1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
|
/**
* @file llvopart.cpp
* @brief Viewer-object derived particle system.
*
* Copyright (c) 2001-2007, Linden Research, Inc.
*
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlife.com/developers/opensource/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at http://secondlife.com/developers/opensource/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
*/
#include "llviewerprecompiledheaders.h"
#include "llvopart.h"
#include "llfasttimer.h"
#include "message.h"
#include "llagent.h"
#include "lldrawable.h"
#include "llface.h"
#include "llsky.h"
#include "llviewercamera.h"
#include "llviewerimagelist.h"
#include "llviewerregion.h"
#include "pipeline.h"
const F32 MAX_PART_LIFETIME = 120.f;
extern U64 gFrameTime;
LLVOPart::LLVOPart(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp)
: LLViewerObject(id, pcode, regionp)
{
mParticlesDead = FALSE;
setNumTEs(1);
setDefaultValues();
mbCanSelect = FALSE; // users can't select particle systems
mNumLiveParticles = 0;
}
LLVOPart::~LLVOPart()
{
delete [] mParticleState;
mParticleState = NULL;
delete [] mDeadArr;
mDeadArr = NULL;
}
void LLVOPart::initClass()
{
}
U32 LLVOPart::processUpdateMessage(LLMessageSystem *mesgsys,
void **user_data,
U32 block_num,
const EObjectUpdateType update_type,
LLDataPacker *dp)
{
S32 dataSize;
U8 packed_psys_data[180];
// Do base class updates...
mTimeLastFrame = gFrameTime;
U32 retval = LLViewerObject::processUpdateMessage(mesgsys, user_data, block_num, update_type, dp);
if (update_type == OUT_TERSE_IMPROVED)
{
// Nothing else needs to be done for the terse message.
return retval;
}
dataSize = mesgsys->getSizeFast(_PREHASH_ObjectData, block_num, _PREHASH_Data);
if(dataSize == sizeof(LLPartInitData))
{
// Uncompressed particle. Is this used? JC
mesgsys->getBinaryDataFast(_PREHASH_ObjectData, _PREHASH_Data, &mInitSysData, dataSize, block_num);
if(mInitSysData.createMe)
{
if (mInitSysData.initialParticles >= mInitSysData.maxParticles)
{
mInitSysData.initialParticles = mInitSysData.maxParticles - 1;
}
setParticleParams(mInitSysData.bounce_b,
getPositionRegion().mV,
getRotation().mQ,
mInitSysData.maxParticles,
mInitSysData.mImageUuid,
mInitSysData.mFlags);
initializeParticlesAndConstraints(mInitSysData.initialParticles,
mInitSysData.diffEqAlpha,
mInitSysData.diffEqScale,
mInitSysData.scale_range,
mInitSysData.alpha_range,
mInitSysData.vel_offset,
mInitSysData.killPlaneZ,
mInitSysData.killPlaneNormal,
mInitSysData.bouncePlaneZ,
mInitSysData.bouncePlaneNormal,
mInitSysData.spawnRange,
mInitSysData.spawnFrequency,
mInitSysData.spawnFreqencyRange,
mInitSysData.spawnDirection,
mInitSysData.spawnDirectionRange,
mInitSysData.spawnVelocity,
mInitSysData.spawnVelocityRange,
mInitSysData.speedLimit,
mInitSysData.windWeight,
mInitSysData.currentGravity,
mInitSysData.gravityWeight,
mInitSysData.globalLifetime,
mInitSysData.individualLifetime,
mInitSysData.individualLifetimeRange,
mInitSysData.alphaDecay,
mInitSysData.scaleDecay,
mInitSysData.distanceDeath,
mInitSysData.dampMotionFactor,
mInitSysData.windDiffusionFactor);
setParticlesDistFadeout(mInitSysData.mDistBeginFadeout,
mInitSysData.mDistEndFadeout);
}
}
else if(dataSize > 4)
{
mesgsys->getBinaryDataFast(_PREHASH_ObjectData, _PREHASH_Data, packed_psys_data, dataSize, block_num);
LLPartSysCompressedPacket CompObjectData;
U32 sizeUsed;
CompObjectData.fromUnsignedBytes(packed_psys_data, dataSize);
CompObjectData.toLLPartInitData(&mInitSysData, &sizeUsed);
if(mInitSysData.createMe)
{
if (mInitSysData.initialParticles >= mInitSysData.maxParticles)
{
mInitSysData.initialParticles = mInitSysData.maxParticles - 1;
}
setParticleParams(mInitSysData.bounce_b,
getPositionRegion().mV,
getRotation().mQ,
mInitSysData.maxParticles,
mInitSysData.mImageUuid,
mInitSysData.mFlags);
initializeParticlesAndConstraints(mInitSysData.initialParticles,
mInitSysData.diffEqAlpha,
mInitSysData.diffEqScale,
mInitSysData.scale_range,
mInitSysData.alpha_range,
mInitSysData.vel_offset,
mInitSysData.killPlaneZ,
mInitSysData.killPlaneNormal,
mInitSysData.bouncePlaneZ,
mInitSysData.bouncePlaneNormal,
mInitSysData.spawnRange,
mInitSysData.spawnFrequency,
mInitSysData.spawnFreqencyRange,
mInitSysData.spawnDirection,
mInitSysData.spawnDirectionRange,
mInitSysData.spawnVelocity,
mInitSysData.spawnVelocityRange,
mInitSysData.speedLimit,
mInitSysData.windWeight,
mInitSysData.currentGravity,
mInitSysData.gravityWeight,
mInitSysData.globalLifetime,
mInitSysData.individualLifetime,
mInitSysData.individualLifetimeRange,
mInitSysData.alphaDecay,
mInitSysData.scaleDecay,
mInitSysData.distanceDeath,
mInitSysData.dampMotionFactor,
mInitSysData.windDiffusionFactor);
setParticlesDistFadeout(mInitSysData.mDistBeginFadeout,
mInitSysData.mDistEndFadeout);
}
}
translateParticlesTo(getPositionRegion());
rotateParticlesTo(getRotation());
return retval;
}
BOOL LLVOPart::isActive() const
{
return TRUE;
}
BOOL LLVOPart::idleUpdate(LLAgent &agent, LLWorld &world, const F64 &time)
{
if (mDeathTimer.getElapsedTimeF32() > MAX_PART_LIFETIME)
{
//llinfos << "LLVOPart dead due to extended lifetime" << llendl;
return FALSE;
}
if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_PARTICLES))
{
if (!mDrawable)
{
llwarns << "LLVOPart idle with no drawable!" << llendl;
return FALSE;
}
// I don't know why you'd want to do ANYTHING with invisible particles. ??? - Doug
if(mFlags[PART_SYS_INVISIBLE_BYTE] & PART_SYS_INVISIBLE_BIT)
{
llwarns << "Invisible particle, killing" << llendl;
return FALSE;
}
F64 delta_time = ((S64)(gFrameTime - mTimeLastFrame))*(1.0/((F64)USEC_PER_SEC));
mParticlesDead = !iterateParticles((F32)delta_time);
if(mParticlesDead)
{
return FALSE;
}
translateParticlesTo(getPositionRegion());
mTimeLastFrame = gFrameTime;
setChanged(GEOMETRY);
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_VOLUME, TRUE);
}
LLViewerObject::idleUpdate(agent, world, time);
return TRUE;
}
void LLVOPart::updateTextures(LLAgent &agent)
{
if (getTEImage(0))
{
LLVector3 relative_position = getPositionAgent() - agent.getCameraPositionAgent();
F32 dot_product = relative_position * agent.getFrameAgent().getAtAxis();
F32 cos_angle = dot_product / relative_position.magVec();
if (cos_angle > 1.f)
{
cos_angle = 1.f;
}
getTEImage(0)->addTextureStats(mPixelArea, 1.f, cos_angle);
}
}
LLDrawable* LLVOPart::createDrawable(LLPipeline *pipeline)
{
pipeline->allocDrawable(this);
mDrawable->setLit(FALSE);
mDrawable->setRenderType(LLPipeline::RENDER_TYPE_PARTICLES);
LLDrawPool *pool = gPipeline.getPool(LLDrawPool::POOL_ALPHA);
mDrawable->setNumFaces(mNumPart, pool, getTEImage(0));
return mDrawable;
}
BOOL LLVOPart::updateGeometry(LLDrawable *drawable)
{
if (isChanged(LLPrimitive::GEOMETRY))
{
LLFace *face;
///////////////////////
//
// Allocate/deallocate faces based on number of particles we need to render
//
//
if (drawable->getNumFaces())
{
face = drawable->getFace(0);
drawable->setNumFaces(mNumPart, face->getPool(), getTEImage(0));
}
else
{
LLDrawPool *pool = gPipeline.getPool(LLDrawPool::POOL_ALPHA);
drawable->setNumFaces(mNumPart, pool, getTEImage(0));
}
LLVector3 light_norm;
if (gSky.sunUp())
{
light_norm = -gSky.getSunDirection();
}
else
{
light_norm = -gSky.getMoonDirection();
}
light_norm.normVec();
// Figure out the lighting for the particle system.
LLColor4 color(1.f,1.f,1.f,1.f);
LLVector3 at, left, up;
at = gCamera->getAtAxis();
left = gCamera->getLeftAxis();
up = gCamera->getUpAxis();
LLVector3 v_agent[4];
LLMatrix3 cached_oo;
cached_oo.setRot(mOriginOrientation);
U32 i;
U32 cur_face = 0;
for (i = 0; i < mNumPart; i++)
{
face = drawable->getFace(cur_face++);
if (0 != mDeadArr[i])
{
face->setSize(0);
continue; // if this particle is dead, don't render it
}
LLStrider<LLVector3> verticesp;
LLStrider<LLVector3> normalsp;
LLStrider<LLVector2> texCoordsp;
U32 *indicesp;
S32 index_offset;
face->setPrimType(LLTriangles);
face->setSize(4, 6);
index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
if (-1 == index_offset)
{
llerrs << "Error allocating geometry!" << llendl;
}
LLVector3 position_agent;
LLVector3 part_pos_local;
F32 alpha = 1.0f;
F32 scale = 1.0f; // elements of the particle system have random scales too! -- MDS
position_agent = mSpawnPoint + getRegion()->getOriginAgent();
if(mFlags[PART_SYS_FOLLOW_VEL_BYTE] & PART_SYS_FOLLOW_VEL_BIT)
{
part_pos_local.mV[0] = mParticleState[i].position[0]*cached_oo.mMatrix[0][0]+
mParticleState[i].position[1]*cached_oo.mMatrix[0][1]+
mParticleState[i].position[2]*cached_oo.mMatrix[0][2];
part_pos_local.mV[1] = mParticleState[i].position[0]*cached_oo.mMatrix[1][0]+
mParticleState[i].position[1]*cached_oo.mMatrix[1][1]+
mParticleState[i].position[2]*cached_oo.mMatrix[1][2];
part_pos_local.mV[2] = mParticleState[i].position[0]*cached_oo.mMatrix[2][0]+
mParticleState[i].position[1]*cached_oo.mMatrix[2][1]+
mParticleState[i].position[2]*cached_oo.mMatrix[2][2];
scale = mParticleState[i].scale[0];
alpha = mParticleState[i].alpha[0];
//26 September 2001 - alter alpha and scale as approach death
//j = death_offset_i(i);
scale *= ((1.f - mScaleDecay) + (mScaleDecay * mParticleState[i].deathOffset));
alpha *= ((1.f - mAlphaDecay) + (mAlphaDecay * mParticleState[i].deathOffset));
up.mV[0] = -mParticleState[i].position[0];
up.mV[1] = -mParticleState[i].position[1];
up.mV[2] = -mParticleState[i].position[2]; // set "up" to trail velocity
if(up.magVec() == 0.0f) // alleviate potential divide by zero bug
{
up.mV[2] += 1.0f;
}
up.normVec();
up = up - (up*at) * at;
left = up % at;
up *= scale * 0.5f;
left *= scale * 0.5f;
position_agent += part_pos_local;
face->mCenterAgent = position_agent;
v_agent[0] = position_agent + left + up;
v_agent[1] = position_agent - left + up;
v_agent[2] = position_agent - left - up;
v_agent[3] = position_agent + left - up;
*(texCoordsp) = LLVector2(0.f, 1.f);
texCoordsp++;
*(texCoordsp) = LLVector2(0.f, 0.f);
texCoordsp++;
*(texCoordsp) = LLVector2(1.f, 1.f);
texCoordsp++;
*(texCoordsp) = LLVector2(1.f, 0.f);
texCoordsp++;
}
else
{
part_pos_local.mV[0] = mParticleState[i].position[0]*cached_oo.mMatrix[0][0]+
mParticleState[i].position[1]*cached_oo.mMatrix[0][1]+
mParticleState[i].position[2]*cached_oo.mMatrix[0][2];
part_pos_local.mV[1] = mParticleState[i].position[0]*cached_oo.mMatrix[1][0]+
mParticleState[i].position[1]*cached_oo.mMatrix[1][1]+
mParticleState[i].position[2]*cached_oo.mMatrix[1][2];
part_pos_local.mV[2] = mParticleState[i].position[0]*cached_oo.mMatrix[2][0]+
mParticleState[i].position[1]*cached_oo.mMatrix[2][1]+
mParticleState[i].position[2]*cached_oo.mMatrix[2][2];
scale = mParticleState[i].scale[0];
alpha = mParticleState[i].alpha[0];
//26 September 2001 - alter alpha and scale as approach death
scale *= ((1.f - mScaleDecay) + (mScaleDecay * mParticleState[i].deathOffset));
alpha *= ((1.f - mAlphaDecay) + (mAlphaDecay * mParticleState[i].deathOffset));
LLVector3 part_up = scale * 0.5f * up;
LLVector3 part_left = scale * 0.5f * left;
position_agent += part_pos_local;
face->mCenterAgent = position_agent;
v_agent[0] = position_agent + part_left + part_up;
v_agent[1] = position_agent - part_left + part_up;
v_agent[2] = position_agent - part_left - part_up;
v_agent[3] = position_agent + part_left - part_up;
*(texCoordsp) = LLVector2(0.f, 1.f);
texCoordsp++;
*(texCoordsp) = LLVector2(0.f, 0.f);
texCoordsp++;
*(texCoordsp) = LLVector2(1.f, 1.f);
texCoordsp++;
*(texCoordsp) = LLVector2(1.f, 0.f);
texCoordsp++;
}
color.mV[3] = alpha;
face->setFaceColor(color);
*(verticesp++) = v_agent[1];
*(verticesp++) = v_agent[2];
*(verticesp++) = v_agent[0];
*(verticesp++) = v_agent[3];
*(indicesp++) = index_offset + 0;
*(indicesp++) = index_offset + 2;
*(indicesp++) = index_offset + 1;
*(indicesp++) = index_offset + 1;
*(indicesp++) = index_offset + 2;
*(indicesp++) = index_offset + 3;
}
LLPipeline::sCompiles++;
}
return TRUE;
}
void LLVOPart::setDefaultValues()
{
U32 i;
// initialize to safe but meaningless values : no other constructors
mParticleState = NULL;
mNumPart = 0;
mAlpha = 1.0f;
mLastTime = mCurrTime = 0.0f;
//mOriginPosition[0] = mOriginPosition[1] = mOriginPosition[2] = 0.0f;
mOriginOrientation.setQuatInit(0.0f, 0.0f, 0.0f, 1.0f);
mDeadArr = NULL;
mKillPlaneNormal.mV[VX] = 0.0f;//Straight up - needs to be unit
mKillPlaneNormal.mV[VY] = 0.0f;
mKillPlaneNormal.mV[VZ] = 1.0f;
mBouncePlaneNormal.mV[VX] = 0.0f;//Straight up - needs to be unit
mBouncePlaneNormal.mV[VY] = 0.0f;
mBouncePlaneNormal.mV[VZ] = 1.0f;
mSpawnPoint.mV[VX] = 0.0f;
mSpawnPoint.mV[VY] = 0.0f;
mSpawnPoint.mV[VZ] = 0.0f;
mSpawnDirection.mV[VX] = 0.0f;//Straight up - needs to be unit
mSpawnDirection.mV[VY] = 0.0f;
mSpawnDirection.mV[VZ] = 1.0f;
mCurrentWind.mV[VX] = 0.0f;
mCurrentWind.mV[VY] = 0.0f;
mCurrentWind.mV[VZ] = 0.0f;
mCurrentWindMagnitude = 0.0f;
mCurrentWindMagnitudeSquareRoot = 0.0f;
mCurrentGravity.mV[VX] = 0.0f;//Straight down
mCurrentGravity.mV[VY] = 0.0f;
mCurrentGravity.mV[VZ] = -9.81f;
mVelocityOffset.mV[VX] = 0.0f;
mVelocityOffset.mV[VY] = 0.0f;
mVelocityOffset.mV[VZ] = 0.0f;
for(i = 0; i < PART_SYS_BYTES_OF_FLAGS; i++)
{
mFlags[i] = 0x00;
}
//set default action and kill flags
//These defaults are for an explosion - a short lived set of debris affected by gravity.
//Action flags default to PART_SYS_AFFECTED_BY_WIND + PART_SYS_AFFECTED_BY_GRAVITY + PART_SYS_DISTANCE_DEATH
mFlags[PART_SYS_ACTION_BYTE] = PART_SYS_AFFECTED_BY_WIND | PART_SYS_AFFECTED_BY_GRAVITY | PART_SYS_DISTANCE_DEATH;
mFlags[PART_SYS_KILL_BYTE] = PART_SYS_DISTANCE_DEATH + PART_SYS_TIME_DEATH;
for (i = 0; i < 3; i++)
{
mDiffEqAlpha[i] = 0.0f;
mDiffEqScale[i] = 0.0f;
}
mScale_range[0] = 1.00f;
mScale_range[1] = 5.00f;
mScale_range[2] = mScale_range[3] = 0.0f;
mAlpha_range[0] = mAlpha_range[1] = 1.0f;
mAlpha_range[2] = mAlpha_range[3] = 0.0f;
mKillPlaneZ = 0.0f;
mBouncePlaneZ = 0.0f;
mSpawnRange = 1.0f;
mSpawnFrequency = 0.0f;
mSpawnFrequencyRange = 0.0f;
mSpawnDirectionRange = 1.0f; //everywhere
mSpawnVelocity = 0.75f;
mSpawnVelocityRange = 0.25f; //velocity +/- 0.25
mSpeedLimitSquared = 1.0f;
mWindWeight = 0.5f; //0.0f means looks like a heavy object (if gravity is on), 1.0f means light and fluffy
mGravityWeight = 0.5f; //0.0f means boyed by air, 1.0f means it's a lead weight
mGlobalLifetime = 0.0f; //Arbitrary, but default is no global die, so doesn't matter
mOriginalGlobalLifetime = 0.0f;
mIndividualLifetime = 5.0f;
if (mIndividualLifetime > 0.0f)
{
mOneOverIndividualLifetime = 1.0f / mIndividualLifetime;
}
else
{
mOneOverIndividualLifetime = 0.0f;
}
mIndividualLifetimeRange = 1.0f; //Particles last 5 secs +/- 1
mAlphaDecay = 1.0f; //normal alpha fadeout
mScaleDecay = 0.0f; //no scale decay
mDistanceDeathSquared = 10.0f; //die if hit unit radius
if (mDistanceDeathSquared > 0.0f)
{
mOneOverDistanceDeathSquared = 1.0f / mDistanceDeathSquared;
}
else
{
mOneOverDistanceDeathSquared = 0.0f;
}
mDampMotionFactor = 0.0f;
mWindDiffusionFactor.mV[VX] = 0.0f;
mWindDiffusionFactor.mV[VY] = 0.0f;
mWindDiffusionFactor.mV[VZ] = 0.0f;
mUpdatePhysicsInputsTime = mCurrTime;
}
U8 LLVOPart::setParticlesDistFadeout(F32 beginFadeout, F32 endFadeout)
{
// This doesn't do anything...
return 1;
}
unsigned char LLVOPart::setParticleParams(F32 bounce_b,
const F32 o_pos[3],
const F32 o_or[3],
U32 n,
LLUUID image_uuid,
U8 flags[PART_SYS_BYTES_OF_FLAGS])
{
mBounceBehavior = bounce_b;
mSpawnPoint.setVec(o_pos[0], o_pos[1], o_pos[2]);
mOriginOrientation.setQuatInit(o_or[0], o_or[1], o_or[2],
(F32)sqrt(1.0f - o_or[0]*o_or[0] - o_or[1]*o_or[1] - o_or[2]*o_or[2]));
if(mNumPart < n )
{
// this crazy logic is just in case "setParams" gets called multiple times
if(mNumPart != 0)
{
if(mParticleState != NULL)
{
delete [] mParticleState;
}
if(mDeadArr != NULL)
{
delete [] mDeadArr;
}
mParticleState = NULL;
mDeadArr = NULL;
mNumPart = 0;
}
mNumPart = n;
//state_arr = new F32[n*FLOATS_PER_PARTICLE];
mParticleState = new OneParticleData[n];
mDeadArr = new U8[n];
memset(mDeadArr,1,n); // initialize these to 1;
}
else
{
mNumPart = n;
}
setTETexture(0, image_uuid);
for(U32 i = 0; i< PART_SYS_BYTES_OF_FLAGS; i++)
{
mFlags[i] = flags[i];
}
return '\0'; // success
}
void LLVOPart::setParticleCountdownStateWaitingDead(const U32 particleNumber)
{
F32 frequency;
frequency = mSpawnFrequency;
// **** Hack! remainingLifetime counts up from negative, to avoid subtracts! - djs
mParticleState[particleNumber].remainingLifetime = -(((mSpawnFrequencyRange * 2.0f)*frand(1.f)) + frequency - mSpawnFrequencyRange);
}
//Can override later
void LLVOPart::spawnParticle(const U32 particleNumber)
{
F32 randomUnitValue;
LLVector3 direction;
if (particleNumber >= mNumPart)
{
llinfos << "Trying to spawn particle beyond initialized particles! " << particleNumber << " : " << mNumPart << llendl;
return;
}
mDeadArr[particleNumber] = 0; // not dead yet!
//j = pos_offset_i(particleNumber);
mParticleState[particleNumber].position[0] = 2.f*mSpawnRange*(frand(1.f)) - mSpawnRange;
mParticleState[particleNumber].position[1] = 2.f*mSpawnRange*(frand(1.f)) - mSpawnRange;
mParticleState[particleNumber].position[2] = 2.f*mSpawnRange*(frand(1.f)) - mSpawnRange;
//mParticleStateArray[j] = (pos_ranges[1] - pos_ranges[0])*(F32)rand()/((F32)RAND_MAX) + pos_ranges[0];
//j++;
//mParticleStateArray[j] = (pos_ranges[3] - pos_ranges[2])*(F32)rand()/((F32)RAND_MAX) + pos_ranges[2];
//j++;
//mParticleStateArray[j] = (pos_ranges[5] - pos_ranges[4])*(F32)rand()/((F32)RAND_MAX) + pos_ranges[4];
//Create the ranged direction vector first - then rotate by the actual direction and then scale
//Creating a random value about 1,0,0
//1. pick a random angle YZ orientation through full circle.
randomUnitValue = (frand(1.f));
direction.mV[VY] = sinf(randomUnitValue * 2.0 * F_PI);
direction.mV[VZ] = cosf(randomUnitValue * 2.0 * F_PI);
//2. pick a rotation to this angle to project into z which is scaled by mSpawnDirectionRange
randomUnitValue = (frand(1.f));
randomUnitValue *= mSpawnDirectionRange;
direction.mV[VY] = direction.mV[VY] * sinf(randomUnitValue * F_PI);
direction.mV[VZ] = direction.mV[VZ] * sinf(randomUnitValue * F_PI);
direction.mV[VX] = cosf(randomUnitValue * F_PI); //works as still dealing with a unit vector
//3.To rotate into the spawn direction coord system, derive a yaw and pitch (roll doesnt matter)
//from the offset between the unit vector 1,0,0 and random direction.
{F32 length;
//TODO - math behind this may be incorrect
//Assume the initial axis is +ve x
//derive pitch using the XZ or XY components.
//derive yaw using YZ components.
length = (mSpawnDirection.mV[VY]*mSpawnDirection.mV[VY]) +
(mSpawnDirection.mV[VZ]*mSpawnDirection.mV[VZ]);
if (length > 0.0f)
{//Only happens when spawn a particle, so can afford some heavy math.
F32 xYaw, yYaw, xPitch, yPitch;
LLVector3 tempResult, tempResult2;
//Pitch is the XZ component (but if Z is 0 and Y is not, switch)
tempResult.setVec(mSpawnDirection.mV[VX], mSpawnDirection.mV[VY], mSpawnDirection.mV[VZ]);
if (0.0f != mSpawnDirection.mV[VZ])
{
length = sqrtf((mSpawnDirection.mV[VX]*mSpawnDirection.mV[VX]) +
(mSpawnDirection.mV[VZ]*mSpawnDirection.mV[VZ]));
if (length > 0.0f)
{
xPitch = tempResult.mV[VX] / length;
yPitch = -tempResult.mV[VZ] / length;
}
else
{//length is 0, so no x component, so pitch must be PI/2
xPitch = 0.0f;
yPitch = 1.0f;
}
//To obtain yaw, remove pitch from the direction vector by inverse rotation (negate the yPitch)
tempResult2.mV[VX] = (tempResult.mV[VX] * xPitch) + (tempResult.mV[VZ] * (-yPitch));
tempResult2.mV[VY] = tempResult.mV[VY];
tempResult2.mV[VZ] = (tempResult.mV[VZ] * xPitch) - (tempResult.mV[VX] * (-yPitch));
}
else
{//Need XY, because if XZ is zero there is no pitch, and yaw may not pick up the discrepancy.
//This also avoids roll, so less math.
length = sqrtf((mSpawnDirection.mV[VX]*mSpawnDirection.mV[VX]) +
(mSpawnDirection.mV[VY]*mSpawnDirection.mV[VY]));
if (length > 0.0f)
{
xPitch = tempResult.mV[VX] / length;
yPitch = -tempResult.mV[VY] / length;
}
else
{//length is 0, so no x component, so pitch must be PI/2
xPitch = 0.0f;
yPitch = 1.0f;
}
//To obtain yaw, remove pitch from the direction vector by inverse rotation (negate the yPitch)
tempResult2.mV[VX] = (tempResult.mV[VX] * xPitch) + (tempResult.mV[VY] * (-yPitch));
tempResult2.mV[VY] = (tempResult.mV[VY] * xPitch) - (tempResult.mV[VX] * (-yPitch));
tempResult2.mV[VZ] = tempResult.mV[VZ];
}
//Yaw is the YZ component
length = sqrtf((tempResult2.mV[VZ]*tempResult2.mV[VZ]) +
(tempResult2.mV[VY]*tempResult2.mV[VY]));
if (length > 0.0f)
{
xYaw = tempResult2.mV[VZ] / length;
yYaw = tempResult2.mV[VY] / length;
}
else
{
xYaw = 1.0f;
yYaw = 0.0f;
}
//Now apply the rotations to the actual data in the same order as derived above (pitch first)
tempResult.setVec(direction.mV[VX], direction.mV[VY], direction.mV[VZ]);
//Remember which axis pitch was on, as need to apply in the same manner here for consistency.
if (0.0f != mSpawnDirection.mV[VZ])
{
tempResult2.mV[VX] = (tempResult.mV[VX] * xPitch) + (tempResult.mV[VZ] * yPitch);
tempResult2.mV[VY] = tempResult.mV[VY];
tempResult2.mV[VZ] = (tempResult.mV[VZ] * xPitch) - (tempResult.mV[VX] * yPitch);
}
else
{
tempResult2.mV[VX] = (tempResult.mV[VX] * xPitch) + (tempResult.mV[VY] * yPitch);
tempResult2.mV[VY] = (tempResult.mV[VY] * xPitch) - (tempResult.mV[VX] * yPitch);
tempResult2.mV[VZ] = tempResult.mV[VZ];
}
direction.mV[VX] = tempResult2.mV[VX];
direction.mV[VY] = (tempResult2.mV[VY] * xYaw) + (tempResult2.mV[VZ] * yYaw);
direction.mV[VZ] = (tempResult2.mV[VZ] * xYaw) - (tempResult2.mV[VY] * yYaw);
}
else
{//The is no YZ component, so we a pointing straight along X axis (default) & therefore no rotation
//However, direction may be reversed
if (mSpawnDirection.mV[VX] < 0.0f)
{
direction.mV[VX] = -direction.mV[VX];
direction.mV[VZ] = -direction.mV[VZ];
}
}
}
//4. scale the vector by a random scale by mSpawnVelocityRange and offset by mSpawnVelocity
randomUnitValue = (frand(1.f));
randomUnitValue = (randomUnitValue * mSpawnVelocityRange) + mSpawnVelocity;
mParticleState[particleNumber].velocity[0] = direction.mV[VX] * randomUnitValue;
mParticleState[particleNumber].velocity[1] = direction.mV[VY] * randomUnitValue;
mParticleState[particleNumber].velocity[2] = direction.mV[VZ] * randomUnitValue;
//add in velocity offset to match what spawned these particles
mParticleState[particleNumber].velocity[0] += mVelocityOffset.mV[VX];
mParticleState[particleNumber].velocity[1] += mVelocityOffset.mV[VY];
mParticleState[particleNumber].velocity[2] += mVelocityOffset.mV[VZ];
mParticleState[particleNumber].acceleration[0] = 0.0f;
mParticleState[particleNumber].acceleration[1] = 0.0f;
mParticleState[particleNumber].acceleration[2] = 0.0f;
mParticleState[particleNumber].scale[0] = (mScale_range[1] - mScale_range[0])*frand(1.f) + mScale_range[0];
mParticleState[particleNumber].scale[1] = (mScale_range[3] - mScale_range[2])*frand(1.f) + mScale_range[2];
mParticleState[particleNumber].scale[2] = 0.0f;
mParticleState[particleNumber].alpha[0] = (mAlpha_range[1] - mAlpha_range[0])*frand(1.f) + mAlpha_range[0];
mParticleState[particleNumber].alpha[1] = (mAlpha_range[3] - mAlpha_range[2])*frand(1.f) + mAlpha_range[2];
mParticleState[particleNumber].alpha[2] = 0.0f;
// **** Hack! remainingLifetime counts up from negative, to avoid subtracts! - djs
mParticleState[particleNumber].remainingLifetime = -((mIndividualLifetimeRange*2.0f)*frand(1.f) + mIndividualLifetime - mIndividualLifetimeRange);
//rest of the state - 0 for now
mParticleState[particleNumber].deathOffset = 0.0f;
mParticleState[particleNumber].localWind[0] = 0.0f;
mParticleState[particleNumber].localWind[1] = 0.0f;
mParticleState[particleNumber].localWind[2] = 0.0f;
}
//Can override later
void LLVOPart::onParticleBounce(const U32 particleNumber)
{
mParticleState[particleNumber].velocity[0] += - (1.0f + mBounceBehavior) * mBouncePlaneNormal.mV[0] * mParticleState[particleNumber].velocity[0];
mParticleState[particleNumber].velocity[1] += - (1.0f + mBounceBehavior) * mBouncePlaneNormal.mV[1] * mParticleState[particleNumber].velocity[1];
mParticleState[particleNumber].velocity[2] += - (1.0f + mBounceBehavior) * mBouncePlaneNormal.mV[2] * mParticleState[particleNumber].velocity[2];
//Need to offset particle so above the plane, so it doesn't oscillate!
if (mParticleState[particleNumber].position[2] < mBouncePlaneZ)
{
mParticleState[particleNumber].position[2] = mBouncePlaneZ;
}
}
unsigned char LLVOPart::initializeParticlesAndConstraints(U32 initialParticles,
F32 diffEqAlpha[3],
F32 diffEqScale[3],
F32 scale_ranges[4],
F32 alpha_ranges[4],
F32 velocityOffset[3],
F32 killPlaneZ,
F32 killPlaneNormal[3],
F32 bouncePlaneZ,
F32 bouncePlaneNormal[3],
F32 spawnRange,
F32 spawnFrequency,
F32 spawnFrequencyRange,
F32 spawnDirection[3],
F32 spawnDirectionRange,
F32 spawnVelocity,
F32 spawnVelocityRange,
F32 speedLimit,
F32 windWeight,
F32 currentGravity[3],
F32 gravityWeight,
F32 globalLifetime,
F32 individualLifetime,
F32 individualLifetimeRange,
F32 alphaDecay,
F32 scaleDecay,
F32 distanceDeath,
F32 dampMotionFactor,
F32 windDiffusionFactor[3])
{
// initializes particles randomly within these ranges
// scale ranges and alpha ranges contain initial conditions plus rates of change
// of initial conditions My naming is incosistent (passing alpha derivatives with alpha
// values), but this class is wrapped by another one, and this function is called only once
U32 i;
for (i = 0; i < 3; i++)
{
mDiffEqAlpha[i] = diffEqAlpha[i];
mDiffEqScale[i] = diffEqScale[i];
}
//First - store the initial conditions
for (i = 0; i < 4; i++)
{
mScale_range[i] = scale_ranges[i];
mAlpha_range[i] = alpha_ranges[i];
}
mVelocityOffset.setVec(velocityOffset[0], velocityOffset[1], velocityOffset[2]);
mKillPlaneZ = killPlaneZ;
mKillPlaneNormal.setVec(killPlaneNormal[0], killPlaneNormal[1], killPlaneNormal[2]);
mKillPlaneNormal.normVec();
mBouncePlaneZ = bouncePlaneZ;
mBouncePlaneNormal.setVec(bouncePlaneNormal[0], bouncePlaneNormal[1], bouncePlaneNormal[2]);
mBouncePlaneNormal.normVec();
mSpawnRange = spawnRange;
mSpawnFrequency = spawnFrequency;
mSpawnFrequencyRange = spawnFrequencyRange;
mSpawnDirection.setVec(spawnDirection[0], spawnDirection[1], spawnDirection[2]);
mSpawnDirection.normVec();
mSpawnDirectionRange = spawnDirectionRange;
mSpawnVelocity = spawnVelocity;
mSpawnVelocityRange = spawnVelocityRange;
mSpeedLimitSquared = speedLimit * speedLimit;
if (mSpeedLimitSquared < 0.0000001f)
{
mSpeedLimitSquared = 0.0000001f; //speed must be finite +ve to avoid divide by zero
}
mWindWeight = windWeight;
mCurrentGravity.setVec(currentGravity[0], currentGravity[1], currentGravity[2]);
mGravityWeight = gravityWeight;
mGlobalLifetime = globalLifetime;
mOriginalGlobalLifetime = mGlobalLifetime;
mIndividualLifetime = individualLifetime;
if (mIndividualLifetime > 0.0f)
{
mOneOverIndividualLifetime = 1.0f / mIndividualLifetime;
}
else
{
mOneOverIndividualLifetime = 0.0f;
}
mIndividualLifetimeRange = individualLifetimeRange;
mAlphaDecay = alphaDecay;
mScaleDecay = scaleDecay;
mDistanceDeathSquared = distanceDeath * distanceDeath;
if (mDistanceDeathSquared > 0.0f)
{
mOneOverDistanceDeathSquared = 1.0f / mDistanceDeathSquared;
}
else
{
mOneOverDistanceDeathSquared = 0.0f;
}
mDampMotionFactor = dampMotionFactor;
mWindDiffusionFactor.setVec(windDiffusionFactor[0], windDiffusionFactor[1], windDiffusionFactor[2]);
//Scale the values down a lot, as can expand sprites incredibly fast
mWindDiffusionFactor *= 0.02f;
if (mWindDiffusionFactor.mV[VX] > 0.02f)
{
mWindDiffusionFactor.mV[VX] = 0.02f;
}
if (mWindDiffusionFactor.mV[VY] > 0.02f)
{
mWindDiffusionFactor.mV[VY] = 0.02f;
}
if (mWindDiffusionFactor.mV[VZ] > 0.02f)
{
mWindDiffusionFactor.mV[VZ] = 0.02f;
}
//llinfos << "Made a particle system" << llendl;
for(i = 0; i < initialParticles; i++)
{
spawnParticle(i);
}
for(i = initialParticles; i < mNumPart; i++)
{
//create initial conditions - dead waiting to live timer
setParticleCountdownStateWaitingDead(i);
}
return '\0'; // success
}
U8 LLVOPart::iterateParticles(F32 deltaT)
{
const F32 PART_SYS_UPDATE_PHYSICS_INPUTS_TIME = 0.2f; //How many seconds between querying wind force on a particle
U32 i; //, pos_off, vel_off, scale_off, alpha_off, lifetime_off, death_off, local_wind_off;
F32 weightedDeathSum;
U8 any_leftQ = 0;
F32 windWeightDT = mWindWeight*deltaT;
F32 gravityWeightDT = mGravityWeight*deltaT;
mLastTime = mCurrTime;
mCurrTime += deltaT;
if ((mCurrTime - mUpdatePhysicsInputsTime) > PART_SYS_UPDATE_PHYSICS_INPUTS_TIME)
{
// If needed, obtain latest wind for the whole system
mCurrentWind = mRegionp->mWind.getVelocity(getPositionRegion());
mCurrentWindMagnitude = sqrt((mCurrentWind.mV[VX] * mCurrentWind.mV[VX]) +
(mCurrentWind.mV[VY] * mCurrentWind.mV[VY]) +
(mCurrentWind.mV[VZ] * mCurrentWind.mV[VZ]));
//don't know a max, so just make up a reasonably large value for now and cap.
mCurrentWindMagnitude = mCurrentWindMagnitude * 0.05f;
if (mCurrentWindMagnitude > 1.0f)
{
mCurrentWindMagnitude = 1.0f;
}
mCurrentWindMagnitudeSquareRoot = sqrtf(mCurrentWindMagnitude);
}
//TO DO - LOD algorithm (as with display??)
for(i = 0; i < mNumPart; i++)
{
//lifetime_off = remaining_lifetime_offset_i(i);
if(0 != mDeadArr[i])
{
//test for spawns amongst the dead as follows
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_SPAWN)
{
// **** Hack! remainingLifetime counts up from negative, to avoid subtracts! - djs
//if die below and spawn flag set, set mParticleState[i].remainingLifetime to a respawn random time
//based on mSpawnFrequency and mSpawnFrequencyRange
//in this section, if spawn flag set, count down - deltaT. If time is negative, call Spawn method, else continue
mParticleState[i].remainingLifetime += deltaT;
if (mParticleState[i].remainingLifetime > 0.0f)
{
spawnParticle(i);
}
}
if(0 != mDeadArr[i])
{
continue; // stop animating dead particles -- else they might come back alive!
// since we're not alive, do nothing to "any_leftQ"
}
}
//New way - apply external forces to each particle and then update
// position at ....
mParticleState[i].position[0] += mParticleState[i].velocity[0]*deltaT; // x position
mParticleState[i].position[1] += mParticleState[i].velocity[1]*deltaT; // y position
mParticleState[i].position[2] += mParticleState[i].velocity[2]*deltaT; // z position
//then apply force if required
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_AFFECTED_BY_WIND)
{
mParticleState[i].velocity[0] += mCurrentWind.mV[0]*windWeightDT;
mParticleState[i].velocity[1] += mCurrentWind.mV[1]*windWeightDT;
mParticleState[i].velocity[2] += mCurrentWind.mV[2]*windWeightDT;
}
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_AFFECTED_BY_GRAVITY)
{
mParticleState[i].velocity[0] += mCurrentGravity.mV[0]*gravityWeightDT;
mParticleState[i].velocity[1] += mCurrentGravity.mV[1]*gravityWeightDT;
mParticleState[i].velocity[2] += mCurrentGravity.mV[2]*gravityWeightDT;
}
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_EVALUATE_WIND_PER_PARTICLE)
{
if ((mCurrTime - mUpdatePhysicsInputsTime) > PART_SYS_UPDATE_PHYSICS_INPUTS_TIME)
{
LLVector3 wind, current_position_region;
// If needed, obtain latest wind per particle
//Particle positions are relative to the object center.
current_position_region.setVec(getPositionRegion());
current_position_region.mV[VX] += (mParticleState[i].position[0]);
current_position_region.mV[VY] += (mParticleState[i].position[1]);
current_position_region.mV[VZ] += (mParticleState[i].position[2]);
wind = mRegionp->mWind.getVelocity(current_position_region);
mParticleState[i].localWind[0] = wind.mV[0];
mParticleState[i].localWind[1] = wind.mV[1];
mParticleState[i].localWind[2] = wind.mV[2];
}
mParticleState[i].velocity[0] += mParticleState[i].localWind[0]*windWeightDT;
mParticleState[i].velocity[1] += mParticleState[i].localWind[1]*windWeightDT;
mParticleState[i].velocity[2] += mParticleState[i].localWind[2]*windWeightDT;
}
//then apply drag if required
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_DAMP_MOTION)
{
F32 dampAmount;
dampAmount = (mParticleState[i].velocity[0] * mParticleState[i].velocity[0]) +
(mParticleState[i].velocity[1] * mParticleState[i].velocity[1]) +
(mParticleState[i].velocity[2] * mParticleState[i].velocity[2]);
dampAmount = 1.0f - ((mSpeedLimitSquared - dampAmount) / mSpeedLimitSquared);
if (dampAmount < 0.0f)
{
dampAmount = 0.0f;
}
else if (dampAmount > 1.0f)
{
dampAmount = 1.0f;
}
//Damp prop to deltaT
dampAmount = -1.f * dampAmount * mDampMotionFactor * deltaT;
mParticleState[i].velocity[0] += dampAmount * mParticleState[i].velocity[0];
mParticleState[i].velocity[1] += dampAmount * mParticleState[i].velocity[1];
mParticleState[i].velocity[2] += dampAmount * mParticleState[i].velocity[2];
}
//check for bounces if required
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_BOUNCE)
{//Is the particle below the bounce plane??
LLVector3 tempBounceTest;
tempBounceTest.setVec(mParticleState[i].position[0], mParticleState[i].position[1], mParticleState[i].position[2]);
tempBounceTest.mV[VZ] -= mBouncePlaneZ;
//This is simplistic for now
if ((tempBounceTest.mV[VZ] < 0.0f) && (mParticleState[i].velocity[2] < 0.0f))
{
onParticleBounce(i);
}
}
//maintain the old way of updating scale and alpha
// clamp scale and alpha to reasonable values
// should this section of code only be called if we're *actually* animating scale and alpha?
mParticleState[i].alpha[2] = mDiffEqAlpha[0] + // constant term
mDiffEqAlpha[1]*mParticleState[i].alpha[0] + // zeroth derivative term
mDiffEqAlpha[2]*mParticleState[i].alpha[1]; // first derivative term
mParticleState[i].scale[2] = mDiffEqScale[0] + // constant term
mDiffEqScale[1]*mParticleState[i].scale[0] + // zeroth derivative term
mDiffEqScale[2]*mParticleState[i].scale[1]; // first derivative term
mParticleState[i].scale[0] += mParticleState[i].scale[1]*deltaT; // scale
mParticleState[i].alpha[0] += mParticleState[i].alpha[1]*deltaT; // alpha
if (mParticleState[i].scale[0] < 0.0f)
{
mParticleState[i].scale[0] = 0.01f;
}
if (mParticleState[i].alpha[0] < 0.0f)
{
mParticleState[i].alpha[0] = 0.0f;
}
else if (mParticleState[i].alpha[0] > 1.0f)
{
mParticleState[i].alpha[0] = 1.0f;
}
mParticleState[i].scale[1] += mParticleState[i].scale[2]*deltaT;
mParticleState[i].alpha[1] += mParticleState[i].alpha[2]*deltaT;
//Is particle appearance affected by wind?
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_WIND_DIFFUSION)
{
F32 windMagnitude, windMagnitudeSqrt;
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_EVALUATE_WIND_PER_PARTICLE)
{
windMagnitude = sqrt((mParticleState[i].localWind[0] * mParticleState[i].localWind[0]) +
(mParticleState[i].localWind[1] * mParticleState[i].localWind[1]) +
(mParticleState[i].localWind[2] * mParticleState[i].localWind[2]));
//don't know a max, so just make up a reasonably large value for now and cap.
windMagnitude = windMagnitude * 0.05f;
if (windMagnitude > 1.0f)
{
windMagnitude = 1.0f;
}
windMagnitudeSqrt = sqrt(mCurrentWindMagnitude);
}
else
{
windMagnitude = mCurrentWindMagnitude;
windMagnitudeSqrt = mCurrentWindMagnitudeSquareRoot;
}
//ignore alpha for now, as it is reduced by distance death and life expectancy in any case.
//mParticleState[i].alpha[0] *= (1.0 - (windMagnitude * mWindDiffusionFactor.mV[VX]));
//Scaling prop to sqr root. Should really be cube root, as we are dealing with a volume, but
//heavy math, and sqr looks OK.
mParticleState[i].scale[0] *= (1.f + (windMagnitudeSqrt * mWindDiffusionFactor.mV[VX]));
}
// we have to store the death of the particle somewhere
//now test for death if life expires or hits edge of death radius (given flags enabled)
//aapply alpha and scale fade proportional to proximity to death - test for death flags and produce a weighted sum
//taking into account time to live and distance to death.
weightedDeathSum = 1.0f;
if (mFlags[PART_SYS_KILL_BYTE] & PART_SYS_TIME_DEATH)
{
// **** Hack! remainingLifetime counts up from negative, to avoid subtracts! - djs
mParticleState[i].remainingLifetime += deltaT;
weightedDeathSum *= -1.f * (mParticleState[i].remainingLifetime * mOneOverIndividualLifetime);
if (mParticleState[i].remainingLifetime > 0.0f)
{
mDeadArr[i] = 1;
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_SPAWN)
{
setParticleCountdownStateWaitingDead(i);
}
weightedDeathSum = 0.0f;
}
else if (weightedDeathSum > 1.0f)
{
weightedDeathSum = 1.0f;
}
}
if (mFlags[PART_SYS_KILL_BYTE] & PART_SYS_DISTANCE_DEATH)
{
F32 radius;
radius = (mParticleState[i].position[0]*mParticleState[i].position[0] +
mParticleState[i].position[1]*mParticleState[i].position[1] +
mParticleState[i].position[2]*mParticleState[i].position[2]);
radius = (mDistanceDeathSquared - radius) * mOneOverDistanceDeathSquared;
weightedDeathSum = weightedDeathSum * radius;
if (radius <= 0.0f)
{
mDeadArr[i] = 1;
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_SPAWN)
{
setParticleCountdownStateWaitingDead(i);
}
weightedDeathSum = 0.0f;
}
else if (weightedDeathSum > 1.0f)
{
weightedDeathSum = 1.0f;
}
}
if (mFlags[PART_SYS_KILL_BYTE] & PART_SYS_KILL_PLANE)
{
if (mParticleState[i].position[2] <= mKillPlaneZ)
{
llinfos << "kill plane" << llendl;
mDeadArr[i] = 1;
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_SPAWN)
{
setParticleCountdownStateWaitingDead(i);
}
weightedDeathSum = 0.0f;
}
}
if (mFlags[PART_SYS_KILL_BYTE] & PART_SYS_GLOBAL_DIE)
{
weightedDeathSum = weightedDeathSum * (mGlobalLifetime / mOriginalGlobalLifetime);
}
mParticleState[i].deathOffset = weightedDeathSum;
any_leftQ |= (1 - mDeadArr[i]);
}
if (mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_SPAWN)
{//May be just waiting for new particles to be born, with none around currently
any_leftQ = TRUE;
}
if (mFlags[PART_SYS_KILL_BYTE] & PART_SYS_GLOBAL_DIE)
{
mGlobalLifetime -= deltaT;
if (mGlobalLifetime < 0.0f)
{
any_leftQ = FALSE;
}
}
if ((mCurrTime - mUpdatePhysicsInputsTime) > PART_SYS_UPDATE_PHYSICS_INPUTS_TIME)
{//Have to execute this at end of itterate, as several independent processes rely on the test being true.
mUpdatePhysicsInputsTime = mCurrTime;
}
mNumLiveParticles = 0;
for ( i = 0; i < mNumPart; i++)
{
if (!mDeadArr[i])
{
mNumLiveParticles++;
}
}
return any_leftQ;
}
void LLVOPart::reverseTranslateParticlesAndPotentiallyKill(const LLVector3 &moveBy)
{
U32 i;//pos_off;
for(i = 0; i < mNumPart; i++)
{
if(0 == mDeadArr[i])
{
//pos_off = pos_offset_i(i);
mParticleState[i].position[0] += moveBy.mV[VX];
mParticleState[i].position[1] += moveBy.mV[VY];
mParticleState[i].position[2] += moveBy.mV[VZ];
}
}
}
void LLVOPart::translateParticlesBy(const LLVector3 &moveBy)
{
if (!(mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_BOUNCE))
{//Do not translate if bouncing is on, as the whole system shifts adding or subtractiong potential energy
//If the object moves, the particles should not, otherwise will look like a rigid structure
reverseTranslateParticlesAndPotentiallyKill(moveBy);
mSpawnPoint.mV[VX] += moveBy.mV[VX];
mSpawnPoint.mV[VY] += moveBy.mV[VY];
mSpawnPoint.mV[VZ] += moveBy.mV[VZ];
}
}
void LLVOPart::translateParticlesTo(const LLVector3 &moveTo)
{
LLVector3 moveBy;
if (!(mFlags[PART_SYS_ACTION_BYTE] & PART_SYS_BOUNCE))
{//Do not translate if bouncing is on, as the whole system shifts adding or subtractiong potential energy
//If the object moves, the particles should not, otherwise will look like a rigid structure
moveBy.setVec(moveTo.mV[VX] - mSpawnPoint.mV[VX], moveTo.mV[VY] - mSpawnPoint.mV[VY], moveTo.mV[VZ] - mSpawnPoint.mV[VZ]);
reverseTranslateParticlesAndPotentiallyKill(moveBy);
mSpawnPoint.mV[VX] = moveTo.mV[VX];
mSpawnPoint.mV[VY] = moveTo.mV[VY];
mSpawnPoint.mV[VZ] = moveTo.mV[VZ];
}
}
void LLVOPart::rotateParticlesBy(const LLQuaternion &q)
{
mOriginOrientation *= q;
}
void LLVOPart::rotateParticlesTo(const LLQuaternion &q)
{
mOriginOrientation.setQuatInit(q.mQ[VX], q.mQ[VY], q.mQ[VZ], q.mQ[VW]);
}
|