1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
|
// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __IRR_MATH_H_INCLUDED__
#define __IRR_MATH_H_INCLUDED__
#include "IrrCompileConfig.h"
#include "irrTypes.h"
#include <math.h>
#include <float.h>
#include <stdlib.h> // for abs() etc.
#include <limits.h> // For INT_MAX / UINT_MAX
#if defined(_IRR_SOLARIS_PLATFORM_) || defined(__BORLANDC__) || defined (__BCPLUSPLUS__) || defined (_WIN32_WCE)
#define sqrtf(X) (irr::f32)sqrt((irr::f64)(X))
#define sinf(X) (irr::f32)sin((irr::f64)(X))
#define cosf(X) (irr::f32)cos((irr::f64)(X))
#define asinf(X) (irr::f32)asin((irr::f64)(X))
#define acosf(X) (irr::f32)acos((irr::f64)(X))
#define atan2f(X,Y) (irr::f32)atan2((irr::f64)(X),(irr::f64)(Y))
#define ceilf(X) (irr::f32)ceil((irr::f64)(X))
#define floorf(X) (irr::f32)floor((irr::f64)(X))
#define powf(X,Y) (irr::f32)pow((irr::f64)(X),(irr::f64)(Y))
#define fmodf(X,Y) (irr::f32)fmod((irr::f64)(X),(irr::f64)(Y))
#define fabsf(X) (irr::f32)fabs((irr::f64)(X))
#define logf(X) (irr::f32)log((irr::f64)(X))
#endif
#ifndef FLT_MAX
#define FLT_MAX 3.402823466E+38F
#endif
#ifndef FLT_MIN
#define FLT_MIN 1.17549435e-38F
#endif
namespace irr
{
namespace core
{
//! Rounding error constant often used when comparing f32 values.
const s32 ROUNDING_ERROR_S32 = 0;
#ifdef __IRR_HAS_S64
const s64 ROUNDING_ERROR_S64 = 0;
#endif
const f32 ROUNDING_ERROR_f32 = 0.000001f;
const f64 ROUNDING_ERROR_f64 = 0.00000001;
#ifdef PI // make sure we don't collide with a define
#undef PI
#endif
//! Constant for PI.
const f32 PI = 3.14159265359f;
//! Constant for reciprocal of PI.
const f32 RECIPROCAL_PI = 1.0f/PI;
//! Constant for half of PI.
const f32 HALF_PI = PI/2.0f;
#ifdef PI64 // make sure we don't collide with a define
#undef PI64
#endif
//! Constant for 64bit PI.
const f64 PI64 = 3.1415926535897932384626433832795028841971693993751;
//! Constant for 64bit reciprocal of PI.
const f64 RECIPROCAL_PI64 = 1.0/PI64;
//! 32bit Constant for converting from degrees to radians
const f32 DEGTORAD = PI / 180.0f;
//! 32bit constant for converting from radians to degrees (formally known as GRAD_PI)
const f32 RADTODEG = 180.0f / PI;
//! 64bit constant for converting from degrees to radians (formally known as GRAD_PI2)
const f64 DEGTORAD64 = PI64 / 180.0;
//! 64bit constant for converting from radians to degrees
const f64 RADTODEG64 = 180.0 / PI64;
//! Utility function to convert a radian value to degrees
/** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
\param radians The radians value to convert to degrees.
*/
inline f32 radToDeg(f32 radians)
{
return RADTODEG * radians;
}
//! Utility function to convert a radian value to degrees
/** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
\param radians The radians value to convert to degrees.
*/
inline f64 radToDeg(f64 radians)
{
return RADTODEG64 * radians;
}
//! Utility function to convert a degrees value to radians
/** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
\param degrees The degrees value to convert to radians.
*/
inline f32 degToRad(f32 degrees)
{
return DEGTORAD * degrees;
}
//! Utility function to convert a degrees value to radians
/** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
\param degrees The degrees value to convert to radians.
*/
inline f64 degToRad(f64 degrees)
{
return DEGTORAD64 * degrees;
}
//! returns minimum of two values. Own implementation to get rid of the STL (VS6 problems)
template<class T>
inline const T& min_(const T& a, const T& b)
{
return a < b ? a : b;
}
//! returns minimum of three values. Own implementation to get rid of the STL (VS6 problems)
template<class T>
inline const T& min_(const T& a, const T& b, const T& c)
{
return a < b ? min_(a, c) : min_(b, c);
}
//! returns maximum of two values. Own implementation to get rid of the STL (VS6 problems)
template<class T>
inline const T& max_(const T& a, const T& b)
{
return a < b ? b : a;
}
//! returns maximum of three values. Own implementation to get rid of the STL (VS6 problems)
template<class T>
inline const T& max_(const T& a, const T& b, const T& c)
{
return a < b ? max_(b, c) : max_(a, c);
}
//! returns abs of two values. Own implementation to get rid of STL (VS6 problems)
template<class T>
inline T abs_(const T& a)
{
return a < (T)0 ? -a : a;
}
//! returns linear interpolation of a and b with ratio t
//! \return: a if t==0, b if t==1, and the linear interpolation else
template<class T>
inline T lerp(const T& a, const T& b, const f32 t)
{
return (T)(a*(1.f-t)) + (b*t);
}
//! clamps a value between low and high
template <class T>
inline const T clamp (const T& value, const T& low, const T& high)
{
return min_ (max_(value,low), high);
}
//! swaps the content of the passed parameters
// Note: We use the same trick as boost and use two template arguments to
// avoid ambiguity when swapping objects of an Irrlicht type that has not
// it's own swap overload. Otherwise we get conflicts with some compilers
// in combination with stl.
template <class T1, class T2>
inline void swap(T1& a, T2& b)
{
T1 c(a);
a = b;
b = c;
}
//! returns if a equals b, taking possible rounding errors into account
inline bool equals(const f64 a, const f64 b, const f64 tolerance = ROUNDING_ERROR_f64)
{
return (a + tolerance >= b) && (a - tolerance <= b);
}
//! returns if a equals b, taking possible rounding errors into account
inline bool equals(const f32 a, const f32 b, const f32 tolerance = ROUNDING_ERROR_f32)
{
return (a + tolerance >= b) && (a - tolerance <= b);
}
union FloatIntUnion32
{
FloatIntUnion32(float f1 = 0.0f) : f(f1) {}
// Portable sign-extraction
bool sign() const { return (i >> 31) != 0; }
irr::s32 i;
irr::f32 f;
};
//! We compare the difference in ULP's (spacing between floating-point numbers, aka ULP=1 means there exists no float between).
//\result true when numbers have a ULP <= maxUlpDiff AND have the same sign.
inline bool equalsByUlp(f32 a, f32 b, int maxUlpDiff)
{
// Based on the ideas and code from Bruce Dawson on
// http://www.altdevblogaday.com/2012/02/22/comparing-floating-point-numbers-2012-edition/
// When floats are interpreted as integers the two nearest possible float numbers differ just
// by one integer number. Also works the other way round, an integer of 1 interpreted as float
// is for example the smallest possible float number.
FloatIntUnion32 fa(a);
FloatIntUnion32 fb(b);
// Different signs, we could maybe get difference to 0, but so close to 0 using epsilons is better.
if ( fa.sign() != fb.sign() )
{
// Check for equality to make sure +0==-0
if (fa.i == fb.i)
return true;
return false;
}
// Find the difference in ULPs.
int ulpsDiff = abs_(fa.i- fb.i);
if (ulpsDiff <= maxUlpDiff)
return true;
return false;
}
#if 0
//! returns if a equals b, not using any rounding tolerance
inline bool equals(const s32 a, const s32 b)
{
return (a == b);
}
//! returns if a equals b, not using any rounding tolerance
inline bool equals(const u32 a, const u32 b)
{
return (a == b);
}
#endif
//! returns if a equals b, taking an explicit rounding tolerance into account
inline bool equals(const s32 a, const s32 b, const s32 tolerance = ROUNDING_ERROR_S32)
{
return (a + tolerance >= b) && (a - tolerance <= b);
}
//! returns if a equals b, taking an explicit rounding tolerance into account
inline bool equals(const u32 a, const u32 b, const s32 tolerance = ROUNDING_ERROR_S32)
{
return (a + tolerance >= b) && (a - tolerance <= b);
}
#ifdef __IRR_HAS_S64
//! returns if a equals b, taking an explicit rounding tolerance into account
inline bool equals(const s64 a, const s64 b, const s64 tolerance = ROUNDING_ERROR_S64)
{
return (a + tolerance >= b) && (a - tolerance <= b);
}
#endif
//! returns if a equals zero, taking rounding errors into account
inline bool iszero(const f64 a, const f64 tolerance = ROUNDING_ERROR_f64)
{
return fabs(a) <= tolerance;
}
//! returns if a equals zero, taking rounding errors into account
inline bool iszero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
{
return fabsf(a) <= tolerance;
}
//! returns if a equals not zero, taking rounding errors into account
inline bool isnotzero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
{
return fabsf(a) > tolerance;
}
//! returns if a equals zero, taking rounding errors into account
inline bool iszero(const s32 a, const s32 tolerance = 0)
{
return ( a & 0x7ffffff ) <= tolerance;
}
//! returns if a equals zero, taking rounding errors into account
inline bool iszero(const u32 a, const u32 tolerance = 0)
{
return a <= tolerance;
}
#ifdef __IRR_HAS_S64
//! returns if a equals zero, taking rounding errors into account
inline bool iszero(const s64 a, const s64 tolerance = 0)
{
return abs_(a) <= tolerance;
}
#endif
inline s32 s32_min(s32 a, s32 b)
{
const s32 mask = (a - b) >> 31;
return (a & mask) | (b & ~mask);
}
inline s32 s32_max(s32 a, s32 b)
{
const s32 mask = (a - b) >> 31;
return (b & mask) | (a & ~mask);
}
inline s32 s32_clamp (s32 value, s32 low, s32 high)
{
return s32_min(s32_max(value,low), high);
}
/*
float IEEE-754 bit represenation
0 0x00000000
1.0 0x3f800000
0.5 0x3f000000
3 0x40400000
+inf 0x7f800000
-inf 0xff800000
+NaN 0x7fc00000 or 0x7ff00000
in general: number = (sign ? -1:1) * 2^(exponent) * 1.(mantissa bits)
*/
typedef union { u32 u; s32 s; f32 f; } inttofloat;
#define F32_AS_S32(f) (*((s32 *) &(f)))
#define F32_AS_U32(f) (*((u32 *) &(f)))
#define F32_AS_U32_POINTER(f) ( ((u32 *) &(f)))
#define F32_VALUE_0 0x00000000
#define F32_VALUE_1 0x3f800000
#define F32_SIGN_BIT 0x80000000U
#define F32_EXPON_MANTISSA 0x7FFFFFFFU
//! code is taken from IceFPU
//! Integer representation of a floating-point value.
#ifdef IRRLICHT_FAST_MATH
#define IR(x) ((u32&)(x))
#else
inline u32 IR(f32 x) {inttofloat tmp; tmp.f=x; return tmp.u;}
#endif
//! Absolute integer representation of a floating-point value
#define AIR(x) (IR(x)&0x7fffffff)
//! Floating-point representation of an integer value.
#ifdef IRRLICHT_FAST_MATH
#define FR(x) ((f32&)(x))
#else
inline f32 FR(u32 x) {inttofloat tmp; tmp.u=x; return tmp.f;}
inline f32 FR(s32 x) {inttofloat tmp; tmp.s=x; return tmp.f;}
#endif
//! integer representation of 1.0
#define IEEE_1_0 0x3f800000
//! integer representation of 255.0
#define IEEE_255_0 0x437f0000
#ifdef IRRLICHT_FAST_MATH
#define F32_LOWER_0(f) (F32_AS_U32(f) > F32_SIGN_BIT)
#define F32_LOWER_EQUAL_0(f) (F32_AS_S32(f) <= F32_VALUE_0)
#define F32_GREATER_0(f) (F32_AS_S32(f) > F32_VALUE_0)
#define F32_GREATER_EQUAL_0(f) (F32_AS_U32(f) <= F32_SIGN_BIT)
#define F32_EQUAL_1(f) (F32_AS_U32(f) == F32_VALUE_1)
#define F32_EQUAL_0(f) ( (F32_AS_U32(f) & F32_EXPON_MANTISSA ) == F32_VALUE_0)
// only same sign
#define F32_A_GREATER_B(a,b) (F32_AS_S32((a)) > F32_AS_S32((b)))
#else
#define F32_LOWER_0(n) ((n) < 0.0f)
#define F32_LOWER_EQUAL_0(n) ((n) <= 0.0f)
#define F32_GREATER_0(n) ((n) > 0.0f)
#define F32_GREATER_EQUAL_0(n) ((n) >= 0.0f)
#define F32_EQUAL_1(n) ((n) == 1.0f)
#define F32_EQUAL_0(n) ((n) == 0.0f)
#define F32_A_GREATER_B(a,b) ((a) > (b))
#endif
#ifndef REALINLINE
#ifdef _MSC_VER
#define REALINLINE __forceinline
#else
#define REALINLINE inline
#endif
#endif
#if defined(__BORLANDC__) || defined (__BCPLUSPLUS__)
// 8-bit bools in borland builder
//! conditional set based on mask and arithmetic shift
REALINLINE u32 if_c_a_else_b ( const c8 condition, const u32 a, const u32 b )
{
return ( ( -condition >> 7 ) & ( a ^ b ) ) ^ b;
}
//! conditional set based on mask and arithmetic shift
REALINLINE u32 if_c_a_else_0 ( const c8 condition, const u32 a )
{
return ( -condition >> 31 ) & a;
}
#else
//! conditional set based on mask and arithmetic shift
REALINLINE u32 if_c_a_else_b ( const s32 condition, const u32 a, const u32 b )
{
return ( ( -condition >> 31 ) & ( a ^ b ) ) ^ b;
}
//! conditional set based on mask and arithmetic shift
REALINLINE u16 if_c_a_else_b ( const s16 condition, const u16 a, const u16 b )
{
return ( ( -condition >> 15 ) & ( a ^ b ) ) ^ b;
}
//! conditional set based on mask and arithmetic shift
REALINLINE u32 if_c_a_else_0 ( const s32 condition, const u32 a )
{
return ( -condition >> 31 ) & a;
}
#endif
/*
if (condition) state |= m; else state &= ~m;
*/
REALINLINE void setbit_cond ( u32 &state, s32 condition, u32 mask )
{
// 0, or any postive to mask
//s32 conmask = -condition >> 31;
state ^= ( ( -condition >> 31 ) ^ state ) & mask;
}
inline f32 round_( f32 x )
{
return floorf( x + 0.5f );
}
REALINLINE void clearFPUException ()
{
#ifdef IRRLICHT_FAST_MATH
return;
#ifdef feclearexcept
feclearexcept(FE_ALL_EXCEPT);
#elif defined(_MSC_VER)
__asm fnclex;
#elif defined(__GNUC__) && defined(__x86__)
__asm__ __volatile__ ("fclex \n\t");
#else
# warn clearFPUException not supported.
#endif
#endif
}
// calculate: sqrt ( x )
REALINLINE f32 squareroot(const f32 f)
{
return sqrtf(f);
}
// calculate: sqrt ( x )
REALINLINE f64 squareroot(const f64 f)
{
return sqrt(f);
}
// calculate: sqrt ( x )
REALINLINE s32 squareroot(const s32 f)
{
return static_cast<s32>(squareroot(static_cast<f32>(f)));
}
#ifdef __IRR_HAS_S64
// calculate: sqrt ( x )
REALINLINE s64 squareroot(const s64 f)
{
return static_cast<s64>(squareroot(static_cast<f64>(f)));
}
#endif
// calculate: 1 / sqrt ( x )
REALINLINE f64 reciprocal_squareroot(const f64 x)
{
return 1.0 / sqrt(x);
}
// calculate: 1 / sqrtf ( x )
REALINLINE f32 reciprocal_squareroot(const f32 f)
{
#if defined ( IRRLICHT_FAST_MATH )
#if defined(_MSC_VER)
// SSE reciprocal square root estimate, accurate to 12 significant
// bits of the mantissa
f32 recsqrt;
__asm rsqrtss xmm0, f // xmm0 = rsqrtss(f)
__asm movss recsqrt, xmm0 // return xmm0
return recsqrt;
/*
// comes from Nvidia
u32 tmp = (u32(IEEE_1_0 << 1) + IEEE_1_0 - *(u32*)&x) >> 1;
f32 y = *(f32*)&tmp;
return y * (1.47f - 0.47f * x * y * y);
*/
#else
return 1.f / sqrtf(f);
#endif
#else // no fast math
return 1.f / sqrtf(f);
#endif
}
// calculate: 1 / sqrtf( x )
REALINLINE s32 reciprocal_squareroot(const s32 x)
{
return static_cast<s32>(reciprocal_squareroot(static_cast<f32>(x)));
}
// calculate: 1 / x
REALINLINE f32 reciprocal( const f32 f )
{
#if defined (IRRLICHT_FAST_MATH)
// SSE Newton-Raphson reciprocal estimate, accurate to 23 significant
// bi ts of the mantissa
// One Newtown-Raphson Iteration:
// f(i+1) = 2 * rcpss(f) - f * rcpss(f) * rcpss(f)
f32 rec;
__asm rcpss xmm0, f // xmm0 = rcpss(f)
__asm movss xmm1, f // xmm1 = f
__asm mulss xmm1, xmm0 // xmm1 = f * rcpss(f)
__asm mulss xmm1, xmm0 // xmm2 = f * rcpss(f) * rcpss(f)
__asm addss xmm0, xmm0 // xmm0 = 2 * rcpss(f)
__asm subss xmm0, xmm1 // xmm0 = 2 * rcpss(f)
// - f * rcpss(f) * rcpss(f)
__asm movss rec, xmm0 // return xmm0
return rec;
//! i do not divide through 0.. (fpu expection)
// instead set f to a high value to get a return value near zero..
// -1000000000000.f.. is use minus to stay negative..
// must test's here (plane.normal dot anything ) checks on <= 0.f
//u32 x = (-(AIR(f) != 0 ) >> 31 ) & ( IR(f) ^ 0xd368d4a5 ) ^ 0xd368d4a5;
//return 1.f / FR ( x );
#else // no fast math
return 1.f / f;
#endif
}
// calculate: 1 / x
REALINLINE f64 reciprocal ( const f64 f )
{
return 1.0 / f;
}
// calculate: 1 / x, low precision allowed
REALINLINE f32 reciprocal_approxim ( const f32 f )
{
#if defined( IRRLICHT_FAST_MATH)
// SSE Newton-Raphson reciprocal estimate, accurate to 23 significant
// bi ts of the mantissa
// One Newtown-Raphson Iteration:
// f(i+1) = 2 * rcpss(f) - f * rcpss(f) * rcpss(f)
f32 rec;
__asm rcpss xmm0, f // xmm0 = rcpss(f)
__asm movss xmm1, f // xmm1 = f
__asm mulss xmm1, xmm0 // xmm1 = f * rcpss(f)
__asm mulss xmm1, xmm0 // xmm2 = f * rcpss(f) * rcpss(f)
__asm addss xmm0, xmm0 // xmm0 = 2 * rcpss(f)
__asm subss xmm0, xmm1 // xmm0 = 2 * rcpss(f)
// - f * rcpss(f) * rcpss(f)
__asm movss rec, xmm0 // return xmm0
return rec;
/*
// SSE reciprocal estimate, accurate to 12 significant bits of
f32 rec;
__asm rcpss xmm0, f // xmm0 = rcpss(f)
__asm movss rec , xmm0 // return xmm0
return rec;
*/
/*
register u32 x = 0x7F000000 - IR ( p );
const f32 r = FR ( x );
return r * (2.0f - p * r);
*/
#else // no fast math
return 1.f / f;
#endif
}
REALINLINE s32 floor32(f32 x)
{
#ifdef IRRLICHT_FAST_MATH
const f32 h = 0.5f;
s32 t;
#if defined(_MSC_VER)
__asm
{
fld x
fsub h
fistp t
}
#elif defined(__GNUC__)
__asm__ __volatile__ (
"fsub %2 \n\t"
"fistpl %0"
: "=m" (t)
: "t" (x), "f" (h)
: "st"
);
#else
# warn IRRLICHT_FAST_MATH not supported.
return (s32) floorf ( x );
#endif
return t;
#else // no fast math
return (s32) floorf ( x );
#endif
}
REALINLINE s32 ceil32 ( f32 x )
{
#ifdef IRRLICHT_FAST_MATH
const f32 h = 0.5f;
s32 t;
#if defined(_MSC_VER)
__asm
{
fld x
fadd h
fistp t
}
#elif defined(__GNUC__)
__asm__ __volatile__ (
"fadd %2 \n\t"
"fistpl %0 \n\t"
: "=m"(t)
: "t"(x), "f"(h)
: "st"
);
#else
# warn IRRLICHT_FAST_MATH not supported.
return (s32) ceilf ( x );
#endif
return t;
#else // not fast math
return (s32) ceilf ( x );
#endif
}
REALINLINE s32 round32(f32 x)
{
#if defined(IRRLICHT_FAST_MATH)
s32 t;
#if defined(_MSC_VER)
__asm
{
fld x
fistp t
}
#elif defined(__GNUC__)
__asm__ __volatile__ (
"fistpl %0 \n\t"
: "=m"(t)
: "t"(x)
: "st"
);
#else
# warn IRRLICHT_FAST_MATH not supported.
return (s32) round_(x);
#endif
return t;
#else // no fast math
return (s32) round_(x);
#endif
}
inline f32 f32_max3(const f32 a, const f32 b, const f32 c)
{
return a > b ? (a > c ? a : c) : (b > c ? b : c);
}
inline f32 f32_min3(const f32 a, const f32 b, const f32 c)
{
return a < b ? (a < c ? a : c) : (b < c ? b : c);
}
inline f32 fract ( f32 x )
{
return x - floorf ( x );
}
} // end namespace core
} // end namespace irr
#ifndef IRRLICHT_FAST_MATH
using irr::core::IR;
using irr::core::FR;
#endif
#endif
|