aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/linden/indra/llmath/v3math.h
diff options
context:
space:
mode:
Diffstat (limited to 'linden/indra/llmath/v3math.h')
-rw-r--r--linden/indra/llmath/v3math.h465
1 files changed, 465 insertions, 0 deletions
diff --git a/linden/indra/llmath/v3math.h b/linden/indra/llmath/v3math.h
new file mode 100644
index 0000000..68e60de
--- /dev/null
+++ b/linden/indra/llmath/v3math.h
@@ -0,0 +1,465 @@
1/**
2 * @file v3math.h
3 * @brief LLVector3 class header file.
4 *
5 * Copyright (c) 2000-2007, Linden Research, Inc.
6 *
7 * The source code in this file ("Source Code") is provided by Linden Lab
8 * to you under the terms of the GNU General Public License, version 2.0
9 * ("GPL"), unless you have obtained a separate licensing agreement
10 * ("Other License"), formally executed by you and Linden Lab. Terms of
11 * the GPL can be found in doc/GPL-license.txt in this distribution, or
12 * online at http://secondlife.com/developers/opensource/gplv2
13 *
14 * There are special exceptions to the terms and conditions of the GPL as
15 * it is applied to this Source Code. View the full text of the exception
16 * in the file doc/FLOSS-exception.txt in this software distribution, or
17 * online at http://secondlife.com/developers/opensource/flossexception
18 *
19 * By copying, modifying or distributing this software, you acknowledge
20 * that you have read and understood your obligations described above,
21 * and agree to abide by those obligations.
22 *
23 * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
24 * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
25 * COMPLETENESS OR PERFORMANCE.
26 */
27
28#ifndef LL_V3MATH_H
29#define LL_V3MATH_H
30
31#include "llerror.h"
32#include "llmath.h"
33
34#include "llsd.h"
35class LLVector4;
36class LLMatrix3;
37class LLVector3d;
38class LLQuaternion;
39
40// Llvector3 = |x y z w|
41
42static const U32 LENGTHOFVECTOR3 = 3;
43
44class LLVector3
45{
46 public:
47 F32 mV[LENGTHOFVECTOR3];
48
49 static const LLVector3 zero;
50 static const LLVector3 x_axis;
51 static const LLVector3 y_axis;
52 static const LLVector3 z_axis;
53 static const LLVector3 x_axis_neg;
54 static const LLVector3 y_axis_neg;
55 static const LLVector3 z_axis_neg;
56 static const LLVector3 all_one;
57
58 inline LLVector3(); // Initializes LLVector3 to (0, 0, 0)
59 inline LLVector3(const F32 x, const F32 y, const F32 z); // Initializes LLVector3 to (x. y, z)
60 inline explicit LLVector3(const F32 *vec); // Initializes LLVector3 to (vec[0]. vec[1], vec[2])
61 explicit LLVector3(const LLVector3d &vec); // Initializes LLVector3 to (vec[0]. vec[1], vec[2])
62 explicit LLVector3(const LLVector4 &vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2])
63 LLVector3(const LLSD& sd)
64 {
65 setValue(sd);
66 }
67
68 LLSD getValue() const
69 {
70 LLSD ret;
71 ret[0] = mV[0];
72 ret[1] = mV[1];
73 ret[2] = mV[2];
74 return ret;
75 }
76
77 void setValue(const LLSD& sd)
78 {
79 mV[0] = (F32) sd[0].asReal();
80 mV[1] = (F32) sd[1].asReal();
81 mV[2] = (F32) sd[2].asReal();
82 }
83
84 const LLVector3& operator=(const LLSD& sd)
85 {
86 setValue(sd);
87 return *this;
88 }
89
90 inline BOOL isFinite() const; // checks to see if all values of LLVector3 are finite
91 BOOL clamp(F32 min, F32 max); // Clamps all values to (min,max), returns TRUE if data changed
92
93 void quantize16(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz); // changes the vector to reflect quatization
94 void quantize8(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz); // changes the vector to reflect quatization
95 void snap(S32 sig_digits); // snaps x,y,z to sig_digits decimal places
96
97 BOOL abs(); // sets all values to absolute value of original value (first octant), returns TRUE if changed
98
99 inline void clearVec(); // Clears LLVector3 to (0, 0, 0, 1)
100 inline void zeroVec(); // Zero LLVector3 to (0, 0, 0, 0)
101 inline void setVec(F32 x, F32 y, F32 z); // Sets LLVector3 to (x, y, z, 1)
102 inline void setVec(const LLVector3 &vec); // Sets LLVector3 to vec
103 inline void setVec(const F32 *vec); // Sets LLVector3 to vec
104
105 const LLVector3& setVec(const LLVector4 &vec);
106 const LLVector3& setVec(const LLVector3d &vec); // Sets LLVector3 to vec
107
108 F32 magVec() const; // Returns magnitude of LLVector3
109 F32 magVecSquared() const; // Returns magnitude squared of LLVector3
110 inline F32 normVec(); // Normalizes and returns the magnitude of LLVector3
111
112 const LLVector3& rotVec(F32 angle, const LLVector3 &vec); // Rotates about vec by angle radians
113 const LLVector3& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians
114 const LLVector3& rotVec(const LLMatrix3 &mat); // Rotates by LLMatrix4 mat
115 const LLVector3& rotVec(const LLQuaternion &q); // Rotates by LLQuaternion q
116
117 const LLVector3& scaleVec(const LLVector3& vec); // scales per component by vec
118 LLVector3 scaledVec(const LLVector3& vec) const; // get a copy of this vector scaled by vec
119
120 BOOL isNull() const; // Returns TRUE if vector has a _very_small_ length
121 BOOL isExactlyZero() const { return !mV[VX] && !mV[VY] && !mV[VZ]; }
122
123 F32 operator[](int idx) const { return mV[idx]; }
124 F32 &operator[](int idx) { return mV[idx]; }
125
126 friend LLVector3 operator+(const LLVector3 &a, const LLVector3 &b); // Return vector a + b
127 friend LLVector3 operator-(const LLVector3 &a, const LLVector3 &b); // Return vector a minus b
128 friend F32 operator*(const LLVector3 &a, const LLVector3 &b); // Return a dot b
129 friend LLVector3 operator%(const LLVector3 &a, const LLVector3 &b); // Return a cross b
130 friend LLVector3 operator*(const LLVector3 &a, F32 k); // Return a times scaler k
131 friend LLVector3 operator/(const LLVector3 &a, F32 k); // Return a divided by scaler k
132 friend LLVector3 operator*(F32 k, const LLVector3 &a); // Return a times scaler k
133 friend bool operator==(const LLVector3 &a, const LLVector3 &b); // Return a == b
134 friend bool operator!=(const LLVector3 &a, const LLVector3 &b); // Return a != b
135 // less than operator useful for using vectors as std::map keys
136 friend bool operator<(const LLVector3 &a, const LLVector3 &b); // Return a < b
137
138 friend const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b); // Return vector a + b
139 friend const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b); // Return vector a minus b
140 friend const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b); // Return a cross b
141 friend const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b); // Returns a * b;
142 friend const LLVector3& operator*=(LLVector3 &a, F32 k); // Return a times scaler k
143 friend const LLVector3& operator/=(LLVector3 &a, F32 k); // Return a divided by scaler k
144 friend const LLVector3& operator*=(LLVector3 &a, const LLQuaternion &b); // Returns a * b;
145
146 friend LLVector3 operator-(const LLVector3 &a); // Return vector -a
147
148 friend std::ostream& operator<<(std::ostream& s, const LLVector3 &a); // Stream a
149
150 static BOOL parseVector3(const char* buf, LLVector3* value);
151};
152
153typedef LLVector3 LLSimLocalVec;
154
155// Non-member functions
156
157F32 angle_between(const LLVector3 &a, const LLVector3 &b); // Returns angle (radians) between a and b
158BOOL are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns TRUE if a and b are very close to parallel
159F32 dist_vec(const LLVector3 &a, const LLVector3 &b); // Returns distance between a and b
160F32 dist_vec_squared(const LLVector3 &a, const LLVector3 &b);// Returns distance sqaured between a and b
161F32 dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b);// Returns distance sqaured between a and b ignoring Z component
162LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b); // Returns vector a projected on vector b
163LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u); // Returns a vector that is a linear interpolation between a and b
164
165inline LLVector3::LLVector3(void)
166{
167 mV[0] = 0.f;
168 mV[1] = 0.f;
169 mV[2] = 0.f;
170}
171
172inline LLVector3::LLVector3(const F32 x, const F32 y, const F32 z)
173{
174 mV[VX] = x;
175 mV[VY] = y;
176 mV[VZ] = z;
177}
178
179inline LLVector3::LLVector3(const F32 *vec)
180{
181 mV[VX] = vec[VX];
182 mV[VY] = vec[VY];
183 mV[VZ] = vec[VZ];
184}
185
186/*
187inline LLVector3::LLVector3(const LLVector3 &copy)
188{
189 mV[VX] = copy.mV[VX];
190 mV[VY] = copy.mV[VY];
191 mV[VZ] = copy.mV[VZ];
192}
193*/
194
195// Destructors
196
197// checker
198inline BOOL LLVector3::isFinite() const
199{
200 return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]));
201}
202
203
204// Clear and Assignment Functions
205
206inline void LLVector3::clearVec(void)
207{
208 mV[0] = 0.f;
209 mV[1] = 0.f;
210 mV[2] = 0.f;
211}
212
213inline void LLVector3::zeroVec(void)
214{
215 mV[0] = 0.f;
216 mV[1] = 0.f;
217 mV[2] = 0.f;
218}
219
220inline void LLVector3::setVec(F32 x, F32 y, F32 z)
221{
222 mV[VX] = x;
223 mV[VY] = y;
224 mV[VZ] = z;
225}
226
227inline void LLVector3::setVec(const LLVector3 &vec)
228{
229 mV[0] = vec.mV[0];
230 mV[1] = vec.mV[1];
231 mV[2] = vec.mV[2];
232}
233
234inline void LLVector3::setVec(const F32 *vec)
235{
236 mV[0] = vec[0];
237 mV[1] = vec[1];
238 mV[2] = vec[2];
239}
240
241inline F32 LLVector3::normVec(void)
242{
243 F32 mag = fsqrtf(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
244 F32 oomag;
245
246 if (mag > FP_MAG_THRESHOLD)
247 {
248 oomag = 1.f/mag;
249 mV[0] *= oomag;
250 mV[1] *= oomag;
251 mV[2] *= oomag;
252 }
253 else
254 {
255 mV[0] = 0.f;
256 mV[1] = 0.f;
257 mV[2] = 0.f;
258 mag = 0;
259 }
260 return (mag);
261}
262
263// LLVector3 Magnitude and Normalization Functions
264
265inline F32 LLVector3::magVec(void) const
266{
267 return fsqrtf(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
268}
269
270inline F32 LLVector3::magVecSquared(void) const
271{
272 return mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2];
273}
274
275inline LLVector3 operator+(const LLVector3 &a, const LLVector3 &b)
276{
277 LLVector3 c(a);
278 return c += b;
279}
280
281inline LLVector3 operator-(const LLVector3 &a, const LLVector3 &b)
282{
283 LLVector3 c(a);
284 return c -= b;
285}
286
287inline F32 operator*(const LLVector3 &a, const LLVector3 &b)
288{
289 return (a.mV[0]*b.mV[0] + a.mV[1]*b.mV[1] + a.mV[2]*b.mV[2]);
290}
291
292inline LLVector3 operator%(const LLVector3 &a, const LLVector3 &b)
293{
294 return LLVector3( a.mV[1]*b.mV[2] - b.mV[1]*a.mV[2], a.mV[2]*b.mV[0] - b.mV[2]*a.mV[0], a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1] );
295}
296
297inline LLVector3 operator/(const LLVector3 &a, F32 k)
298{
299 F32 t = 1.f / k;
300 return LLVector3( a.mV[0] * t, a.mV[1] * t, a.mV[2] * t );
301}
302
303inline LLVector3 operator*(const LLVector3 &a, F32 k)
304{
305 return LLVector3( a.mV[0] * k, a.mV[1] * k, a.mV[2] * k );
306}
307
308inline LLVector3 operator*(F32 k, const LLVector3 &a)
309{
310 return LLVector3( a.mV[0] * k, a.mV[1] * k, a.mV[2] * k );
311}
312
313inline bool operator==(const LLVector3 &a, const LLVector3 &b)
314{
315 return ( (a.mV[0] == b.mV[0])
316 &&(a.mV[1] == b.mV[1])
317 &&(a.mV[2] == b.mV[2]));
318}
319
320inline bool operator!=(const LLVector3 &a, const LLVector3 &b)
321{
322 return ( (a.mV[0] != b.mV[0])
323 ||(a.mV[1] != b.mV[1])
324 ||(a.mV[2] != b.mV[2]));
325}
326
327inline bool operator<(const LLVector3 &a, const LLVector3 &b)
328{
329 return (a.mV[0] < b.mV[0]
330 || (a.mV[0] == b.mV[0]
331 && (a.mV[1] < b.mV[1]
332 || (a.mV[1] == b.mV[1])
333 && a.mV[2] < b.mV[2])));
334}
335
336inline const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b)
337{
338 a.mV[0] += b.mV[0];
339 a.mV[1] += b.mV[1];
340 a.mV[2] += b.mV[2];
341 return a;
342}
343
344inline const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b)
345{
346 a.mV[0] -= b.mV[0];
347 a.mV[1] -= b.mV[1];
348 a.mV[2] -= b.mV[2];
349 return a;
350}
351
352inline const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b)
353{
354 LLVector3 ret( a.mV[1]*b.mV[2] - b.mV[1]*a.mV[2], a.mV[2]*b.mV[0] - b.mV[2]*a.mV[0], a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1]);
355 a = ret;
356 return a;
357}
358
359inline const LLVector3& operator*=(LLVector3 &a, F32 k)
360{
361 a.mV[0] *= k;
362 a.mV[1] *= k;
363 a.mV[2] *= k;
364 return a;
365}
366
367inline const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b)
368{
369 a.mV[0] *= b.mV[0];
370 a.mV[1] *= b.mV[1];
371 a.mV[2] *= b.mV[2];
372 return a;
373}
374
375inline const LLVector3& operator/=(LLVector3 &a, F32 k)
376{
377 F32 t = 1.f / k;
378 a.mV[0] *= t;
379 a.mV[1] *= t;
380 a.mV[2] *= t;
381 return a;
382}
383
384inline LLVector3 operator-(const LLVector3 &a)
385{
386 return LLVector3( -a.mV[0], -a.mV[1], -a.mV[2] );
387}
388
389inline F32 dist_vec(const LLVector3 &a, const LLVector3 &b)
390{
391 F32 x = a.mV[0] - b.mV[0];
392 F32 y = a.mV[1] - b.mV[1];
393 F32 z = a.mV[2] - b.mV[2];
394 return fsqrtf( x*x + y*y + z*z );
395}
396
397inline F32 dist_vec_squared(const LLVector3 &a, const LLVector3 &b)
398{
399 F32 x = a.mV[0] - b.mV[0];
400 F32 y = a.mV[1] - b.mV[1];
401 F32 z = a.mV[2] - b.mV[2];
402 return x*x + y*y + z*z;
403}
404
405inline F32 dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b)
406{
407 F32 x = a.mV[0] - b.mV[0];
408 F32 y = a.mV[1] - b.mV[1];
409 return x*x + y*y;
410}
411
412inline LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b)
413{
414 LLVector3 project_axis = b;
415 project_axis.normVec();
416 return project_axis * (a * project_axis);
417}
418
419inline LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u)
420{
421 return LLVector3(
422 a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u,
423 a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u,
424 a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u);
425}
426
427
428inline BOOL LLVector3::isNull() const
429{
430 if ( F_APPROXIMATELY_ZERO > mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ] )
431 {
432 return TRUE;
433 }
434 return FALSE;
435}
436
437
438inline F32 angle_between(const LLVector3& a, const LLVector3& b)
439{
440 LLVector3 an = a;
441 LLVector3 bn = b;
442 an.normVec();
443 bn.normVec();
444 F32 cosine = an * bn;
445 F32 angle = (cosine >= 1.0f) ? 0.0f :
446 (cosine <= -1.0f) ? F_PI :
447 (F32)acos(cosine);
448 return angle;
449}
450
451inline BOOL are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon)
452{
453 LLVector3 an = a;
454 LLVector3 bn = b;
455 an.normVec();
456 bn.normVec();
457 F32 dot = an * bn;
458 if ( (1.0f - fabs(dot)) < epsilon)
459 {
460 return TRUE;
461 }
462 return FALSE;
463}
464
465#endif