1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
|
/**
* @file llbuffer.cpp
* @author Phoenix
* @date 2005-09-20
* @brief Implementation of the segments, buffers, and buffer arrays.
*
* Copyright (c) 2005-2007, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlife.com/developers/opensource/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at http://secondlife.com/developers/opensource/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
*/
#include "linden_common.h"
#include "llbuffer.h"
#include "llmath.h"
#include "llmemtype.h"
#include "llstl.h"
/**
* LLSegment
*/
LLSegment::LLSegment() :
mChannel(0),
mData(NULL),
mSize(0)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
}
LLSegment::LLSegment(S32 channel, U8* data, S32 data_len) :
mChannel(channel),
mData(data),
mSize(data_len)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
}
LLSegment::~LLSegment()
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
}
bool LLSegment::isOnChannel(S32 channel) const
{
return (mChannel == channel);
}
S32 LLSegment::getChannel() const
{
return mChannel;
}
void LLSegment::setChannel(S32 channel)
{
mChannel = channel;
}
U8* LLSegment::data() const
{
return mData;
}
S32 LLSegment::size() const
{
return mSize;
}
bool LLSegment::operator==(const LLSegment& rhs) const
{
if((mData != rhs.mData)||(mSize != rhs.mSize)||(mChannel != rhs.mChannel))
{
return false;
}
return true;
}
/**
* LLHeapBuffer
*/
LLHeapBuffer::LLHeapBuffer() :
mBuffer(NULL),
mSize(0),
mNextFree(NULL),
mReclaimedBytes(0)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
const S32 DEFAULT_HEAP_BUFFER_SIZE = 16384;
allocate(DEFAULT_HEAP_BUFFER_SIZE);
}
LLHeapBuffer::LLHeapBuffer(S32 size) :
mBuffer(NULL),
mSize(0),
mNextFree(NULL),
mReclaimedBytes(0)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
allocate(size);
}
LLHeapBuffer::LLHeapBuffer(const U8* src, S32 len) :
mBuffer(NULL),
mSize(0),
mNextFree(NULL),
mReclaimedBytes(0)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
if((len > 0) && src)
{
allocate(len);
if(mBuffer)
{
memcpy(mBuffer, src, len); /*Flawfinder: ignore*/
}
}
}
// virtual
LLHeapBuffer::~LLHeapBuffer()
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
delete[] mBuffer;
mBuffer = NULL;
mSize = 0;
mNextFree = NULL;
}
S32 LLHeapBuffer::bytesLeft() const
{
return (mSize - (mNextFree - mBuffer));
}
// virtual
bool LLHeapBuffer::createSegment(
S32 channel,
S32 size,
LLSegment& segment)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
// get actual size of the segment.
S32 actual_size = llmin(size, (mSize - S32(mNextFree - mBuffer)));
// bail if we cannot build a valid segment
if(actual_size <= 0)
{
return false;
}
// Yay, we're done.
segment = LLSegment(channel, mNextFree, actual_size);
mNextFree += actual_size;
return true;
}
// virtual
bool LLHeapBuffer::reclaimSegment(const LLSegment& segment)
{
if(containsSegment(segment))
{
mReclaimedBytes += segment.size();
if(mReclaimedBytes == mSize)
{
// We have reclaimed all of the memory from this
// buffer. Therefore, we can reset the mNextFree to the
// start of the buffer, and reset the reclaimed bytes.
mReclaimedBytes = 0;
mNextFree = mBuffer;
}
else if(mReclaimedBytes > mSize)
{
llwarns << "LLHeapBuffer reclaimed more memory than allocated."
<< " This is probably programmer error." << llendl;
}
return true;
}
return false;
}
// virtual
bool LLHeapBuffer::containsSegment(const LLSegment& segment) const
{
// *NOTE: this check is fairly simple because heap buffers are
// simple contiguous chunks of heap memory.
if((mBuffer > segment.data())
|| ((mBuffer + mSize) < (segment.data() + segment.size())))
{
return false;
}
return true;
}
void LLHeapBuffer::allocate(S32 size)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
mReclaimedBytes = 0;
mBuffer = new U8[size];
if(mBuffer)
{
mSize = size;
mNextFree = mBuffer;
}
}
/**
* LLBufferArray
*/
LLBufferArray::LLBufferArray() :
mNextBaseChannel(0)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
}
LLBufferArray::~LLBufferArray()
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
std::for_each(mBuffers.begin(), mBuffers.end(), DeletePointer());
}
// static
LLChannelDescriptors LLBufferArray::makeChannelConsumer(
const LLChannelDescriptors& channels)
{
LLChannelDescriptors rv(channels.out());
return rv;
}
LLChannelDescriptors LLBufferArray::nextChannel()
{
LLChannelDescriptors rv(mNextBaseChannel++);
return rv;
}
S32 LLBufferArray::capacity() const
{
S32 total = 0;
const_buffer_iterator_t iter = mBuffers.begin();
const_buffer_iterator_t end = mBuffers.end();
for(; iter != end; ++iter)
{
total += (*iter)->capacity();
}
return total;
}
bool LLBufferArray::append(S32 channel, const U8* src, S32 len)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
std::vector<LLSegment> segments;
if(copyIntoBuffers(channel, src, len, segments))
{
mSegments.insert(mSegments.end(), segments.begin(), segments.end());
return true;
}
return false;
}
bool LLBufferArray::prepend(S32 channel, const U8* src, S32 len)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
std::vector<LLSegment> segments;
if(copyIntoBuffers(channel, src, len, segments))
{
mSegments.insert(mSegments.begin(), segments.begin(), segments.end());
return true;
}
return false;
}
bool LLBufferArray::insertAfter(
segment_iterator_t segment,
S32 channel,
const U8* src,
S32 len)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
std::vector<LLSegment> segments;
if(mSegments.end() != segment)
{
++segment;
}
if(copyIntoBuffers(channel, src, len, segments))
{
mSegments.insert(segment, segments.begin(), segments.end());
return true;
}
return false;
}
LLBufferArray::segment_iterator_t LLBufferArray::splitAfter(U8* address)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
segment_iterator_t end = mSegments.end();
segment_iterator_t it = getSegment(address);
if(it == end)
{
return end;
}
// We have the location and the segment.
U8* base = (*it).data();
S32 size = (*it).size();
if(address == (base + size))
{
// No need to split, since this is the last byte of the
// segment. We do not want to have zero length segments, since
// that will only incur processing overhead with no advantage.
return it;
}
S32 channel = (*it).getChannel();
LLSegment segment1(channel, base, (address - base) + 1);
*it = segment1;
segment_iterator_t rv = it;
++it;
LLSegment segment2(channel, address + 1, size - (address - base) - 1);
mSegments.insert(it, segment2);
return rv;
}
LLBufferArray::segment_iterator_t LLBufferArray::beginSegment()
{
return mSegments.begin();
}
LLBufferArray::segment_iterator_t LLBufferArray::endSegment()
{
return mSegments.end();
}
LLBufferArray::segment_iterator_t LLBufferArray::constructSegmentAfter(
U8* address,
LLSegment& segment)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
segment_iterator_t rv = mSegments.begin();
segment_iterator_t end = mSegments.end();
if(!address)
{
if(rv != end)
{
segment = (*rv);
}
}
else
{
// we have an address - find the segment it is in.
for( ; rv != end; ++rv)
{
if((address >= (*rv).data())
&& (address < ((*rv).data() + (*rv).size())))
{
if((++address) < ((*rv).data() + (*rv).size()))
{
// it's in this segment - construct an appropriate
// sub-segment.
segment = LLSegment(
(*rv).getChannel(),
address,
(*rv).size() - (address - (*rv).data()));
}
else
{
++rv;
if(rv != end)
{
segment = (*rv);
}
}
break;
}
}
}
if(rv == end)
{
segment = LLSegment();
}
return rv;
}
LLBufferArray::segment_iterator_t LLBufferArray::getSegment(U8* address)
{
segment_iterator_t end = mSegments.end();
if(!address)
{
return end;
}
segment_iterator_t it = mSegments.begin();
for( ; it != end; ++it)
{
if((address >= (*it).data())&&(address < (*it).data() + (*it).size()))
{
// found it.
return it;
}
}
return end;
}
LLBufferArray::const_segment_iterator_t LLBufferArray::getSegment(
U8* address) const
{
const_segment_iterator_t end = mSegments.end();
if(!address)
{
return end;
}
const_segment_iterator_t it = mSegments.begin();
for( ; it != end; ++it)
{
if((address >= (*it).data())
&& (address < (*it).data() + (*it).size()))
{
// found it.
return it;
}
}
return end;
}
/*
U8* LLBufferArray::getAddressAfter(U8* address)
{
U8* rv = NULL;
segment_iterator_t it = getSegment(address);
segment_iterator_t end = mSegments.end();
if(it != end)
{
if(++address < ((*it).data() + (*it).size()))
{
// it's in the same segment
rv = address;
}
else
{
// it's in the next segment
if(++it != end)
{
rv = (*it).data();
}
}
}
return rv;
}
*/
S32 LLBufferArray::countAfter(S32 channel, U8* start) const
{
S32 count = 0;
S32 offset = 0;
const_segment_iterator_t it;
const_segment_iterator_t end = mSegments.end();
if(start)
{
it = getSegment(start);
if(it == end)
{
return count;
}
if(++start < ((*it).data() + (*it).size()))
{
// it's in the same segment
offset = start - (*it).data();
}
else if(++it == end)
{
// it's in the next segment
return count;
}
}
else
{
it = mSegments.begin();
}
while(it != end)
{
if((*it).isOnChannel(channel))
{
count += (*it).size() - offset;
}
offset = 0;
++it;
}
return count;
}
U8* LLBufferArray::readAfter(
S32 channel,
U8* start,
U8* dest,
S32& len) const
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
U8* rv = start;
if(!dest || len <= 0)
{
return rv;
}
S32 bytes_left = len;
len = 0;
S32 bytes_to_copy = 0;
const_segment_iterator_t it;
const_segment_iterator_t end = mSegments.end();
if(start)
{
it = getSegment(start);
if(it == end)
{
return rv;
}
if((++start < ((*it).data() + (*it).size()))
&& (*it).isOnChannel(channel))
{
// copy the data out of this segment
S32 bytes_in_segment = (*it).size() - (start - (*it).data());
bytes_to_copy = llmin(bytes_left, bytes_in_segment);
memcpy(dest, start, bytes_to_copy); /*Flawfinder: ignore*/
len += bytes_to_copy;
bytes_left -= bytes_to_copy;
rv = start + bytes_to_copy - 1;
++it;
}
else
{
++it;
}
}
else
{
it = mSegments.begin();
}
while(bytes_left && (it != end))
{
if(!((*it).isOnChannel(channel)))
{
++it;
continue;
}
bytes_to_copy = llmin(bytes_left, (*it).size());
memcpy(dest + len, (*it).data(), bytes_to_copy); /*Flawfinder: ignore*/
len += bytes_to_copy;
bytes_left -= bytes_to_copy;
rv = (*it).data() + bytes_to_copy - 1;
++it;
}
return rv;
}
U8* LLBufferArray::seek(
S32 channel,
U8* start,
S32 delta) const
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
const_segment_iterator_t it;
const_segment_iterator_t end = mSegments.end();
U8* rv = start;
if(0 == delta)
{
if((U8*)npos == start)
{
// someone is looking for end of data.
segment_list_t::const_reverse_iterator rit = mSegments.rbegin();
segment_list_t::const_reverse_iterator rend = mSegments.rend();
while(rit != rend)
{
if(!((*rit).isOnChannel(channel)))
{
++rit;
continue;
}
rv = (*rit).data() + (*rit).size();
break;
}
}
else if(start)
{
// This is sort of a weird case - check if zero bytes away
// from current position is on channel and return start if
// that is true. Otherwise, return NULL.
it = getSegment(start);
if((it == end) || !(*it).isOnChannel(channel))
{
rv = NULL;
}
}
else
{
// Start is NULL, so return the very first byte on the
// channel, or NULL.
it = mSegments.begin();
while((it != end) && !(*it).isOnChannel(channel))
{
++it;
}
if(it != end)
{
rv = (*it).data();
}
}
return rv;
}
if(start)
{
it = getSegment(start);
if((it != end) && (*it).isOnChannel(channel))
{
if(delta > 0)
{
S32 bytes_in_segment = (*it).size() - (start - (*it).data());
S32 local_delta = llmin(delta, bytes_in_segment);
rv += local_delta;
delta -= local_delta;
++it;
}
else
{
S32 bytes_in_segment = start - (*it).data();
S32 local_delta = llmin(llabs(delta), bytes_in_segment);
rv -= local_delta;
delta += local_delta;
}
}
}
else if(delta < 0)
{
// start is NULL, and delta indicates seeking backwards -
// return NULL.
return NULL;
}
else
{
// start is NULL and delta > 0
it = mSegments.begin();
}
if(delta > 0)
{
// At this point, we have an iterator into the segments, and
// are seeking forward until delta is zero or we run out
while(delta && (it != end))
{
if(!((*it).isOnChannel(channel)))
{
++it;
continue;
}
if(delta <= (*it).size())
{
// it's in this segment
rv = (*it).data() + delta;
}
delta -= (*it).size();
++it;
}
if(delta && (it == end))
{
// Whoops - sought past end.
rv = NULL;
}
}
else //if(delta < 0)
{
// We are at the beginning of a segment, and need to search
// backwards.
segment_list_t::const_reverse_iterator rit(it);
segment_list_t::const_reverse_iterator rend = mSegments.rend();
while(delta && (rit != rend))
{
if(!((*rit).isOnChannel(channel)))
{
++rit;
continue;
}
if(llabs(delta) <= (*rit).size())
{
// it's in this segment.
rv = (*rit).data() + (*rit).size() + delta;
delta = 0;
}
else
{
delta += (*rit).size();
}
++rit;
}
if(delta && (rit == rend))
{
// sought past the beginning.
rv = NULL;
}
}
return rv;
}
bool LLBufferArray::takeContents(LLBufferArray& source)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
std::copy(
source.mBuffers.begin(),
source.mBuffers.end(),
std::back_insert_iterator<buffer_list_t>(mBuffers));
source.mBuffers.clear();
std::copy(
source.mSegments.begin(),
source.mSegments.end(),
std::back_insert_iterator<segment_list_t>(mSegments));
source.mSegments.clear();
source.mNextBaseChannel = 0;
return true;
}
LLBufferArray::segment_iterator_t LLBufferArray::makeSegment(
S32 channel,
S32 len)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
// start at the end of the buffers, because it is the most likely
// to have free space.
LLSegment segment;
buffer_list_t::reverse_iterator it = mBuffers.rbegin();
buffer_list_t::reverse_iterator end = mBuffers.rend();
bool made_segment = false;
for(; it != end; ++it)
{
if((*it)->createSegment(channel, len, segment))
{
made_segment = true;
break;
}
}
segment_iterator_t send = mSegments.end();
if(!made_segment)
{
LLBuffer* buf = new LLHeapBuffer;
mBuffers.push_back(buf);
if(!buf->createSegment(channel, len, segment))
{
// failed. this should never happen.
return send;
}
}
// store and return the newly made segment
mSegments.insert(send, segment);
std::list<LLSegment>::reverse_iterator rv = mSegments.rbegin();
++rv;
send = rv.base();
return send;
}
bool LLBufferArray::eraseSegment(const segment_iterator_t& erase_iter)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
// Find out which buffer contains the segment, and if it is found,
// ask it to reclaim the memory.
bool rv = false;
LLSegment segment(*erase_iter);
buffer_iterator_t iter = mBuffers.begin();
buffer_iterator_t end = mBuffers.end();
for(; iter != end; ++iter)
{
// We can safely call reclaimSegment on every buffer, and once
// it returns true, the segment was found.
if((*iter)->reclaimSegment(segment))
{
rv = true;
break;
}
}
// No need to get the return value since we are not interested in
// the interator retured by the call.
(void)mSegments.erase(erase_iter);
return rv;
}
bool LLBufferArray::copyIntoBuffers(
S32 channel,
const U8* src,
S32 len,
std::vector<LLSegment>& segments)
{
LLMemType m1(LLMemType::MTYPE_IO_BUFFER);
if(!src || !len) return false;
S32 copied = 0;
LLSegment segment;
buffer_iterator_t it = mBuffers.begin();
buffer_iterator_t end = mBuffers.end();
for(; it != end;)
{
if(!(*it)->createSegment(channel, len, segment))
{
++it;
continue;
}
segments.push_back(segment);
S32 bytes = llmin(segment.size(), len);
memcpy(segment.data(), src + copied, bytes); /* Flawfinder: Ignore */
copied += bytes;
len -= bytes;
if(0 == len)
{
break;
}
}
while(len)
{
LLBuffer* buf = new LLHeapBuffer;
mBuffers.push_back(buf);
if(!buf->createSegment(channel, len, segment))
{
// this totally failed - bail. This is the weird corner
// case were we 'leak' memory. No worries about an actual
// leak - we will still reclaim the memory later, but this
// particular buffer array is hosed for some reason.
// This should never happen.
return false;
}
segments.push_back(segment);
memcpy(segment.data(), src + copied, segment.size()); /*Flawfinder: ignore*/
copied += segment.size();
len -= segment.size();
}
return true;
}
|