 });
552
553 SettableParameters = entries.ToArray();
554 }
555 }
556
557
558}
559}