1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
/**
* @file v4math.h
* @brief LLVector4 class header file.
*
* Copyright (c) 2000-2007, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlife.com/developers/opensource/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at http://secondlife.com/developers/opensource/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
*/
#ifndef LL_V4MATH_H
#define LL_V4MATH_H
#include "llerror.h"
#include "llmath.h"
#include "v3math.h"
class LLMatrix3;
class LLMatrix4;
class LLQuaternion;
// LLVector4 = |x y z w|
static const U32 LENGTHOFVECTOR4 = 4;
class LLVector4
{
public:
F32 mV[LENGTHOFVECTOR4];
LLVector4(); // Initializes LLVector4 to (0, 0, 0, 1)
explicit LLVector4(const F32 *vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2], vec[3])
explicit LLVector4(const F64 *vec); // Initialized LLVector4 to ((F32) vec[0], (F32) vec[1], (F32) vec[3], (F32) vec[4]);
explicit LLVector4(const LLVector3 &vec); // Initializes LLVector4 to (vec, 1)
explicit LLVector4(const LLVector3 &vec, F32 w); // Initializes LLVector4 to (vec, w)
LLVector4(F32 x, F32 y, F32 z); // Initializes LLVector4 to (x. y, z, 1)
LLVector4(F32 x, F32 y, F32 z, F32 w);
LLSD getValue() const
{
LLSD ret;
ret[0] = mV[0];
ret[1] = mV[1];
ret[2] = mV[2];
ret[3] = mV[3];
return ret;
}
inline BOOL isFinite() const; // checks to see if all values of LLVector3 are finite
inline void clearVec(); // Clears LLVector4 to (0, 0, 0, 1)
inline void zeroVec(); // zero LLVector4 to (0, 0, 0, 0)
inline void setVec(F32 x, F32 y, F32 z); // Sets LLVector4 to (x, y, z, 1)
inline void setVec(F32 x, F32 y, F32 z, F32 w); // Sets LLVector4 to (x, y, z, w)
inline void setVec(const LLVector4 &vec); // Sets LLVector4 to vec
inline void setVec(const LLVector3 &vec, F32 w = 1.f); // Sets LLVector4 to LLVector3 vec
inline void setVec(const F32 *vec); // Sets LLVector4 to vec
F32 magVec() const; // Returns magnitude of LLVector4
F32 magVecSquared() const; // Returns magnitude squared of LLVector4
F32 normVec(); // Normalizes and returns the magnitude of LLVector4
// Sets all values to absolute value of their original values
// Returns TRUE if data changed
BOOL abs();
BOOL isExactlyClear() const { return (mV[VW] == 1.0f) && !mV[VX] && !mV[VY] && !mV[VZ]; }
BOOL isExactlyZero() const { return !mV[VW] && !mV[VX] && !mV[VY] && !mV[VZ]; }
const LLVector4& rotVec(F32 angle, const LLVector4 &vec); // Rotates about vec by angle radians
const LLVector4& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians
const LLVector4& rotVec(const LLMatrix4 &mat); // Rotates by MAT4 mat
const LLVector4& rotVec(const LLQuaternion &q); // Rotates by QUAT q
const LLVector4& scaleVec(const LLVector4& vec); // Scales component-wise by vec
F32 operator[](int idx) const { return mV[idx]; }
F32 &operator[](int idx) { return mV[idx]; }
friend std::ostream& operator<<(std::ostream& s, const LLVector4 &a); // Print a
friend LLVector4 operator+(const LLVector4 &a, const LLVector4 &b); // Return vector a + b
friend LLVector4 operator-(const LLVector4 &a, const LLVector4 &b); // Return vector a minus b
friend F32 operator*(const LLVector4 &a, const LLVector4 &b); // Return a dot b
friend LLVector4 operator%(const LLVector4 &a, const LLVector4 &b); // Return a cross b
friend LLVector4 operator/(const LLVector4 &a, F32 k); // Return a divided by scaler k
friend LLVector4 operator*(const LLVector4 &a, F32 k); // Return a times scaler k
friend LLVector4 operator*(F32 k, const LLVector4 &a); // Return a times scaler k
friend bool operator==(const LLVector4 &a, const LLVector4 &b); // Return a == b
friend bool operator!=(const LLVector4 &a, const LLVector4 &b); // Return a != b
friend const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b); // Return vector a + b
friend const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b); // Return vector a minus b
friend const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b); // Return a cross b
friend const LLVector4& operator*=(LLVector4 &a, F32 k); // Return a times scaler k
friend const LLVector4& operator/=(LLVector4 &a, F32 k); // Return a divided by scaler k
friend LLVector4 operator-(const LLVector4 &a); // Return vector -a
};
// Non-member functions
F32 angle_between(const LLVector4 &a, const LLVector4 &b); // Returns angle (radians) between a and b
BOOL are_parallel(const LLVector4 &a, const LLVector4 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns TRUE if a and b are very close to parallel
F32 dist_vec(const LLVector4 &a, const LLVector4 &b); // Returns distance between a and b
F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b); // Returns distance squared between a and b
LLVector3 vec4to3(const LLVector4 &vec);
LLVector4 vec3to4(const LLVector3 &vec);
LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u); // Returns a vector that is a linear interpolation between a and b
// Constructors
inline LLVector4::LLVector4(void)
{
mV[VX] = 0.f;
mV[VY] = 0.f;
mV[VZ] = 0.f;
mV[VW] = 1.f;
}
inline LLVector4::LLVector4(F32 x, F32 y, F32 z)
{
mV[VX] = x;
mV[VY] = y;
mV[VZ] = z;
mV[VW] = 1.f;
}
inline LLVector4::LLVector4(F32 x, F32 y, F32 z, F32 w)
{
mV[VX] = x;
mV[VY] = y;
mV[VZ] = z;
mV[VW] = w;
}
inline LLVector4::LLVector4(const F32 *vec)
{
mV[VX] = vec[VX];
mV[VY] = vec[VY];
mV[VZ] = vec[VZ];
mV[VW] = vec[VW];
}
inline LLVector4::LLVector4(const F64 *vec)
{
mV[VX] = (F32) vec[VX];
mV[VY] = (F32) vec[VY];
mV[VZ] = (F32) vec[VZ];
mV[VW] = (F32) vec[VW];
}
inline LLVector4::LLVector4(const LLVector3 &vec)
{
mV[VX] = vec.mV[VX];
mV[VY] = vec.mV[VY];
mV[VZ] = vec.mV[VZ];
mV[VW] = 1.f;
}
inline LLVector4::LLVector4(const LLVector3 &vec, F32 w)
{
mV[VX] = vec.mV[VX];
mV[VY] = vec.mV[VY];
mV[VZ] = vec.mV[VZ];
mV[VW] = w;
}
inline BOOL LLVector4::isFinite() const
{
return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]) && llfinite(mV[VW]));
}
// Clear and Assignment Functions
inline void LLVector4::clearVec(void)
{
mV[VX] = 0.f;
mV[VY] = 0.f;
mV[VZ] = 0.f;
mV[VW] = 1.f;
}
inline void LLVector4::zeroVec(void)
{
mV[VX] = 0.f;
mV[VY] = 0.f;
mV[VZ] = 0.f;
mV[VW] = 0.f;
}
inline void LLVector4::setVec(F32 x, F32 y, F32 z)
{
mV[VX] = x;
mV[VY] = y;
mV[VZ] = z;
mV[VW] = 1.f;
}
inline void LLVector4::setVec(F32 x, F32 y, F32 z, F32 w)
{
mV[VX] = x;
mV[VY] = y;
mV[VZ] = z;
mV[VW] = w;
}
inline void LLVector4::setVec(const LLVector4 &vec)
{
mV[VX] = vec.mV[VX];
mV[VY] = vec.mV[VY];
mV[VZ] = vec.mV[VZ];
mV[VW] = vec.mV[VW];
}
inline void LLVector4::setVec(const LLVector3 &vec, F32 w)
{
mV[VX] = vec.mV[VX];
mV[VY] = vec.mV[VY];
mV[VZ] = vec.mV[VZ];
mV[VW] = w;
}
inline void LLVector4::setVec(const F32 *vec)
{
mV[VX] = vec[VX];
mV[VY] = vec[VY];
mV[VZ] = vec[VZ];
mV[VW] = vec[VW];
}
// LLVector4 Magnitude and Normalization Functions
inline F32 LLVector4::magVec(void) const
{
return fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]);
}
inline F32 LLVector4::magVecSquared(void) const
{
return mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ];
}
// LLVector4 Operators
inline LLVector4 operator+(const LLVector4 &a, const LLVector4 &b)
{
LLVector4 c(a);
return c += b;
}
inline LLVector4 operator-(const LLVector4 &a, const LLVector4 &b)
{
LLVector4 c(a);
return c -= b;
}
inline F32 operator*(const LLVector4 &a, const LLVector4 &b)
{
return (a.mV[VX]*b.mV[VX] + a.mV[VY]*b.mV[VY] + a.mV[VZ]*b.mV[VZ]);
}
inline LLVector4 operator%(const LLVector4 &a, const LLVector4 &b)
{
return LLVector4(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]);
}
inline LLVector4 operator/(const LLVector4 &a, F32 k)
{
F32 t = 1.f / k;
return LLVector4( a.mV[VX] * t, a.mV[VY] * t, a.mV[VZ] * t );
}
inline LLVector4 operator*(const LLVector4 &a, F32 k)
{
return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k );
}
inline LLVector4 operator*(F32 k, const LLVector4 &a)
{
return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k );
}
inline bool operator==(const LLVector4 &a, const LLVector4 &b)
{
return ( (a.mV[VX] == b.mV[VX])
&&(a.mV[VY] == b.mV[VY])
&&(a.mV[VZ] == b.mV[VZ]));
}
inline bool operator!=(const LLVector4 &a, const LLVector4 &b)
{
return ( (a.mV[VX] != b.mV[VX])
||(a.mV[VY] != b.mV[VY])
||(a.mV[VZ] != b.mV[VZ]));
}
inline const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b)
{
a.mV[VX] += b.mV[VX];
a.mV[VY] += b.mV[VY];
a.mV[VZ] += b.mV[VZ];
return a;
}
inline const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b)
{
a.mV[VX] -= b.mV[VX];
a.mV[VY] -= b.mV[VY];
a.mV[VZ] -= b.mV[VZ];
return a;
}
inline const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b)
{
LLVector4 ret(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]);
a = ret;
return a;
}
inline const LLVector4& operator*=(LLVector4 &a, F32 k)
{
a.mV[VX] *= k;
a.mV[VY] *= k;
a.mV[VZ] *= k;
return a;
}
inline const LLVector4& operator/=(LLVector4 &a, F32 k)
{
F32 t = 1.f / k;
a.mV[VX] *= t;
a.mV[VY] *= t;
a.mV[VZ] *= t;
return a;
}
inline LLVector4 operator-(const LLVector4 &a)
{
return LLVector4( -a.mV[VX], -a.mV[VY], -a.mV[VZ] );
}
inline F32 dist_vec(const LLVector4 &a, const LLVector4 &b)
{
LLVector4 vec = a - b;
return (vec.magVec());
}
inline F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b)
{
LLVector4 vec = a - b;
return (vec.magVecSquared());
}
inline LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u)
{
return LLVector4(
a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u,
a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u,
a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u,
a.mV[VW] + (b.mV[VW] - a.mV[VW]) * u);
}
inline F32 LLVector4::normVec(void)
{
F32 mag = fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]);
F32 oomag;
if (mag > FP_MAG_THRESHOLD)
{
oomag = 1.f/mag;
mV[VX] *= oomag;
mV[VY] *= oomag;
mV[VZ] *= oomag;
}
else
{
mV[0] = 0.f;
mV[1] = 0.f;
mV[2] = 0.f;
mag = 0;
}
return (mag);
}
#endif
|