aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/src/others/irrlicht-1.8.1/source/Irrlicht/COpenGLNormalMapRenderer.cpp
blob: 875fe63e96490547545c2f0bf746d4ae88fd48ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h

#include "IrrCompileConfig.h"
#ifdef _IRR_COMPILE_WITH_OPENGL_

#include "COpenGLNormalMapRenderer.h"
#include "IGPUProgrammingServices.h"
#include "IShaderConstantSetCallBack.h"
#include "IVideoDriver.h"
#include "os.h"
#include "COpenGLDriver.h"

namespace irr
{
namespace video
{

// Irrlicht Engine OpenGL render path normal map vertex shader
// I guess it could be optimized a lot, because I wrote it in D3D ASM and
// transferred it 1:1 to OpenGL
const char OPENGL_NORMAL_MAP_VSH[] =
	"!!ARBvp1.0\n"\
	"#input\n"\
	"# 0-3: transposed world matrix;\n"\
	"#;12: Light01 position \n"\
	"#;13: x,y,z: Light01 color; .w: 1/LightRadius^2 \n"\
	"#;14: Light02 position \n"\
	"#;15: x,y,z: Light02 color; .w: 1/LightRadius^2 \n"\
	"\n"\
	"ATTRIB InPos = vertex.position;\n"\
	"ATTRIB InColor = vertex.color;\n"\
	"ATTRIB InNormal = vertex.normal;\n"\
	"ATTRIB InTexCoord = vertex.texcoord[0];\n"\
	"ATTRIB InTangent = vertex.texcoord[1];\n"\
	"ATTRIB InBinormal = vertex.texcoord[2];\n"\
	"\n"\
	"#output\n"\
	"OUTPUT OutPos = result.position;\n"\
	"OUTPUT OutLightColor1 = result.color.primary;\n"\
	"OUTPUT OutLightColor2 = result.color.secondary;\n"\
	"OUTPUT OutTexCoord = result.texcoord[0];\n"\
	"OUTPUT OutLightVector1 = result.texcoord[1];\n"\
	"OUTPUT OutLightVector2 = result.texcoord[2];\n"\
	"\n"\
	"PARAM MVP[4] = { state.matrix.mvp }; # modelViewProjection matrix.\n"\
	"TEMP Temp;\n"\
	"TEMP TempColor;\n"\
	"TEMP TempLightVector1;\n"\
	"TEMP TempLightVector2;\n"\
	"TEMP TempTransLightV1;\n"\
	"TEMP TempTransLightV2;\n"\
	"\n"\
	"# transform position to clip space \n"\
	"DP4 OutPos.x, MVP[0], InPos;\n"\
	"DP4 OutPos.y, MVP[1], InPos;\n"\
	"DP4 Temp.z, MVP[2], InPos;\n"\
	"DP4 OutPos.w, MVP[3], InPos;\n"\
	"MOV OutPos.z, Temp.z;\n"\
	"MOV result.fogcoord.x, Temp.z;\n"\
	"\n"\
	"# vertex - lightpositions \n"\
	"SUB TempLightVector1, program.local[12], InPos; \n"\
	"SUB TempLightVector2, program.local[14], InPos; \n"\
	"\n"\
	"# transform the light vector 1 with U, V, W \n"\
	"DP3 TempTransLightV1.x, InTangent, TempLightVector1; \n"\
	"DP3 TempTransLightV1.y, InBinormal, TempLightVector1; \n"\
	"DP3 TempTransLightV1.z, InNormal, TempLightVector1; \n"\
	"\n"\
	"# transform the light vector 2 with U, V, W \n"\
	"DP3 TempTransLightV2.x, InTangent, TempLightVector2; \n"\
	"DP3 TempTransLightV2.y, InBinormal, TempLightVector2; \n"\
	"DP3 TempTransLightV2.z, InNormal, TempLightVector2; \n"\
	"\n"\
	"# normalize light vector 1 \n"\
	"DP3 TempTransLightV1.w, TempTransLightV1, TempTransLightV1; \n"\
	"RSQ TempTransLightV1.w, TempTransLightV1.w; \n"\
	"MUL TempTransLightV1, TempTransLightV1, TempTransLightV1.w;\n"\
	"\n"\
	"# normalize light vector 2 \n"\
	"DP3 TempTransLightV2.w, TempTransLightV2, TempTransLightV2; \n"\
	"RSQ TempTransLightV2.w, TempTransLightV2.w; \n"\
	"MUL TempTransLightV2, TempTransLightV2, TempTransLightV2.w;\n"\
	"\n"\
	"\n"\
	"# move light vectors out\n"\
	"MAD OutLightVector1, TempTransLightV1, {0.5,0.5,0.5,0.5}, {0.5,0.5,0.5,0.5}; \n"\
	"MAD OutLightVector2, TempTransLightV2, {0.5,0.5,0.5,0.5}, {0.5,0.5,0.5,0.5}; \n"\
	"\n"\
	"# calculate attenuation of light 1\n"\
	"MOV TempLightVector1.w, {0,0,0,0}; \n"\
	"DP3 TempLightVector1.x, TempLightVector1, TempLightVector1; \n"\
	"MUL TempLightVector1.x, TempLightVector1.x, program.local[13].w;  \n"\
	"RSQ TempLightVector1, TempLightVector1.x; \n"\
	"MUL OutLightColor1, TempLightVector1, program.local[13]; # resulting light color = lightcolor * attenuation \n"\
	"\n"\
	"# calculate attenuation of light 2\n"\
	"MOV TempLightVector2.w, {0,0,0,0}; \n"\
	"DP3 TempLightVector2.x, TempLightVector2, TempLightVector2; \n"\
	"MUL TempLightVector2.x, TempLightVector2.x, program.local[15].w;  \n"\
	"RSQ TempLightVector2, TempLightVector2.x; \n"\
	"MUL OutLightColor2, TempLightVector2, program.local[15]; # resulting light color = lightcolor * attenuation \n"\
	"\n"\
	"# move out texture coordinates and original alpha value\n"\
	"MOV OutTexCoord, InTexCoord; \n"\
	"MOV OutLightColor1.w, InColor.w; \n"\
	"\n"\
	"END\n";

// Irrlicht Engine OpenGL render path normal map pixel shader
// I guess it could be optimized a bit, because I wrote it in D3D ASM and
// transfered it 1:1 to OpenGL
const char OPENGL_NORMAL_MAP_PSH[] =
	"!!ARBfp1.0\n"\
	"#_IRR_FOG_MODE_\n"\
	"\n"\
	"#Input\n"\
	"ATTRIB inTexCoord = fragment.texcoord[0];   \n"\
	"ATTRIB light1Vector = fragment.texcoord[1]; \n"\
	"ATTRIB light2Vector = fragment.texcoord[2];    \n"\
	"ATTRIB light1Color = fragment.color.primary;   \n"\
	"ATTRIB light2Color = fragment.color.secondary; \n"\
	"\n"\
	"#Output\n"\
	"OUTPUT outColor = result.color;\n"\
	"TEMP temp;\n"\
	"TEMP temp2;\n"\
	"TEMP colorMapColor;\n"\
	"TEMP normalMapColor;\n"\
	"\n"\
	"# fetch color and normal map; \n"\
	"TXP colorMapColor, inTexCoord, texture[0], 2D; \n"\
	"TXP normalMapColor, inTexCoord, texture[1], 2D; \n"\
	"\n"\
	"# calculate color of light1; \n"\
	"MAD normalMapColor, normalMapColor, {2,2,2,2}, {-1,-1,-1,-1}; \n"\
	"MAD temp, light1Vector, {2,2,2,2}, {-1,-1,-1,-1}; \n"\
	"DP3_SAT temp, normalMapColor, temp; \n"\
	"MUL temp, light1Color, temp; \n"\
	"\n"\
	"# calculate color of light2; \n"\
	"MAD temp2, light2Vector, {2,2,2,2}, {-1,-1,-1,-1}; \n"\
	"DP3_SAT temp2, normalMapColor, temp2; \n"\
	"MAD temp, light2Color, temp2, temp; \n"\
	"\n"\
	"# luminance * base color; \n"\
	"MUL outColor, temp, colorMapColor; \n"\
	"MOV outColor.a, light1Color.a; #write interpolated vertex alpha value\n"\
	"\n"\
	"END\n";

//! Constructor
COpenGLNormalMapRenderer::COpenGLNormalMapRenderer(video::COpenGLDriver* driver,
	s32& outMaterialTypeNr, IMaterialRenderer* baseMaterial)
	: COpenGLShaderMaterialRenderer(driver, 0, baseMaterial), CompiledShaders(true)
{

	#ifdef _DEBUG
	setDebugName("COpenGLNormalMapRenderer");
	#endif

	// set this as callback. We could have done this in
	// the initialization list, but some compilers don't like it.

	CallBack = this;

	// basically, this thing simply compiles the hardcoded shaders if the
	// hardware is able to do them, otherwise it maps to the base material

	if (!driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1) ||
		!driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))
	{
		// this hardware is not able to do shaders. Fall back to
		// base material.
		outMaterialTypeNr = driver->addMaterialRenderer(this);
		return;
	}

	// check if already compiled normal map shaders are there.

	video::IMaterialRenderer* renderer = driver->getMaterialRenderer(EMT_NORMAL_MAP_SOLID);

	if (renderer)
	{
		// use the already compiled shaders
		video::COpenGLNormalMapRenderer* nmr = reinterpret_cast<video::COpenGLNormalMapRenderer*>(renderer);
		CompiledShaders = false;

		VertexShader = nmr->VertexShader;
		PixelShader = nmr->PixelShader;

		outMaterialTypeNr = driver->addMaterialRenderer(this);
	}
	else
	{
		// compile shaders on our own
		init(outMaterialTypeNr, OPENGL_NORMAL_MAP_VSH, OPENGL_NORMAL_MAP_PSH, EVT_TANGENTS);
	}

	// fallback if compilation has failed
	if (-1==outMaterialTypeNr)
		outMaterialTypeNr = driver->addMaterialRenderer(this);
}


//! Destructor
COpenGLNormalMapRenderer::~COpenGLNormalMapRenderer()
{
	if (CallBack == this)
		CallBack = 0;

	if (!CompiledShaders)
	{
		// prevent this from deleting shaders we did not create
		VertexShader = 0;
		PixelShader.clear();
	}
}


//! Returns the render capability of the material.
s32 COpenGLNormalMapRenderer::getRenderCapability() const
{
	if (Driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1) &&
		Driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))
		return 0;

	return 1;
}


//! Called by the engine when the vertex and/or pixel shader constants for an
//! material renderer should be set.
void COpenGLNormalMapRenderer::OnSetConstants(IMaterialRendererServices* services, s32 userData)
{
	video::IVideoDriver* driver = services->getVideoDriver();

	// set transposed world matrix
	const core::matrix4& tWorld = driver->getTransform(video::ETS_WORLD).getTransposed();
	services->setVertexShaderConstant(tWorld.pointer(), 0, 4);

	// set transposed worldViewProj matrix
	core::matrix4 worldViewProj(driver->getTransform(video::ETS_PROJECTION));
	worldViewProj *= driver->getTransform(video::ETS_VIEW);
	worldViewProj *= driver->getTransform(video::ETS_WORLD);
	core::matrix4 tr(worldViewProj.getTransposed());
	services->setVertexShaderConstant(tr.pointer(), 8, 4);

	// here we fetch the fixed function lights from the driver
	// and set them as constants

	u32 cnt = driver->getDynamicLightCount();

	// Load the inverse world matrix.
	core::matrix4 invWorldMat;
	driver->getTransform(video::ETS_WORLD).getInverse(invWorldMat);

	for (u32 i=0; i<2; ++i)
	{
		video::SLight light;

		if (i<cnt)
			light = driver->getDynamicLight(i);
		else
		{
			light.DiffuseColor.set(0,0,0); // make light dark
			light.Radius = 1.0f;
		}

		light.DiffuseColor.a = 1.0f/(light.Radius*light.Radius); // set attenuation

		// Transform the light by the inverse world matrix to get it into object space.
		invWorldMat.transformVect(light.Position);

		services->setVertexShaderConstant(
			reinterpret_cast<const f32*>(&light.Position), 12+(i*2), 1);

		services->setVertexShaderConstant(
			reinterpret_cast<const f32*>(&light.DiffuseColor), 13+(i*2), 1);
	}
}


} // end namespace video
} // end namespace irr


#endif