aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/linden/indra/llmath/llcamera.cpp
blob: 0609e2f7f4c6fe654a573f692dc29ae62a8d3ed5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
/** 
 * @file llcamera.cpp
 * @brief Implementation of the LLCamera class.
 *
 * $LicenseInfo:firstyear=2000&license=viewergpl$
 * 
 * Copyright (c) 2000-2009, Linden Research, Inc.
 * 
 * Second Life Viewer Source Code
 * The source code in this file ("Source Code") is provided by Linden Lab
 * to you under the terms of the GNU General Public License, version 2.0
 * ("GPL"), unless you have obtained a separate licensing agreement
 * ("Other License"), formally executed by you and Linden Lab.  Terms of
 * the GPL can be found in doc/GPL-license.txt in this distribution, or
 * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
 * 
 * There are special exceptions to the terms and conditions of the GPL as
 * it is applied to this Source Code. View the full text of the exception
 * in the file doc/FLOSS-exception.txt in this software distribution, or
 * online at
 * http://secondlifegrid.net/programs/open_source/licensing/flossexception
 * 
 * By copying, modifying or distributing this software, you acknowledge
 * that you have read and understood your obligations described above,
 * and agree to abide by those obligations.
 * 
 * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
 * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
 * COMPLETENESS OR PERFORMANCE.
 * $/LicenseInfo$
 */

#include "linden_common.h"

#include "llmath.h"
#include "llcamera.h"

// ---------------- Constructors and destructors ----------------

LLCamera::LLCamera() :
	LLCoordFrame(),
	mView(DEFAULT_FIELD_OF_VIEW),
	mAspect(DEFAULT_ASPECT_RATIO),
	mViewHeightInPixels( -1 ),			// invalid height
	mNearPlane(DEFAULT_NEAR_PLANE),
	mFarPlane(DEFAULT_FAR_PLANE),
	mFixedDistance(-1.f),
	mPlaneCount(6)
{
	calculateFrustumPlanes();
} 


LLCamera::LLCamera(F32 vertical_fov_rads, F32 aspect_ratio, S32 view_height_in_pixels, F32 near_plane, F32 far_plane) :
	LLCoordFrame(),
	mViewHeightInPixels(view_height_in_pixels),
	mFixedDistance(-1.f),
	mPlaneCount(6)
{
	mAspect = llclamp(aspect_ratio, MIN_ASPECT_RATIO, MAX_ASPECT_RATIO);
	mNearPlane = llclamp(near_plane, MIN_NEAR_PLANE, MAX_NEAR_PLANE);
	if(far_plane < 0) far_plane = DEFAULT_FAR_PLANE;
	mFarPlane = llclamp(far_plane, MIN_FAR_PLANE, MAX_FAR_PLANE);

	setView(vertical_fov_rads);
} 


// ---------------- LLCamera::getFoo() member functions ----------------

F32 LLCamera::getMinView() const 
{
	// minimum vertical fov needs to be constrained in narrow windows.
	return mAspect > 1
		? MIN_FIELD_OF_VIEW // wide views
		: MIN_FIELD_OF_VIEW * 1/mAspect; // clamps minimum width in narrow views
}

F32 LLCamera::getMaxView() const 
{
	// maximum vertical fov needs to be constrained in wide windows.
	return mAspect > 1 
		? MAX_FIELD_OF_VIEW / mAspect  // clamps maximum width in wide views
		: MAX_FIELD_OF_VIEW; // narrow views
}

// ---------------- LLCamera::setFoo() member functions ----------------

void LLCamera::setUserClipPlane(LLPlane plane)
{
	mPlaneCount = 7;
	mAgentPlanes[6].p = plane;
	mAgentPlanes[6].mask = calcPlaneMask(plane);
}

void LLCamera::disableUserClipPlane()
{
	mPlaneCount = 6;
}

void LLCamera::setView(F32 vertical_fov_rads) 
{
	mView = llclamp(vertical_fov_rads, MIN_FIELD_OF_VIEW, MAX_FIELD_OF_VIEW);
	calculateFrustumPlanes();
}

void LLCamera::setViewHeightInPixels(S32 height)
{
	mViewHeightInPixels = height;

	// Don't really need to do this, but update the pixel meter ratio with it.
	calculateFrustumPlanes();
}

void LLCamera::setAspect(F32 aspect_ratio) 
{
	mAspect = llclamp(aspect_ratio, MIN_ASPECT_RATIO, MAX_ASPECT_RATIO);
	calculateFrustumPlanes();
}


void LLCamera::setNear(F32 near_plane) 
{
	mNearPlane = llclamp(near_plane, MIN_NEAR_PLANE, MAX_NEAR_PLANE);
	calculateFrustumPlanes();
}


void LLCamera::setFar(F32 far_plane) 
{
	mFarPlane = llclamp(far_plane, MIN_FAR_PLANE, MAX_FAR_PLANE);
	calculateFrustumPlanes();
}


// ---------------- read/write to buffer ---------------- 

size_t LLCamera::writeFrustumToBuffer(char *buffer) const
{
	memcpy(buffer, &mView, sizeof(F32));		/* Flawfinder: ignore */		
	buffer += sizeof(F32);
	memcpy(buffer, &mAspect, sizeof(F32));		/* Flawfinder: ignore */
	buffer += sizeof(F32);
	memcpy(buffer, &mNearPlane, sizeof(F32));	/* Flawfinder: ignore */
	buffer += sizeof(F32);
	memcpy(buffer, &mFarPlane, sizeof(F32));		/* Flawfinder: ignore */
	return 4*sizeof(F32);
}

size_t LLCamera::readFrustumFromBuffer(const char *buffer)
{
	memcpy(&mView, buffer, sizeof(F32));		/* Flawfinder: ignore */
	buffer += sizeof(F32);
	memcpy(&mAspect, buffer, sizeof(F32));		/* Flawfinder: ignore */
	buffer += sizeof(F32);
	memcpy(&mNearPlane, buffer, sizeof(F32));	/* Flawfinder: ignore */
	buffer += sizeof(F32);
	memcpy(&mFarPlane, buffer, sizeof(F32));		/* Flawfinder: ignore */
	return 4*sizeof(F32);
}


// ---------------- test methods  ---------------- 

S32 LLCamera::AABBInFrustum(const LLVector3 &center, const LLVector3& radius) 
{
	static const LLVector3 scaler[] = {
		LLVector3(-1,-1,-1),
		LLVector3( 1,-1,-1),
		LLVector3(-1, 1,-1),
		LLVector3( 1, 1,-1),
		LLVector3(-1,-1, 1),
		LLVector3( 1,-1, 1),
		LLVector3(-1, 1, 1),
		LLVector3( 1, 1, 1)
	};

	U8 mask = 0;
	S32 result = 2;

	if (radius.magVecSquared() > mFrustumCornerDist * mFrustumCornerDist)
	{ //box is larger than frustum, check frustum quads against box planes

		static const LLVector3 dir[] = 
		{
			LLVector3(1, 0, 0),
			LLVector3(-1, 0, 0),
			LLVector3(0, 1, 0),
			LLVector3(0, -1, 0),
			LLVector3(0, 0, 1),
			LLVector3(0, 0, -1)
		};

		U32 quads[] = 
		{
			0, 1, 2, 3,
			0, 1, 5, 4,
			2, 3, 7, 6,
			3, 0, 7, 4,
			1, 2, 6, 4,
			4, 5, 6, 7
		};

		result = 0;

		BOOL total_inside = TRUE;
		for (U32 i = 0; i < 6; i++)
		{ 
			LLVector3 p = center + radius.scaledVec(dir[i]);
			F32 d = -p*dir[i];

			for (U32 j = 0; j <	6; j++)
			{ //for each quad
				F32 dist = mAgentFrustum[quads[j*4+0]]*dir[i] + d;
				if (dist > 0)
				{ //at least one frustum point is outside the AABB
					total_inside = FALSE;
					for (U32 k = 1; k < 4; k++)
					{ //for each other point on quad
						if ( mAgentFrustum[quads[j*4+k]]*dir[i]+d  <= 0.f)
						{ //quad is straddling some plane of AABB
							return 1;
						}
					}
				}
				else
				{
					for (U32 k = 1; k < 4; k++)
					{
						if (mAgentFrustum[quads[j*4+k]]*dir[i]+d > 0.f)
						{
							return 1;
						}
					}
				}
			}
		}

		if (total_inside)
		{
			result = 1;
		}
	}
	else
	{
		for (U32 i = 0; i < mPlaneCount; i++)
		{
			mask = mAgentPlanes[i].mask;
			if (mask == 0xff)
			{
				continue;
			} 
			LLPlane p = mAgentPlanes[i].p;
			LLVector3 n = LLVector3(p);
			float d = p.mV[3];
			LLVector3 rscale = radius.scaledVec(scaler[mask]);

			LLVector3 minp = center - rscale;
			LLVector3 maxp = center + rscale;

			if (n * minp > -d) 
			{
				return 0;
			}
		
			if (n * maxp > -d)
			{
				result = 1;
			}
		}
	}

	
	return result;
}

S32 LLCamera::AABBInFrustumNoFarClip(const LLVector3 &center, const LLVector3& radius) 
{
	static const LLVector3 scaler[] = {
		LLVector3(-1,-1,-1),
		LLVector3( 1,-1,-1),
		LLVector3(-1, 1,-1),
		LLVector3( 1, 1,-1),
		LLVector3(-1,-1, 1),
		LLVector3( 1,-1, 1),
		LLVector3(-1, 1, 1),
		LLVector3( 1, 1, 1)
	};

	U8 mask = 0;
	S32 result = 2;

	for (U32 i = 0; i < mPlaneCount; i++)
	{
		if (i == 5)
		{
			continue;
		}

		mask = mAgentPlanes[i].mask;
		if (mask == 0xff)
		{
			continue;
		} 
		LLPlane p = mAgentPlanes[i].p;
		LLVector3 n = LLVector3(p);
		float d = p.mV[3];
		LLVector3 rscale = radius.scaledVec(scaler[mask]);

		LLVector3 minp = center - rscale;
		LLVector3 maxp = center + rscale;

		if (n * minp > -d) 
		{
			return 0;
		}
	
		if (n * maxp > -d)
		{
			result = 1;
		}
	}

	return result;
}

int LLCamera::sphereInFrustumQuick(const LLVector3 &sphere_center, const F32 radius) 
{
	LLVector3 dist = sphere_center-mFrustCenter;
	float dsq = dist * dist;
	float rsq = mFarPlane*0.5f + radius;
	rsq *= rsq;

	if (dsq < rsq) 
	{
		return 1;
	}
	
	return 0;	
}

// HACK: This version is still around because the version below doesn't work
// unless the agent planes are initialized.
// Return 1 if sphere is in frustum, 2 if fully in frustum, otherwise 0.
// NOTE: 'center' is in absolute frame.
int LLCamera::sphereInFrustumOld(const LLVector3 &sphere_center, const F32 radius) const 
{
	// Returns 1 if sphere is in frustum, 0 if not.
	// modified so that default view frust is along X with Z vertical
	F32 x, y, z, rightDist, leftDist, topDist, bottomDist;

	// Subtract the view position 
	//LLVector3 relative_center;
	//relative_center = sphere_center - getOrigin();
	LLVector3 rel_center(sphere_center);
	rel_center -= mOrigin;

	bool all_in = TRUE;

	// Transform relative_center.x to camera frame
	x = mXAxis * rel_center;
	if (x < MIN_NEAR_PLANE - radius)
	{
		return 0;
	}
	else if (x < MIN_NEAR_PLANE + radius)
	{
		all_in = FALSE;
	}

	if (x > mFarPlane + radius)
	{
		return 0;
	}
	else if (x > mFarPlane - radius)
	{
		all_in = FALSE;
	}

	// Transform relative_center.y to camera frame
	y = mYAxis * rel_center;

	// distance to plane is the dot product of (x, y, 0) * plane_normal
	rightDist = x * mLocalPlanes[PLANE_RIGHT][VX] + y * mLocalPlanes[PLANE_RIGHT][VY];
	if (rightDist < -radius)
	{
		return 0;
	}
	else if (rightDist < radius)
	{
		all_in = FALSE;
	}

	leftDist = x * mLocalPlanes[PLANE_LEFT][VX] + y * mLocalPlanes[PLANE_LEFT][VY];
	if (leftDist < -radius)
	{
		return 0;
	}
	else if (leftDist < radius)
	{
		all_in = FALSE;
	}

	// Transform relative_center.y to camera frame
	z = mZAxis * rel_center;

	topDist = x * mLocalPlanes[PLANE_TOP][VX] + z * mLocalPlanes[PLANE_TOP][VZ];
	if (topDist < -radius)
	{
		return 0;
	}
	else if (topDist < radius)
	{
		all_in = FALSE;
	}

	bottomDist = x * mLocalPlanes[PLANE_BOTTOM][VX] + z * mLocalPlanes[PLANE_BOTTOM][VZ];
	if (bottomDist < -radius)
	{
		return 0;
	}
	else if (bottomDist < radius)
	{
		all_in = FALSE;
	}

	if (all_in)
	{
		return 2;
	}

	return 1;
}


// HACK: This (presumably faster) version only currently works if you set up the
// frustum planes using GL.  At some point we should get those planes through another
// mechanism, and then we can get rid of the "old" version above.

// Return 1 if sphere is in frustum, 2 if fully in frustum, otherwise 0.
// NOTE: 'center' is in absolute frame.
int LLCamera::sphereInFrustum(const LLVector3 &sphere_center, const F32 radius) const 
{
	// Returns 1 if sphere is in frustum, 0 if not.
	int res = 2;
	for (int i = 0; i < 6; i++)
	{
		if (mAgentPlanes[i].mask == 0xff)
		{
			continue;
		} 

		float d = mAgentPlanes[i].p.dist(sphere_center);

		if (d > radius) 
		{
			return 0;
		}

		if (d > -radius)
		{
			res = 1;
		}
	}

	return res;
}


// return height of a sphere of given radius, located at center, in pixels
F32 LLCamera::heightInPixels(const LLVector3 &center, F32 radius ) const
{
	if (radius == 0.f) return 0.f;

	// If height initialized
	if (mViewHeightInPixels > -1)
	{
		// Convert sphere to coord system with 0,0,0 at camera
		LLVector3 vec = center - mOrigin;

		// Compute distance to sphere
		F32 dist = vec.magVec();

		// Calculate angle of whole object
		F32 angle = 2.0f * (F32) atan2(radius, dist);

		// Calculate fraction of field of view
		F32 fraction_of_fov = angle / mView;

		// Compute number of pixels tall, based on vertical field of view
		return (fraction_of_fov * mViewHeightInPixels);
	}
	else
	{
		// return invalid height
		return -1.0f;
	}
}

// If pos is visible, return the distance from pos to the camera.
// Use fudge distance to scale rad against top/bot/left/right planes
// Otherwise, return -distance
F32 LLCamera::visibleDistance(const LLVector3 &pos, F32 rad, F32 fudgedist, U32 planemask) const
{
	if (mFixedDistance > 0)
	{
		return mFixedDistance;
	}
	LLVector3 dvec = pos - mOrigin;
	// Check visibility
	F32 dist = dvec.magVec();
	if (dist > rad)
	{
 		F32 dp,tdist;
 		dp = dvec * mXAxis;
  		if (dp < -rad)
  			return -dist;

		rad *= fudgedist;
		LLVector3 tvec(pos);
		for (int p=0; p<PLANE_NUM; p++)
		{
			if (!(planemask & (1<<p)))
				continue;
			tdist = -(mWorldPlanes[p].dist(tvec));
			if (tdist > rad)
				return -dist;
		}
	}
	return dist;
}

// Like visibleDistance, except uses mHorizPlanes[], which are left and right
//  planes perpindicular to (0,0,1) in world space
F32 LLCamera::visibleHorizDistance(const LLVector3 &pos, F32 rad, F32 fudgedist, U32 planemask) const
{
	if (mFixedDistance > 0)
	{
		return mFixedDistance;
	}
	LLVector3 dvec = pos - mOrigin;
	// Check visibility
	F32 dist = dvec.magVec();
	if (dist > rad)
	{
		rad *= fudgedist;
		LLVector3 tvec(pos);
		for (int p=0; p<HORIZ_PLANE_NUM; p++)
		{
			if (!(planemask & (1<<p)))
				continue;
			F32 tdist = -(mHorizPlanes[p].dist(tvec));
			if (tdist > rad)
				return -dist;
		}
	}
	return dist;
}

// ---------------- friends and operators ----------------  

std::ostream& operator<<(std::ostream &s, const LLCamera &C) 
{
	s << "{ \n";
	s << "  Center = " << C.getOrigin() << "\n";
	s << "  AtAxis = " << C.getXAxis() << "\n";
	s << "  LeftAxis = " << C.getYAxis() << "\n";
	s << "  UpAxis = " << C.getZAxis() << "\n";
	s << "  View = " << C.getView() << "\n";
	s << "  Aspect = " << C.getAspect() << "\n";
	s << "  NearPlane   = " << C.mNearPlane << "\n";
	s << "  FarPlane    = " << C.mFarPlane << "\n";
	s << "  TopPlane    = " << C.mLocalPlanes[LLCamera::PLANE_TOP][VX] << "  " 
							<< C.mLocalPlanes[LLCamera::PLANE_TOP][VY] << "  " 
							<< C.mLocalPlanes[LLCamera::PLANE_TOP][VZ] << "\n";
	s << "  BottomPlane = " << C.mLocalPlanes[LLCamera::PLANE_BOTTOM][VX] << "  " 
							<< C.mLocalPlanes[LLCamera::PLANE_BOTTOM][VY] << "  " 
							<< C.mLocalPlanes[LLCamera::PLANE_BOTTOM][VZ] << "\n";
	s << "  LeftPlane   = " << C.mLocalPlanes[LLCamera::PLANE_LEFT][VX] << "  " 
							<< C.mLocalPlanes[LLCamera::PLANE_LEFT][VY] << "  " 
							<< C.mLocalPlanes[LLCamera::PLANE_LEFT][VZ] << "\n";
	s << "  RightPlane  = " << C.mLocalPlanes[LLCamera::PLANE_RIGHT][VX] << "  " 
							<< C.mLocalPlanes[LLCamera::PLANE_RIGHT][VY] << "  " 
							<< C.mLocalPlanes[LLCamera::PLANE_RIGHT][VZ] << "\n";
	s << "}";
	return s;
}



// ----------------  private member functions ----------------

void LLCamera::calculateFrustumPlanes() 
{
	// The planes only change when any of the frustum descriptions change.
	// They are not affected by changes of the position of the Frustum
	// because they are known in the view frame and the position merely
	// provides information on how to get from the absolute frame to the 
	// view frame.

	F32 left,right,top,bottom;
	top = mFarPlane * (F32)tanf(0.5f * mView);
	bottom = -top;
	left = top * mAspect;
	right = -left;

	calculateFrustumPlanes(left, right, top, bottom);
}

LLPlane planeFromPoints(LLVector3 p1, LLVector3 p2, LLVector3 p3)
{
	LLVector3 n = ((p2-p1)%(p3-p1));
	n.normVec();

	return LLPlane(p1, n);
}

U8 LLCamera::calcPlaneMask(const LLPlane& plane)
{
	U8 mask = 0;
	
	if (plane.mV[0] >= 0)
	{
		mask |= 1;
	}
	if (plane.mV[1] >= 0)
	{
		mask |= 2;
	}
	if (plane.mV[2] >= 0)
	{
		mask |= 4;
	}

	return mask;
}

void LLCamera::ignoreAgentFrustumPlane(S32 idx)
{
	if (idx < 0 || idx > (S32) mPlaneCount)
	{
		return;
	}

	mAgentPlanes[idx].mask = 0xff;
	mAgentPlanes[idx].p.clearVec();
}

void LLCamera::calcAgentFrustumPlanes(LLVector3* frust)
{

	for (int i = 0; i < 8; i++)
	{
		mAgentFrustum[i] = frust[i];
	}

	mFrustumCornerDist = (frust[5] - getOrigin()).magVec();

	//frust contains the 8 points of the frustum, calculate 6 planes

	//order of planes is important, keep most likely to fail in the front of the list

	//near - frust[0], frust[1], frust[2]
	mAgentPlanes[2].p = planeFromPoints(frust[0], frust[1], frust[2]);

	//far  
	mAgentPlanes[5].p = planeFromPoints(frust[5], frust[4], frust[6]);

	//left  
	mAgentPlanes[0].p = planeFromPoints(frust[4], frust[0], frust[7]);

	//right  
	mAgentPlanes[1].p = planeFromPoints(frust[1], frust[5], frust[6]);

	//top  
	mAgentPlanes[4].p = planeFromPoints(frust[3], frust[2], frust[6]);

	//bottom  
	mAgentPlanes[3].p = planeFromPoints(frust[1], frust[0], frust[4]);

	//cache plane octant facing mask for use in AABBInFrustum
	for (U32 i = 0; i < mPlaneCount; i++)
	{
		mAgentPlanes[i].mask = calcPlaneMask(mAgentPlanes[i].p);
	}
}

void LLCamera::calculateFrustumPlanes(F32 left, F32 right, F32 top, F32 bottom)
{
	LLVector3 a, b, c;

	// For each plane we need to define 3 points (LLVector3's) in camera view space.  
	// The order in which we pass the points to planeFromPoints() matters, because the 
	// plane normal has a degeneracy of 2; we want it pointing _into_ the frustum. 

	a.setVec(0.0f, 0.0f, 0.0f);
	b.setVec(mFarPlane, right, top);
	c.setVec(mFarPlane, right, bottom);
	mLocalPlanes[PLANE_RIGHT].setVec(a, b, c);

	c.setVec(mFarPlane, left, top);
	mLocalPlanes[PLANE_TOP].setVec(a, c, b);

	b.setVec(mFarPlane, left, bottom);
	mLocalPlanes[PLANE_LEFT].setVec(a, b, c);

	c.setVec(mFarPlane, right, bottom);
	mLocalPlanes[PLANE_BOTTOM].setVec( a, c, b); 

	//calculate center and radius squared of frustum in world absolute coordinates
	mFrustCenter = X_AXIS*mFarPlane*0.5f;
	mFrustCenter = transformToAbsolute(mFrustCenter);
	mFrustRadiusSquared = mFarPlane*0.5f;
	mFrustRadiusSquared *= mFrustRadiusSquared * 1.05f; //pad radius squared by 5%
}

// x and y are in WINDOW space, so x = Y-Axis (left/right), y= Z-Axis(Up/Down)
void LLCamera::calculateFrustumPlanesFromWindow(F32 x1, F32 y1, F32 x2, F32 y2)
{
	F32 bottom, top, left, right;
	F32 view_height = (F32)tanf(0.5f * mView) * mFarPlane;
	F32 view_width = view_height * mAspect;
	
	left = 	 x1 * -2.f * view_width;
	right =  x2 * -2.f * view_width;
	bottom = y1 * 2.f * view_height; 
	top = 	 y2 * 2.f * view_height;

	calculateFrustumPlanes(left, right, top, bottom);
}

void LLCamera::calculateWorldFrustumPlanes() 
{
	F32 d;
	LLVector3 center = mOrigin - mXAxis*mNearPlane;
	mWorldPlanePos = center;
	for (int p=0; p<4; p++)
	{
		LLVector3 pnorm = LLVector3(mLocalPlanes[p]);
		LLVector3 norm = rotateToAbsolute(pnorm);
		norm.normVec();
		d = -(center * norm);
		mWorldPlanes[p] = LLPlane(norm, d);
	}
	// horizontal planes, perpindicular to (0,0,1);
	LLVector3 zaxis(0, 0, 1.0f);
	F32 yaw = getYaw();
	{
		LLVector3 tnorm = LLVector3(mLocalPlanes[PLANE_LEFT]);
		tnorm.rotVec(yaw, zaxis);
		d = -(mOrigin * tnorm);
		mHorizPlanes[HORIZ_PLANE_LEFT] = LLPlane(tnorm, d);
	}
	{
		LLVector3 tnorm = LLVector3(mLocalPlanes[PLANE_RIGHT]);
		tnorm.rotVec(yaw, zaxis);
		d = -(mOrigin * tnorm);
		mHorizPlanes[HORIZ_PLANE_RIGHT] = LLPlane(tnorm, d);
	}
}

// NOTE: this is the OpenGL matrix that will transform the default OpenGL view 
// (-Z=at, Y=up) to the default view of the LLCamera class (X=at, Z=up):
// 
// F32 cfr_transform =  {  0.f,  0.f, -1.f,  0.f,   // -Z becomes X
// 						  -1.f,  0.f,  0.f,  0.f,   // -X becomes Y
//  					   0.f,  1.f,  0.f,  0.f,   //  Y becomes Z
// 						   0.f,  0.f,  0.f,  1.f };