1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
|
/*
* Off-the-Record Messaging library
* Copyright (C) 2004-2008 Ian Goldberg, Chris Alexander, Nikita Borisov
* <otr@cypherpunks.ca>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of version 2.1 of the GNU Lesser General
* Public License as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* system headers */
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
/* libgcrypt headers */
#include <gcrypt.h>
/* libotr headers */
#include "sm.h"
#include "serial.h"
static const int SM_MSG1_LEN = 6;
static const int SM_MSG2_LEN = 11;
static const int SM_MSG3_LEN = 8;
static const int SM_MSG4_LEN = 3;
/* The modulus p */
static const char* SM_MODULUS_S = "0x"
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF";
/* The order of the group q = (p-1)/2 */
static const char* SM_ORDER_S = "0x"
"7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68"
"948127044533E63A0105DF531D89CD9128A5043CC71A026E"
"F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122"
"F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6"
"F71C35FDAD44CFD2D74F9208BE258FF324943328F6722D9E"
"E1003E5C50B1DF82CC6D241B0E2AE9CD348B1FD47E9267AF"
"C1B2AE91EE51D6CB0E3179AB1042A95DCF6A9483B84B4B36"
"B3861AA7255E4C0278BA36046511B993FFFFFFFFFFFFFFFF";
static const char *SM_GENERATOR_S = "0x02";
static const int SM_MOD_LEN_BITS = 1536;
static const int SM_MOD_LEN_BYTES = 192;
static gcry_mpi_t SM_MODULUS = NULL;
static gcry_mpi_t SM_GENERATOR = NULL;
static gcry_mpi_t SM_ORDER = NULL;
static gcry_mpi_t SM_MODULUS_MINUS_2 = NULL;
/*
* Call this once, at plugin load time. It sets up the modulus and
* generator MPIs.
*/
void otrl_sm_init(void)
{
gcry_check_version(NULL);
gcry_mpi_scan(&SM_MODULUS, GCRYMPI_FMT_HEX, SM_MODULUS_S, 0, NULL);
gcry_mpi_scan(&SM_ORDER, GCRYMPI_FMT_HEX, SM_ORDER_S, 0, NULL);
gcry_mpi_scan(&SM_GENERATOR, GCRYMPI_FMT_HEX, SM_GENERATOR_S,
0, NULL);
SM_MODULUS_MINUS_2 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_sub_ui(SM_MODULUS_MINUS_2, SM_MODULUS, 2);
}
/*
* Initialize the fields of a SM state.
*/
void otrl_sm_state_new(OtrlSMState *smst)
{
smst->secret = NULL;
smst->x2 = NULL;
smst->x3 = NULL;
smst->g1 = NULL;
smst->g2 = NULL;
smst->g3 = NULL;
smst->g3o = NULL;
smst->p = NULL;
smst->q = NULL;
smst->pab = NULL;
smst->qab = NULL;
smst->nextExpected = OTRL_SMP_EXPECT1;
smst->received_question = 0;
smst->sm_prog_state = OTRL_SMP_PROG_OK;
}
/*
* Initialize the fields of a SM state. Called the first time that
* a user begins an SMP session.
*/
void otrl_sm_state_init(OtrlSMState *smst)
{
otrl_sm_state_free(smst);
smst->secret = gcry_mpi_new(SM_MOD_LEN_BITS);
smst->x2 = NULL;
smst->x3 = NULL;
smst->g1 = gcry_mpi_copy(SM_GENERATOR);
smst->g2 = gcry_mpi_new(SM_MOD_LEN_BITS);
smst->g3 = gcry_mpi_new(SM_MOD_LEN_BITS);
smst->g3o = gcry_mpi_new(SM_MOD_LEN_BITS);
smst->p = gcry_mpi_new(SM_MOD_LEN_BITS);
smst->q = gcry_mpi_new(SM_MOD_LEN_BITS);
smst->pab = gcry_mpi_new(SM_MOD_LEN_BITS);
smst->qab = gcry_mpi_new(SM_MOD_LEN_BITS);
smst->received_question = 0;
smst->sm_prog_state = OTRL_SMP_PROG_OK;
}
/*
* Initialize the fields of a SM message1.
* [0] = g2a, [1] = c2, [2] = d2, [3] = g3a, [4] = c3, [5] = d3
*/
void otrl_sm_msg1_init(gcry_mpi_t **msg1)
{
gcry_mpi_t *msg = malloc(SM_MSG1_LEN * sizeof(gcry_mpi_t));
msg[0] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[1] = NULL;
msg[2] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[3] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[4] = NULL;
msg[5] = gcry_mpi_new(SM_MOD_LEN_BITS);
*msg1 = msg;
}
/*
* Initialize the fields of a SM message2.
* [0] = g2b, [1] = c2, [2] = d2, [3] = g3b, [4] = c3, [5] = d3
* [6] = pb, [7] = qb, [8] = cp, [9] = d5, [10] = d6
*/
void otrl_sm_msg2_init(gcry_mpi_t **msg2)
{
gcry_mpi_t *msg = malloc(SM_MSG2_LEN * sizeof(gcry_mpi_t));
msg[0] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[1] = NULL;
msg[2] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[3] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[4] = NULL;
msg[5] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[6] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[7] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[8] = NULL;
msg[9] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[10] = gcry_mpi_new(SM_MOD_LEN_BITS);
*msg2 = msg;
}
/*
* Initialize the fields of a SM message3.
* [0] = pa, [1] = qa, [2] = cp, [3] = d5, [4] = d6, [5] = ra,
* [6] = cr, [7] = d7
*/
void otrl_sm_msg3_init(gcry_mpi_t **msg3)
{
gcry_mpi_t *msg = malloc(SM_MSG3_LEN * sizeof(gcry_mpi_t));
msg[0] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[1] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[2] = NULL;
msg[3] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[4] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[5] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[6] = NULL;
msg[7] = gcry_mpi_new(SM_MOD_LEN_BITS);
*msg3 = msg;
}
/*
* Initialize the fields of a SM message4.
* [0] = rb, [1] = cr, [2] = d7
*/
void otrl_sm_msg4_init(gcry_mpi_t **msg4)
{
gcry_mpi_t *msg = malloc(SM_MSG4_LEN * sizeof(gcry_mpi_t));
msg[0] = gcry_mpi_new(SM_MOD_LEN_BITS);
msg[1] = NULL;
msg[2] = gcry_mpi_new(SM_MOD_LEN_BITS);
*msg4 = msg;
}
/*
* Deallocate the contents of a OtrlSMState (but not the OtrlSMState
* itself)
*/
void otrl_sm_state_free(OtrlSMState *smst)
{
gcry_mpi_release(smst->secret);
gcry_mpi_release(smst->x2);
gcry_mpi_release(smst->x3);
gcry_mpi_release(smst->g1);
gcry_mpi_release(smst->g2);
gcry_mpi_release(smst->g3);
gcry_mpi_release(smst->g3o);
gcry_mpi_release(smst->p);
gcry_mpi_release(smst->q);
gcry_mpi_release(smst->pab);
gcry_mpi_release(smst->qab);
otrl_sm_state_new(smst);
}
/*
* Deallocate the contents of a message
*/
void otrl_sm_msg_free(gcry_mpi_t **message, int msglen)
{
gcry_mpi_t *msg = *message;
int i;
for (i=0; i<msglen; i++) {
gcry_mpi_release(msg[i]);
}
free(msg);
*message = NULL;
}
static gcry_mpi_t randomExponent(void)
{
unsigned char *secbuf = NULL;
gcry_mpi_t randexpon = NULL;
/* Generate a random exponent */
secbuf = gcry_random_bytes_secure(SM_MOD_LEN_BYTES, GCRY_STRONG_RANDOM);
gcry_mpi_scan(&randexpon, GCRYMPI_FMT_USG, secbuf, SM_MOD_LEN_BYTES, NULL);
gcry_free(secbuf);
return randexpon;
}
/*
* Hash one or two mpis. To hash only one mpi, b may be set to NULL.
*/
static gcry_error_t otrl_sm_hash(gcry_mpi_t* hash, int version,
const gcry_mpi_t a, const gcry_mpi_t b)
{
unsigned char* input;
unsigned char output[SM_DIGEST_SIZE];
size_t sizea;
size_t sizeb;
size_t totalsize;
unsigned char* dataa;
unsigned char* datab;
gcry_mpi_aprint(GCRYMPI_FMT_USG, &dataa, &sizea, a);
totalsize = 1 + 4 + sizea;
if (b) {
gcry_mpi_aprint(GCRYMPI_FMT_USG, &datab, &sizeb, b);
totalsize += 4 + sizeb;
} else {
sizeb = 0;
}
input = malloc(totalsize);
input[0] = (unsigned char)version;
input[1] = (unsigned char)((sizea >> 24) & 0xFF);
input[2] = (unsigned char)((sizea >> 16) & 0xFF);
input[3] = (unsigned char)((sizea >> 8) & 0xFF);
input[4] = (unsigned char)(sizea & 0xFF);
memmove(input + 5, dataa, sizea);
if (b) {
input[5 + sizea] = (unsigned char)((sizeb >> 24) & 0xFF);
input[6 + sizea] = (unsigned char)((sizeb >> 16) & 0xFF);
input[7 + sizea] = (unsigned char)((sizeb >> 8) & 0xFF);
input[8 + sizea] = (unsigned char)(sizeb & 0xFF);
memmove(input + 9 + sizea, datab, sizeb);
}
gcry_md_hash_buffer(SM_HASH_ALGORITHM, output, input, totalsize);
gcry_mpi_scan(hash, GCRYMPI_FMT_USG, output, SM_DIGEST_SIZE, NULL);
free(input);
input = NULL;
/* free memory */
gcry_free(dataa);
if (b) gcry_free(datab);
return gcry_error(GPG_ERR_NO_ERROR);
}
/* This method should be passed a pointer to an uninitialized buffer,
* and a list of mpis with a list length. When returns, the buffer will
* point to newly-allocated memory (using malloc) containing a
* reversible serialization. */
static gcry_error_t serialize_mpi_array(unsigned char **buffer, int *buflen,
unsigned int count, gcry_mpi_t *mpis)
{
size_t totalsize = 0, lenp, nextsize;
unsigned int i, j;
size_t *list_sizes = malloc(count * sizeof(size_t));
unsigned char **tempbuffer = malloc(count * sizeof(unsigned char *));
unsigned char *bufp;
for (i=0; i<count; i++) {
gcry_mpi_aprint(GCRYMPI_FMT_USG, &(tempbuffer[i]), &(list_sizes[i]),
mpis[i]);
totalsize += list_sizes[i];
}
*buflen = (count+1)*4 + totalsize;
*buffer = malloc(*buflen * sizeof(char));
bufp = *buffer;
lenp = totalsize;
write_int(count);
for(i=0; i<count; i++)
{
nextsize = list_sizes[i];
write_int(nextsize);
for(j=0; j<nextsize; j++)
bufp[j] = tempbuffer[i][j];
bufp += nextsize;
lenp -= nextsize;
gcry_free(tempbuffer[i]);
}
free(tempbuffer);
free(list_sizes);
return gcry_error(GPG_ERR_NO_ERROR);
}
/* Takes a buffer containing serialized and concatenated mpis
* and converts it to an array of gcry_mpi_t structs.
* The buffer is assumed to consist of a 4-byte int containing the
* number of mpis in the array, followed by {size, data} pairs for
* each mpi. If malformed, method returns GCRY_ERROR_INV_VALUE */
static gcry_error_t unserialize_mpi_array(gcry_mpi_t **mpis,
unsigned int expcount, const unsigned char *buffer, const int buflen)
{
unsigned int i;
int lenp = buflen;
unsigned int thecount = 0;
const unsigned char* bufp = buffer;
*mpis = NULL;
read_int(thecount);
if (thecount != expcount) goto invval;
*mpis = malloc(thecount * sizeof(gcry_mpi_t));
for (i=0; i<thecount; i++) {
(*mpis)[i] = NULL;
}
for (i=0; i<thecount; i++) {
read_mpi((*mpis)[i]);
}
return gcry_error(GPG_ERR_NO_ERROR);
invval:
if (*mpis) {
for (i=0; i<thecount; i++) {
gcry_mpi_release((*mpis)[i]);
}
free(*mpis);
*mpis = NULL;
}
return gcry_error(GPG_ERR_INV_VALUE);
}
/* Check that an MPI is in the right range to be a (non-unit) group
* element */
static int check_group_elem(gcry_mpi_t g)
{
if (gcry_mpi_cmp_ui(g, 2) < 0 ||
gcry_mpi_cmp(g, SM_MODULUS_MINUS_2) > 0) {
return 1;
}
return 0;
}
/* Check that an MPI is in the right range to be a (non-zero) exponent */
static int check_expon(gcry_mpi_t x)
{
if (gcry_mpi_cmp_ui(x, 1) < 0 ||
gcry_mpi_cmp(x, SM_ORDER) >= 0) {
return 1;
}
return 0;
}
/*
* Proof of knowledge of a discrete logarithm
*/
static gcry_error_t otrl_sm_proof_know_log(gcry_mpi_t *c, gcry_mpi_t *d, const gcry_mpi_t g, const gcry_mpi_t x, int version)
{
gcry_mpi_t r = randomExponent();
gcry_mpi_t temp = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_powm(temp, g, r, SM_MODULUS);
otrl_sm_hash(c, version, temp, NULL);
gcry_mpi_mulm(temp, x, *c, SM_ORDER);
gcry_mpi_subm(*d, r, temp, SM_ORDER);
gcry_mpi_release(temp);
gcry_mpi_release(r);
return gcry_error(GPG_ERR_NO_ERROR);
}
/*
* Verify a proof of knowledge of a discrete logarithm. Checks that c = h(g^d x^c)
*/
static int otrl_sm_check_know_log(const gcry_mpi_t c, const gcry_mpi_t d, const gcry_mpi_t g, const gcry_mpi_t x, int version)
{
int comp;
gcry_mpi_t gd = gcry_mpi_new(SM_MOD_LEN_BITS); /* g^d */
gcry_mpi_t xc = gcry_mpi_new(SM_MOD_LEN_BITS); /* x^c */
gcry_mpi_t gdxc = gcry_mpi_new(SM_MOD_LEN_BITS); /* (g^d x^c) */
gcry_mpi_t hgdxc = NULL; /* h(g^d x^c) */
gcry_mpi_powm(gd, g, d, SM_MODULUS);
gcry_mpi_powm(xc, x, c, SM_MODULUS);
gcry_mpi_mulm(gdxc, gd, xc, SM_MODULUS);
otrl_sm_hash(&hgdxc, version, gdxc, NULL);
comp = gcry_mpi_cmp(hgdxc, c);
gcry_mpi_release(gd);
gcry_mpi_release(xc);
gcry_mpi_release(gdxc);
gcry_mpi_release(hgdxc);
return comp;
}
/*
* Proof of knowledge of coordinates with first components being equal
*/
static gcry_error_t otrl_sm_proof_equal_coords(gcry_mpi_t *c, gcry_mpi_t *d1, gcry_mpi_t *d2, const OtrlSMState *state, const gcry_mpi_t r, int version)
{
gcry_mpi_t r1 = randomExponent();
gcry_mpi_t r2 = randomExponent();
gcry_mpi_t temp1 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_t temp2 = gcry_mpi_new(SM_MOD_LEN_BITS);
/* Compute the value of c, as c = h(g3^r1, g1^r1 g2^r2) */
gcry_mpi_powm(temp1, state->g1, r1, SM_MODULUS);
gcry_mpi_powm(temp2, state->g2, r2, SM_MODULUS);
gcry_mpi_mulm(temp2, temp1, temp2, SM_MODULUS);
gcry_mpi_powm(temp1, state->g3, r1, SM_MODULUS);
otrl_sm_hash(c, version, temp1, temp2);
/* Compute the d values, as d1 = r1 - r c, d2 = r2 - secret c */
gcry_mpi_mulm(temp1, r, *c, SM_ORDER);
gcry_mpi_subm(*d1, r1, temp1, SM_ORDER);
gcry_mpi_mulm(temp1, state->secret, *c, SM_ORDER);
gcry_mpi_subm(*d2, r2, temp1, SM_ORDER);
/* All clear */
gcry_mpi_release(r1);
gcry_mpi_release(r2);
gcry_mpi_release(temp1);
gcry_mpi_release(temp2);
return gcry_error(GPG_ERR_NO_ERROR);
}
/*
* Verify a proof of knowledge of coordinates with first components being equal
*/
static gcry_error_t otrl_sm_check_equal_coords(const gcry_mpi_t c, const gcry_mpi_t d1, const gcry_mpi_t d2, const gcry_mpi_t p, const gcry_mpi_t q, const OtrlSMState *state, int version)
{
int comp;
gcry_mpi_t temp1 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_t temp2 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_t temp3 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_t cprime = NULL;
/* To verify, we test that hash(g3^d1 * p^c, g1^d1 * g2^d2 * q^c) = c
* If indeed c = hash(g3^r1, g1^r1 g2^r2), d1 = r1 - r*c,
* d2 = r2 - secret*c. And if indeed p = g3^r, q = g1^r * g2^secret
* Then we should have that:
* hash(g3^d1 * p^c, g1^d1 * g2^d2 * q^c)
* = hash(g3^(r1 - r*c + r*c), g1^(r1 - r*c + q*c) *
* g2^(r2 - secret*c + secret*c))
* = hash(g3^r1, g1^r1 g2^r2)
* = c
*/
gcry_mpi_powm(temp2, state->g3, d1, SM_MODULUS);
gcry_mpi_powm(temp3, p, c, SM_MODULUS);
gcry_mpi_mulm(temp1, temp2, temp3, SM_MODULUS);
gcry_mpi_powm(temp2, state->g1, d1, SM_MODULUS);
gcry_mpi_powm(temp3, state->g2, d2, SM_MODULUS);
gcry_mpi_mulm(temp2, temp2, temp3, SM_MODULUS);
gcry_mpi_powm(temp3, q, c, SM_MODULUS);
gcry_mpi_mulm(temp2, temp3, temp2, SM_MODULUS);
otrl_sm_hash(&cprime, version, temp1, temp2);
comp = gcry_mpi_cmp(c, cprime);
gcry_mpi_release(temp1);
gcry_mpi_release(temp2);
gcry_mpi_release(temp3);
gcry_mpi_release(cprime);
return comp;
}
/*
* Proof of knowledge of logs with exponents being equal
*/
static gcry_error_t otrl_sm_proof_equal_logs(gcry_mpi_t *c, gcry_mpi_t *d, OtrlSMState *state, int version)
{
gcry_mpi_t r = randomExponent();
gcry_mpi_t temp1 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_t temp2 = gcry_mpi_new(SM_MOD_LEN_BITS);
/* Compute the value of c, as c = h(g1^r, (Qa/Qb)^r) */
gcry_mpi_powm(temp1, state->g1, r, SM_MODULUS);
gcry_mpi_powm(temp2, state->qab, r, SM_MODULUS);
otrl_sm_hash(c, version, temp1, temp2);
/* Compute the d values, as d = r - x3 c */
gcry_mpi_mulm(temp1, state->x3, *c, SM_ORDER);
gcry_mpi_subm(*d, r, temp1, SM_ORDER);
/* All clear */
gcry_mpi_release(r);
gcry_mpi_release(temp1);
gcry_mpi_release(temp2);
return gcry_error(GPG_ERR_NO_ERROR);
}
/*
* Verify a proof of knowledge of logs with exponents being equal
*/
static gcry_error_t otrl_sm_check_equal_logs(const gcry_mpi_t c, const gcry_mpi_t d, const gcry_mpi_t r, const OtrlSMState *state, int version)
{
int comp;
gcry_mpi_t temp1 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_t temp2 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_t temp3 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_t cprime = NULL;
/* Here, we recall the exponents used to create g3.
* If we have previously seen g3o = g1^x where x is unknown
* during the DH exchange to produce g3, then we may proceed with:
*
* To verify, we test that hash(g1^d * g3o^c, qab^d * r^c) = c
* If indeed c = hash(g1^r1, qab^r1), d = r1- x * c
* And if indeed r = qab^x
* Then we should have that:
* hash(g1^d * g3o^c, qab^d r^c)
* = hash(g1^(r1 - x*c + x*c), qab^(r1 - x*c + x*c))
* = hash(g1^r1, qab^r1)
* = c
*/
gcry_mpi_powm(temp2, state->g1, d, SM_MODULUS);
gcry_mpi_powm(temp3, state->g3o, c, SM_MODULUS);
gcry_mpi_mulm(temp1, temp2, temp3, SM_MODULUS);
gcry_mpi_powm(temp3, state->qab, d, SM_MODULUS);
gcry_mpi_powm(temp2, r, c, SM_MODULUS);
gcry_mpi_mulm(temp2, temp3, temp2, SM_MODULUS);
otrl_sm_hash(&cprime, version, temp1, temp2);
comp = gcry_mpi_cmp(c, cprime);
gcry_mpi_release(temp1);
gcry_mpi_release(temp2);
gcry_mpi_release(temp3);
gcry_mpi_release(cprime);
return comp;
}
/* Create first message in SMP exchange. Input is Alice's secret value
* which this protocol aims to compare to Bob's. Output is a serialized
* mpi array whose elements correspond to the following:
* [0] = g2a, Alice's half of DH exchange to determine g2
* [1] = c2, [2] = d2, Alice's ZK proof of knowledge of g2a exponent
* [3] = g3a, Alice's half of DH exchange to determine g3
* [4] = c3, [5] = d3, Alice's ZK proof of knowledge of g3a exponent */
gcry_error_t otrl_sm_step1(OtrlSMAliceState *astate,
const unsigned char* secret, int secretlen,
unsigned char** output, int* outputlen)
{
/* Initialize the sm state or update the secret */
gcry_mpi_t secret_mpi = NULL;
gcry_mpi_t *msg1;
*output = NULL;
*outputlen = 0;
gcry_mpi_scan(&secret_mpi, GCRYMPI_FMT_USG, secret, secretlen, NULL);
if (! astate->g1) {
otrl_sm_state_init(astate);
}
gcry_mpi_set(astate->secret, secret_mpi);
gcry_mpi_release(secret_mpi);
astate->received_question = 0;
otrl_sm_msg1_init(&msg1);
astate->x2 = randomExponent();
astate->x3 = randomExponent();
gcry_mpi_powm(msg1[0], astate->g1, astate->x2, SM_MODULUS);
otrl_sm_proof_know_log(&(msg1[1]), &(msg1[2]), astate->g1, astate->x2, 1);
gcry_mpi_powm(msg1[3], astate->g1, astate->x3, SM_MODULUS);
otrl_sm_proof_know_log(&(msg1[4]), &(msg1[5]), astate->g1, astate->x3, 2);
serialize_mpi_array(output, outputlen, SM_MSG1_LEN, msg1);
otrl_sm_msg_free(&msg1, SM_MSG1_LEN);
astate->sm_prog_state = OTRL_SMP_PROG_OK;
return gcry_error(GPG_ERR_NO_ERROR);
}
/* Receive the first message in SMP exchange, which was generated by
* otrl_sm_step1. Input is saved until the user inputs their secret
* information. No output. */
gcry_error_t otrl_sm_step2a(OtrlSMBobState *bstate, const unsigned char* input, const int inputlen, int received_question)
{
gcry_mpi_t *msg1;
gcry_error_t err;
/* Initialize the sm state if needed */
if (! bstate->g1) {
otrl_sm_state_init(bstate);
}
bstate->received_question = received_question;
bstate->sm_prog_state = OTRL_SMP_PROG_CHEATED;
/* Read from input to find the mpis */
err = unserialize_mpi_array(&msg1, SM_MSG1_LEN, input, inputlen);
if (err != gcry_error(GPG_ERR_NO_ERROR)) return err;
if (check_group_elem(msg1[0]) || check_expon(msg1[2]) ||
check_group_elem(msg1[3]) || check_expon(msg1[5])) {
return gcry_error(GPG_ERR_INV_VALUE);
}
/* Store Alice's g3a value for later in the protocol */
gcry_mpi_set(bstate->g3o, msg1[3]);
/* Verify Alice's proofs */
if (otrl_sm_check_know_log(msg1[1], msg1[2], bstate->g1, msg1[0], 1) ||
otrl_sm_check_know_log(msg1[4], msg1[5], bstate->g1, msg1[3], 2)) {
return gcry_error(GPG_ERR_INV_VALUE);
}
/* Create Bob's half of the generators g2 and g3 */
bstate->x2 = randomExponent();
bstate->x3 = randomExponent();
/* Combine the two halves from Bob and Alice and determine g2 and g3 */
gcry_mpi_powm(bstate->g2, msg1[0], bstate->x2, SM_MODULUS);
gcry_mpi_powm(bstate->g3, msg1[3], bstate->x3, SM_MODULUS);
bstate->sm_prog_state = OTRL_SMP_PROG_OK;
return gcry_error(GPG_ERR_NO_ERROR);
}
/* Create second message in SMP exchange. Input is Bob's secret value.
* Information from earlier steps in the exchange is taken from Bob's
* state. Output is a serialized mpi array whose elements correspond
* to the following:
* [0] = g2b, Bob's half of DH exchange to determine g2
* [1] = c2, [2] = d2, Bob's ZK proof of knowledge of g2b exponent
* [3] = g3b, Bob's half of DH exchange to determine g3
* [4] = c3, [5] = d3, Bob's ZK proof of knowledge of g3b exponent
* [6] = pb, [7] = qb, Bob's halves of the (Pa/Pb) and (Qa/Qb) values
* [8] = cp, [9] = d5, [10] = d6, Bob's ZK proof that pb, qb formed correctly */
gcry_error_t otrl_sm_step2b(OtrlSMBobState *bstate, const unsigned char* secret, int secretlen, unsigned char **output, int* outputlen)
{
/* Convert the given secret to the proper form and store it */
gcry_mpi_t r, qb1, qb2;
gcry_mpi_t *msg2;
gcry_mpi_t secret_mpi = NULL;
*output = NULL;
*outputlen = 0;
gcry_mpi_scan(&secret_mpi, GCRYMPI_FMT_USG, secret, secretlen, NULL);
gcry_mpi_set(bstate->secret, secret_mpi);
gcry_mpi_release(secret_mpi);
otrl_sm_msg2_init(&msg2);
gcry_mpi_powm(msg2[0], bstate->g1, bstate->x2, SM_MODULUS);
otrl_sm_proof_know_log(&(msg2[1]), &(msg2[2]), bstate->g1, bstate->x2, 3);
gcry_mpi_powm(msg2[3], bstate->g1, bstate->x3, SM_MODULUS);
otrl_sm_proof_know_log(&(msg2[4]), &(msg2[5]), bstate->g1, bstate->x3, 4);
/* Calculate P and Q values for Bob */
r = randomExponent();
qb1 = gcry_mpi_new(SM_MOD_LEN_BITS);
qb2 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_powm(bstate->p, bstate->g3, r, SM_MODULUS);
gcry_mpi_set(msg2[6], bstate->p);
gcry_mpi_powm(qb1, bstate->g1, r, SM_MODULUS);
gcry_mpi_powm(qb2, bstate->g2, bstate->secret, SM_MODULUS);
gcry_mpi_mulm(bstate->q, qb1, qb2, SM_MODULUS);
gcry_mpi_set(msg2[7], bstate->q);
otrl_sm_proof_equal_coords(&(msg2[8]), &(msg2[9]), &(msg2[10]), bstate, r, 5);
/* Convert to serialized form */
serialize_mpi_array(output, outputlen, SM_MSG2_LEN, msg2);
/* Free up memory for unserialized and intermediate values */
gcry_mpi_release(r);
gcry_mpi_release(qb1);
gcry_mpi_release(qb2);
otrl_sm_msg_free(&msg2, SM_MSG2_LEN);
return gcry_error(GPG_ERR_NO_ERROR);
}
/* Create third message in SMP exchange. Input is a message generated
* by otrl_sm_step2b. Output is a serialized mpi array whose elements
* correspond to the following:
* [0] = pa, [1] = qa, Alice's halves of the (Pa/Pb) and (Qa/Qb) values
* [2] = cp, [3] = d5, [4] = d6, Alice's ZK proof that pa, qa formed correctly
* [5] = ra, calculated as (Qa/Qb)^x3 where x3 is the exponent used in g3a
* [6] = cr, [7] = d7, Alice's ZK proof that ra is formed correctly */
gcry_error_t otrl_sm_step3(OtrlSMAliceState *astate, const unsigned char* input, const int inputlen, unsigned char **output, int* outputlen)
{
/* Read from input to find the mpis */
gcry_mpi_t r, qa1, qa2, inv;
gcry_mpi_t *msg2;
gcry_mpi_t *msg3;
gcry_error_t err;
*output = NULL;
*outputlen = 0;
astate->sm_prog_state = OTRL_SMP_PROG_CHEATED;
err = unserialize_mpi_array(&msg2, SM_MSG2_LEN, input, inputlen);
if (err != gcry_error(GPG_ERR_NO_ERROR)) return err;
if (check_group_elem(msg2[0]) || check_group_elem(msg2[3]) ||
check_group_elem(msg2[6]) || check_group_elem(msg2[7]) ||
check_expon(msg2[2]) || check_expon(msg2[5]) ||
check_expon(msg2[9]) || check_expon(msg2[10])) {
return gcry_error(GPG_ERR_INV_VALUE);
}
otrl_sm_msg3_init(&msg3);
/* Store Bob's g3a value for later in the protocol */
gcry_mpi_set(astate->g3o, msg2[3]);
/* Verify Bob's knowledge of discreet log proofs */
if (otrl_sm_check_know_log(msg2[1], msg2[2], astate->g1, msg2[0], 3) ||
otrl_sm_check_know_log(msg2[4], msg2[5], astate->g1, msg2[3], 4)) {
return gcry_error(GPG_ERR_INV_VALUE);
}
/* Combine the two halves from Bob and Alice and determine g2 and g3 */
gcry_mpi_powm(astate->g2, msg2[0], astate->x2, SM_MODULUS);
gcry_mpi_powm(astate->g3, msg2[3], astate->x3, SM_MODULUS);
/* Verify Bob's coordinate equality proof */
if (otrl_sm_check_equal_coords(msg2[8], msg2[9], msg2[10], msg2[6], msg2[7], astate, 5))
return gcry_error(GPG_ERR_INV_VALUE);
/* Calculate P and Q values for Alice */
r = randomExponent();
qa1 = gcry_mpi_new(SM_MOD_LEN_BITS);
qa2 = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_powm(astate->p, astate->g3, r, SM_MODULUS);
gcry_mpi_set(msg3[0], astate->p);
gcry_mpi_powm(qa1, astate->g1, r, SM_MODULUS);
gcry_mpi_powm(qa2, astate->g2, astate->secret, SM_MODULUS);
gcry_mpi_mulm(astate->q, qa1, qa2, SM_MODULUS);
gcry_mpi_set(msg3[1], astate->q);
otrl_sm_proof_equal_coords(&(msg3[2]), &(msg3[3]), &(msg3[4]), astate, r, 6);
/* Calculate Ra and proof */
inv = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_invm(inv, msg2[6], SM_MODULUS);
gcry_mpi_mulm(astate->pab, astate->p, inv, SM_MODULUS);
gcry_mpi_invm(inv, msg2[7], SM_MODULUS);
gcry_mpi_mulm(astate->qab, astate->q, inv, SM_MODULUS);
gcry_mpi_powm(msg3[5], astate->qab, astate->x3, SM_MODULUS);
otrl_sm_proof_equal_logs(&(msg3[6]), &(msg3[7]), astate, 7);
serialize_mpi_array(output, outputlen, SM_MSG3_LEN, msg3);
otrl_sm_msg_free(&msg2, SM_MSG2_LEN);
otrl_sm_msg_free(&msg3, SM_MSG3_LEN);
gcry_mpi_release(r);
gcry_mpi_release(qa1);
gcry_mpi_release(qa2);
gcry_mpi_release(inv);
astate->sm_prog_state = OTRL_SMP_PROG_OK;
return gcry_error(GPG_ERR_NO_ERROR);
}
/* Create final message in SMP exchange. Input is a message generated
* by otrl_sm_step3. Output is a serialized mpi array whose elements
* correspond to the following:
* [0] = rb, calculated as (Qa/Qb)^x3 where x3 is the exponent used in g3b
* [1] = cr, [2] = d7, Bob's ZK proof that rb is formed correctly
* This method also checks if Alice and Bob's secrets were the same. If
* so, it returns NO_ERROR. If the secrets differ, an INV_VALUE error is
* returned instead. */
gcry_error_t otrl_sm_step4(OtrlSMBobState *bstate, const unsigned char* input, const int inputlen, unsigned char **output, int* outputlen)
{
/* Read from input to find the mpis */
int comp;
gcry_mpi_t inv, rab;
gcry_mpi_t *msg3;
gcry_mpi_t *msg4;
gcry_error_t err;
err = unserialize_mpi_array(&msg3, SM_MSG3_LEN, input, inputlen);
*output = NULL;
*outputlen = 0;
bstate->sm_prog_state = OTRL_SMP_PROG_CHEATED;
if (err != gcry_error(GPG_ERR_NO_ERROR)) return err;
otrl_sm_msg4_init(&msg4);
if (check_group_elem(msg3[0]) || check_group_elem(msg3[1]) ||
check_group_elem(msg3[5]) || check_expon(msg3[3]) ||
check_expon(msg3[4]) || check_expon(msg3[7])) {
return gcry_error(GPG_ERR_INV_VALUE);
}
/* Verify Alice's coordinate equality proof */
if (otrl_sm_check_equal_coords(msg3[2], msg3[3], msg3[4], msg3[0], msg3[1], bstate, 6))
return gcry_error(GPG_ERR_INV_VALUE);
/* Find Pa/Pb and Qa/Qb */
inv = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_invm(inv, bstate->p, SM_MODULUS);
gcry_mpi_mulm(bstate->pab, msg3[0], inv, SM_MODULUS);
gcry_mpi_invm(inv, bstate->q, SM_MODULUS);
gcry_mpi_mulm(bstate->qab, msg3[1], inv, SM_MODULUS);
/* Verify Alice's log equality proof */
if (otrl_sm_check_equal_logs(msg3[6], msg3[7], msg3[5], bstate, 7))
return gcry_error(GPG_ERR_INV_VALUE);
/* Calculate Rb and proof */
gcry_mpi_powm(msg4[0], bstate->qab, bstate->x3, SM_MODULUS);
otrl_sm_proof_equal_logs(&(msg4[1]), &(msg4[2]), bstate, 8);
serialize_mpi_array(output, outputlen, SM_MSG4_LEN, msg4);
/* Calculate Rab and verify that secrets match */
rab = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_powm(rab, msg3[5], bstate->x3, SM_MODULUS);
comp = gcry_mpi_cmp(rab, bstate->pab);
/* Clean up everything allocated in this step */
otrl_sm_msg_free(&msg3, SM_MSG3_LEN);
otrl_sm_msg_free(&msg4, SM_MSG4_LEN);
gcry_mpi_release(rab);
gcry_mpi_release(inv);
bstate->sm_prog_state = comp ? OTRL_SMP_PROG_FAILED :
OTRL_SMP_PROG_SUCCEEDED;
if (comp)
return gcry_error(GPG_ERR_INV_VALUE);
else
return gcry_error(GPG_ERR_NO_ERROR);
}
/* Receives the final SMP message, which was generated in otrl_sm_step.
* This method checks if Alice and Bob's secrets were the same. If
* so, it returns NO_ERROR. If the secrets differ, an INV_VALUE error is
* returned instead. */
gcry_error_t otrl_sm_step5(OtrlSMAliceState *astate, const unsigned char* input, const int inputlen)
{
/* Read from input to find the mpis */
int comp;
gcry_mpi_t rab;
gcry_mpi_t *msg4;
gcry_error_t err;
err = unserialize_mpi_array(&msg4, SM_MSG4_LEN, input, inputlen);
astate->sm_prog_state = OTRL_SMP_PROG_CHEATED;
if (err != gcry_error(GPG_ERR_NO_ERROR)) return err;
if (check_group_elem(msg4[0]) || check_expon(msg4[2])) {
return gcry_error(GPG_ERR_INV_VALUE);
}
/* Verify Bob's log equality proof */
if (otrl_sm_check_equal_logs(msg4[1], msg4[2], msg4[0], astate, 8))
return gcry_error(GPG_ERR_INV_VALUE);
/* Calculate Rab and verify that secrets match */
rab = gcry_mpi_new(SM_MOD_LEN_BITS);
gcry_mpi_powm(rab, msg4[0], astate->x3, SM_MODULUS);
comp = gcry_mpi_cmp(rab, astate->pab);
gcry_mpi_release(rab);
otrl_sm_msg_free(&msg4, SM_MSG4_LEN);
astate->sm_prog_state = comp ? OTRL_SMP_PROG_FAILED :
OTRL_SMP_PROG_SUCCEEDED;
if (comp)
return gcry_error(GPG_ERR_INV_VALUE);
else
return gcry_error(GPG_ERR_NO_ERROR);
}
|