1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/*
* LLCalcParser.h
* SecondLife
*
* Created by Aimee Walton on 28/09/2008.
* Copyright 2008 Aimee Walton.
*
*/
#ifndef LL_CALCPARSER_H
#define LL_CALCPARSER_H
#include <boost/version.hpp>
#if BOOST_VERSION >= 103600
#include <boost/spirit/include/classic_attribute.hpp>
#include <boost/spirit/include/classic_core.hpp>
#include <boost/spirit/include/classic_error_handling.hpp>
#include <boost/spirit/include/classic_position_iterator.hpp>
#include <boost/spirit/include/phoenix1_binders.hpp>
#include <boost/spirit/include/classic_symbols.hpp>
using namespace boost::spirit::classic;
#else
#include <boost/spirit/attribute.hpp>
#include <boost/spirit/core.hpp>
#include <boost/spirit/error_handling.hpp>
#include <boost/spirit/iterator/position_iterator.hpp>
#include <boost/spirit/phoenix/binders.hpp>
#include <boost/spirit/symbols/symbols.hpp>
using namespace boost::spirit;
#endif
#include <map>
#include <string>
#include "llcalc.h"
#include "llmath.h"
struct LLCalcParser : grammar<LLCalcParser>
{
LLCalcParser(F32& result, LLCalc::calc_map_t* constants, LLCalc::calc_map_t* vars) :
mResult(result), mConstants(constants), mVariables(vars) {};
struct value_closure : closure<value_closure, F32>
{
member1 value;
};
template <typename ScannerT>
struct definition
{
// Rule declarations
rule<ScannerT> statement, identifier;
rule<ScannerT, value_closure::context_t> expression, term,
power,
unary_expr,
factor,
unary_func,
binary_func,
group;
// start() should return the starting symbol
rule<ScannerT> const& start() const { return statement; }
definition(LLCalcParser const& self)
{
using namespace phoenix;
assertion<std::string> assert_domain("Domain error");
// assertion<std::string> assert_symbol("Unknown symbol");
assertion<std::string> assert_syntax("Syntax error");
identifier =
lexeme_d[(alpha_p | '_') >> *(alnum_p | '_')]
;
group =
'(' >> expression[group.value = arg1] >> assert_syntax(ch_p(')'))
;
unary_func =
((str_p("SIN") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_sin)(self,arg1)]) |
(str_p("COS") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_cos)(self,arg1)]) |
(str_p("TAN") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_tan)(self,arg1)]) |
(str_p("ASIN") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_asin)(self,arg1)]) |
(str_p("ACOS") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_acos)(self,arg1)]) |
(str_p("ATAN") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_atan)(self,arg1)]) |
(str_p("SQRT") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_sqrt)(self,arg1)]) |
(str_p("LOG") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_log)(self,arg1)]) |
(str_p("EXP") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_exp)(self,arg1)]) |
(str_p("ABS") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_fabs)(self,arg1)])
) >> assert_syntax(ch_p(')'))
;
binary_func =
((str_p("ATAN2") >> '(' >> expression[binary_func.value = arg1] >> ',' >>
expression[binary_func.value = bind(&LLCalcParser::_atan2)(self, binary_func.value, arg1)]) |
(str_p("MIN") >> '(' >> expression[binary_func.value = arg1] >> ',' >>
expression[binary_func.value = bind(&LLCalcParser::min)(self, binary_func.value, arg1)]) |
(str_p("MAX") >> '(' >> expression[binary_func.value = arg1] >> ',' >>
expression[binary_func.value = bind(&LLCalcParser::max)(self, binary_func.value, arg1)])
) >> assert_syntax(ch_p(')'))
;
// *TODO: Localisation of the decimal point?
// Problem, LLLineEditor::postvalidateFloat accepts a comma when appropriate
// for the current locale. However to do that here could clash with using
// the comma as a separator when passing arguments to functions.
factor =
(ureal_p[factor.value = arg1] |
group[factor.value = arg1] |
unary_func[factor.value = arg1] |
binary_func[factor.value = arg1] |
// Lookup throws an Unknown Symbol error if it is unknown, while this works fine,
// would be "neater" to handle symbol lookup from here with an assertive parser.
// constants_p[factor.value = arg1]|
identifier[factor.value = bind(&LLCalcParser::lookup)(self, arg1, arg2)]
) >>
// Detect and throw math errors.
assert_domain(eps_p(bind(&LLCalcParser::checkNaN)(self, factor.value)))
;
unary_expr =
!ch_p('+') >> factor[unary_expr.value = arg1] |
'-' >> factor[unary_expr.value = -arg1]
;
power =
unary_expr[power.value = arg1] >>
*('^' >> assert_syntax(unary_expr[power.value = bind(&powf)(power.value, arg1)]))
;
term =
power[term.value = arg1] >>
*(('*' >> assert_syntax(power[term.value *= arg1])) |
('/' >> assert_syntax(power[term.value /= arg1])) |
('%' >> assert_syntax(power[term.value = bind(&fmodf)(term.value, arg1)]))
)
;
expression =
assert_syntax(term[expression.value = arg1]) >>
*(('+' >> assert_syntax(term[expression.value += arg1])) |
('-' >> assert_syntax(term[expression.value -= arg1]))
)
;
statement =
!ch_p('=') >> ( expression )[var(self.mResult) = arg1] >> (end_p)
;
}
};
private:
// Member functions for semantic actions
F32 lookup(const std::string::iterator&, const std::string::iterator&) const;
F32 min(const F32& a, const F32& b) const { return llmin(a, b); }
F32 max(const F32& a, const F32& b) const { return llmax(a, b); }
bool checkNaN(const F32& a) const { return !llisnan(a); }
//FIX* non ambigious function fix making SIN() work for calc -Cryogenic Blitz
F32 _sin(const F32& a) const { return sin(DEG_TO_RAD * a); }
F32 _cos(const F32& a) const { return cos(DEG_TO_RAD * a); }
F32 _tan(const F32& a) const { return tan(DEG_TO_RAD * a); }
F32 _asin(const F32& a) const { return asin(a * RAD_TO_DEG); }
F32 _acos(const F32& a) const { return acos(a * RAD_TO_DEG); }
F32 _atan(const F32& a) const { return atan(a * RAD_TO_DEG); }
F32 _sqrt(const F32& a) const { return sqrt(a); }
F32 _log(const F32& a) const { return log(a); }
F32 _exp(const F32& a) const { return exp(a); }
F32 _fabs(const F32& a) const { return fabs(a) * RAD_TO_DEG; }
F32 _atan2(const F32& a,const F32& b) const { return atan2(a,b); }
LLCalc::calc_map_t* mConstants;
LLCalc::calc_map_t* mVariables;
// LLCalc::calc_map_t* mUserVariables;
F32& mResult;
};
#endif // LL_CALCPARSER_H
|