1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
/**
* @file aithreadsafe.h
* @brief Implementation of AIThreadSafe, AIReadAccessConst, AIReadAccess and AIWriteAccess.
*
* CHANGELOG
* and additional copyright holders.
*
* 31/03/2010
* Initial version, written by Aleric Inglewood @ SL
*/
#ifndef AITHREADSAFE_H
#define AITHREADSAFE_H
#include <new>
#include "llthread.h"
#include "llerror.h"
template<typename T> struct AIReadAccessConst;
template<typename T> struct AIReadAccess;
template<typename T> struct AIWriteAccess;
template<typename T> struct AIAccess;
template<typename T>
class AIThreadSafeBits
{
private:
// AIThreadSafe is a wrapper around an instance of T.
// Because T might not have a default constructor, it is constructed
// 'in place', with placement new, in the memory reserved here.
//
// Make sure that the memory that T will be placed in is properly
// aligned by using an array of long's.
long mMemory[(sizeof(T) + sizeof(long) - 1) / sizeof(long)];
public:
// The wrapped objects are constructed in-place with placement new *outside*
// of this object (by AITHREADSAFE macro(s) or derived classes).
// However, we are responsible for the destruction of the wrapped object.
~AIThreadSafeBits() { ptr()->~T(); }
// Only for use by AITHREADSAFE, see below.
void* memory() const { return const_cast<long*>(&mMemory[0]); }
protected:
// Accessors.
T const* ptr() const { return reinterpret_cast<T const*>(mMemory); }
T* ptr() { return reinterpret_cast<T*>(mMemory); }
};
/**
* @brief A wrapper class for objects that need to be accessed by more than one thread, allowing concurrent readers.
*
* Use AITHREADSAFE to define instances of any type, and use AIReadAccessConst,
* AIReadAccess and AIWriteAccess to get access to the instance.
*
* For example,
*
* <code>
* class Foo { public: Foo(int, int); };
*
* AITHREADSAFE(Foo, foo, (2, 3));
*
* AIReadAccess<Foo> foo_r(foo);
* // Use foo_r-> for read access.
*
* AIWriteAccess<Foo> foo_w(foo);
* // Use foo_w-> for write access.
* </code>
*
* If <code>foo</code> is constant, you have to use <code>AIReadAccessConst<Foo></code>.
*
* It is possible to pass access objects to a function that
* downgrades the access, for example:
*
* <code>
* void readfunc(AIReadAccess const& access);
*
* AIWriteAccess<Foo> foo_w(foo);
* readfunc(foo_w); // readfunc will perform read access to foo_w.
* </code>
*
* If <code>AIReadAccess</code> is non-const, you can upgrade the access by creating
* an <code>AIWriteAccess</code> object from it. For example:
*
* <code>
* AIWriteAccess<Foo> foo_w(foo_r);
* </code>
*
* This API is Robust(tm). If you try anything that could result in problems,
* it simply won't compile. The only mistake you can still easily make is
* to obtain write access to an object when it is not needed, or to unlock
* an object in between accesses while the state of the object should be
* preserved. For example:
*
* <code>
* // This resets foo to point to the first file and then returns that.
* std::string filename = AIWriteAccess<Foo>(foo)->get_first_filename();
*
* // WRONG! The state between calling get_first_filename and get_next_filename should be preserved!
*
* AIWriteAccess<Foo> foo_w(foo); // Wrong. The code below only needs read-access.
* while (!filename.empty())
* {
* something(filename);
* filename = foo_w->next_filename();
* }
* </code>
*
* Correct would be
*
* <code>
* AIReadAccess<Foo> foo_r(foo);
* std::string filename = AIWriteAccess<Foo>(foo_r)->get_first_filename();
* while (!filename.empty())
* {
* something(filename);
* filename = foo_r->next_filename();
* }
* </code>
*
*/
template<typename T>
class AIThreadSafe : public AIThreadSafeBits<T>
{
protected:
// Only these may access the object (through ptr()).
friend struct AIReadAccessConst<T>;
friend struct AIReadAccess<T>;
friend struct AIWriteAccess<T>;
// Locking control.
AIRWLock mRWLock;
// For use by AIThreadSafeDC
AIThreadSafe(void) { }
AIThreadSafe(AIAPRPool& parent) : mRWLock(parent) { }
public:
// Only for use by AITHREADSAFE, see below.
AIThreadSafe(T* object) { llassert(object == AIThreadSafeBits<T>::ptr()); }
};
/**
* @brief Instantiate an static, global or local object of a given type wrapped in AIThreadSafe, using an arbitrary constructor.
*
* For example, instead of doing
*
* <code>
* Foo foo(x, y);
* static Bar bar;
* </code>
*
* One can instantiate a thread-safe instance with
*
* <code>
* AITHREADSAFE(Foo, foo, (x, y));
* static AITHREADSAFE(Bar, bar, );
* </code>
*
* Note: This macro does not allow to allocate such object on the heap.
* If that is needed, have a look at AIThreadSafeDC.
*/
#define AITHREADSAFE(type, var, paramlist) AIThreadSafe<type> var(new (var.memory()) type paramlist)
/**
* @brief A wrapper class for objects that need to be accessed by more than one thread.
*
* This class is the same as an AIThreadSafe wrapper, except that it can only
* be used for default constructed objects.
*
* For example, instead of
*
* <code>
* Foo foo;
* </code>
*
* One would use
*
* <code>
* AIThreadSafeDC<Foo> foo;
* </code>
*
* The advantage over AITHREADSAFE is that this object can be allocated with
* new on the heap. For example:
*
* <code>
* AIThreadSafeDC<Foo>* ptr = new AIThreadSafeDC<Foo>;
* </code>
*
* which is not possible with AITHREADSAFE.
*/
template<typename T>
class AIThreadSafeDC : public AIThreadSafe<T>
{
public:
// Construct a wrapper around a default constructed object.
AIThreadSafeDC(void) { new (AIThreadSafe<T>::ptr()) T; }
};
/**
* @brief Read lock object and provide read access.
*/
template<typename T>
struct AIReadAccessConst
{
//! Internal enum for the lock-type of the AI*Access object.
enum state_type
{
readlocked, //!< A AIReadAccessConst or AIReadAccess.
read2writelocked, //!< A AIWriteAccess constructed from a AIReadAccess.
writelocked, //!< A AIWriteAccess constructed from a AIThreadSafe.
write2writelocked //!< A AIWriteAccess constructed from (the AIReadAccess base class of) a AIWriteAccess.
};
//! Construct a AIReadAccessConst from a constant AIThreadSafe.
AIReadAccessConst(AIThreadSafe<T> const& wrapper)
: mWrapper(const_cast<AIThreadSafe<T>&>(wrapper)),
mState(readlocked)
{
mWrapper.mRWLock.rdlock();
}
//! Destruct the AI*Access object.
// These should never be dynamically allocated, so there is no need to make this virtual.
~AIReadAccessConst()
{
if (mState == readlocked)
mWrapper.mRWLock.rdunlock();
else if (mState == writelocked)
mWrapper.mRWLock.wrunlock();
else if (mState == read2writelocked)
mWrapper.mRWLock.wr2rdlock();
}
//! Access the underlaying object for read access.
T const* operator->() const { return mWrapper.ptr(); }
//! Access the underlaying object for read access.
T const& operator*() const { return *mWrapper.ptr(); }
protected:
//! Constructor used by AIReadAccess.
AIReadAccessConst(AIThreadSafe<T>& wrapper, state_type state)
: mWrapper(wrapper), mState(state) { }
AIThreadSafe<T>& mWrapper; //!< Reference to the object that we provide access to.
state_type const mState; //!< The lock state that mWrapper is in.
private:
// Disallow copy constructing directly.
AIReadAccessConst(AIReadAccessConst const&);
};
/**
* @brief Read lock object and provide read access, with possible promotion to write access.
*/
template<typename T>
struct AIReadAccess : public AIReadAccessConst<T>
{
typedef typename AIReadAccessConst<T>::state_type state_type;
using AIReadAccessConst<T>::readlocked;
//! Construct a AIReadAccess from a non-constant AIThreadSafe.
AIReadAccess(AIThreadSafe<T>& wrapper) : AIReadAccessConst<T>(wrapper, readlocked) { this->mWrapper.mRWLock.rdlock(); }
protected:
//! Constructor used by AIWriteAccess.
AIReadAccess(AIThreadSafe<T>& wrapper, state_type state) : AIReadAccessConst<T>(wrapper, state) { }
friend class AIWriteAccess<T>;
};
/**
* @brief Write lock object and provide read/write access.
*/
template<typename T>
struct AIWriteAccess : public AIReadAccess<T>
{
using AIReadAccessConst<T>::readlocked;
using AIReadAccessConst<T>::read2writelocked;
using AIReadAccessConst<T>::writelocked;
using AIReadAccessConst<T>::write2writelocked;
//! Construct a AIWriteAccess from a non-constant AIThreadSafe.
AIWriteAccess(AIThreadSafe<T>& wrapper) : AIReadAccess<T>(wrapper, writelocked) { this->mWrapper.mRWLock.wrlock();}
//! Promote read access to write access.
explicit AIWriteAccess(AIReadAccess<T>& access)
: AIReadAccess<T>(access.mWrapper, (access.mState == readlocked) ? read2writelocked : write2writelocked)
{
if (this->mState == read2writelocked)
{
this->mWrapper.mRWLock.rd2wrlock();
}
}
//! Access the underlaying object for (read and) write access.
T* operator->() const { return this->mWrapper.ptr(); }
//! Access the underlaying object for (read and) write access.
T& operator*() const { return *this->mWrapper.ptr(); }
};
/**
* @brief A wrapper class for objects that need to be accessed by more than one thread.
*
* Use AITHREADSAFESIMPLE to define instances of any type, and use AIAccess
* to get access to the instance.
*
* For example,
*
* <code>
* class Foo { public: Foo(int, int); };
*
* AITHREADSAFESIMPLE(Foo, foo, (2, 3));
*
* AIAccess<Foo> foo_w(foo);
* // Use foo_w-> for read and write access.
*
* See also AIThreadSafe
*/
template<typename T>
class AIThreadSafeSimple : public AIThreadSafeBits<T>
{
protected:
// Only this one may access the object (through ptr()).
friend struct AIAccess<T>;
// Locking control.
LLMutex mMutex;
// For use by AIThreadSafeSimpleDC
AIThreadSafeSimple(void) { }
AIThreadSafeSimple(AIAPRPool& parent) : mMutex(parent) { }
public:
// Only for use by AITHREADSAFESIMPLE, see below.
AIThreadSafeSimple(T* object) { llassert(object == AIThreadSafeBits<T>::ptr()); }
};
/**
* @brief Instantiate an static, global or local object of a given type wrapped in AIThreadSafeSimple, using an arbitrary constructor.
*
* For example, instead of doing
*
* <code>
* Foo foo(x, y);
* static Bar bar;
* </code>
*
* One can instantiate a thread-safe instance with
*
* <code>
* AITHREADSAFESIMPLE(Foo, foo, (x, y));
* static AITHREADSAFESIMPLE(Bar, bar, );
* </code>
*
* Note: This macro does not allow to allocate such object on the heap.
* If that is needed, have a look at AIThreadSafeSimpleDC.
*/
#define AITHREADSAFESIMPLE(type, var, paramlist) AIThreadSafeSimple<type> var(new (var.memory()) type paramlist)
/**
* @brief A wrapper class for objects that need to be accessed by more than one thread.
*
* This class is the same as an AIThreadSafeSimple wrapper, except that it can only
* be used for default constructed objects.
*
* For example, instead of
*
* <code>
* Foo foo;
* </code>
*
* One would use
*
* <code>
* AIThreadSafeSimpleDC<Foo> foo;
* </code>
*
* The advantage over AITHREADSAFESIMPLE is that this object can be allocated with
* new on the heap. For example:
*
* <code>
* AIThreadSafeSimpleDC<Foo>* ptr = new AIThreadSafeSimpleDC<Foo>;
* </code>
*
* which is not possible with AITHREADSAFESIMPLE.
*/
template<typename T>
class AIThreadSafeSimpleDC : public AIThreadSafeSimple<T>
{
public:
// Construct a wrapper around a default constructed object.
AIThreadSafeSimpleDC(void) { new (AIThreadSafeSimple<T>::ptr()) T; }
protected:
// For use by AIThreadSafeSimpleDCRootPool
AIThreadSafeSimpleDC(AIAPRPool& parent) : AIThreadSafeSimple<T>(parent) { new (AIThreadSafeSimple<T>::ptr()) T; }
};
// Helper class for AIThreadSafeSimpleDCRootPool to assure initialization of
// the root pool before constructing AIThreadSafeSimpleDC.
class AIThreadSafeSimpleDCRootPool_pbase
{
protected:
AIAPRRootPool mRootPool;
private:
template<typename T> friend class AIThreadSafeSimpleDCRootPool;
AIThreadSafeSimpleDCRootPool_pbase(void) { }
};
/**
* @brief A wrapper class for objects that need to be accessed by more than one thread.
*
* The same as AIThreadSafeSimpleDC except that this class creates its own AIAPRRootPool
* for the internally used mutexes and condition, instead of using the current threads
* root pool. The advantage of this is that it can be used for objects that need to
* be accessed from the destructors of global objects (after main). The disadvantage
* is that it's less efficient to use your own root pool, therefore it's use should be
* restricted to those cases where it is absolutely necessary.
*/
template<typename T>
class AIThreadSafeSimpleDCRootPool : private AIThreadSafeSimpleDCRootPool_pbase, public AIThreadSafeSimpleDC<T>
{
public:
// Construct a wrapper around a default constructed object, using memory allocated
// from the operating system for the internal APR objects (mutexes and conditional),
// as opposed to allocated from the current threads root pool.
AIThreadSafeSimpleDCRootPool(void) :
AIThreadSafeSimpleDCRootPool_pbase(),
AIThreadSafeSimpleDC<T>(mRootPool) { }
};
/**
* @brief Write lock object and provide read/write access.
*/
template<typename T>
struct AIAccess
{
//! Construct a AIAccess from a non-constant AIThreadSafeSimple.
AIAccess(AIThreadSafeSimple<T>& wrapper) : mWrapper(wrapper) { this->mWrapper.mMutex.lock(); }
//! Access the underlaying object for (read and) write access.
T* operator->() const { return this->mWrapper.ptr(); }
//! Access the underlaying object for (read and) write access.
T& operator*() const { return *this->mWrapper.ptr(); }
~AIAccess() { this->mWrapper.mMutex.unlock(); }
protected:
AIThreadSafeSimple<T>& mWrapper; //!< Reference to the object that we provide access to.
private:
// Disallow copy constructing directly.
AIAccess(AIAccess const&);
};
#endif
|