aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8.1/include/SColor.h
blob: b61bbef976b1b768d9c449226192eee0f36b647a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h

#ifndef __COLOR_H_INCLUDED__
#define __COLOR_H_INCLUDED__

#include "irrTypes.h"
#include "irrMath.h"

namespace irr
{
namespace video
{
	//! An enum for the color format of textures used by the Irrlicht Engine.
	/** A color format specifies how color information is stored. */
	enum ECOLOR_FORMAT
	{
		//! 16 bit color format used by the software driver.
		/** It is thus preferred by all other irrlicht engine video drivers.
		There are 5 bits for every color component, and a single bit is left
		for alpha information. */
		ECF_A1R5G5B5 = 0,

		//! Standard 16 bit color format.
		ECF_R5G6B5,

		//! 24 bit color, no alpha channel, but 8 bit for red, green and blue.
		ECF_R8G8B8,

		//! Default 32 bit color format. 8 bits are used for every component: red, green, blue and alpha.
		ECF_A8R8G8B8,

		/** Floating Point formats. The following formats may only be used for render target textures. */

		//! 16 bit floating point format using 16 bits for the red channel.
		ECF_R16F,

		//! 32 bit floating point format using 16 bits for the red channel and 16 bits for the green channel.
		ECF_G16R16F,

		//! 64 bit floating point format 16 bits are used for the red, green, blue and alpha channels.
		ECF_A16B16G16R16F,

		//! 32 bit floating point format using 32 bits for the red channel.
		ECF_R32F,

		//! 64 bit floating point format using 32 bits for the red channel and 32 bits for the green channel.
		ECF_G32R32F,

		//! 128 bit floating point format. 32 bits are used for the red, green, blue and alpha channels.
		ECF_A32B32G32R32F,

		//! Unknown color format:
		ECF_UNKNOWN
	};


	//! Creates a 16 bit A1R5G5B5 color
	inline u16 RGBA16(u32 r, u32 g, u32 b, u32 a=0xFF)
	{
		return (u16)((a & 0x80) << 8 |
			(r & 0xF8) << 7 |
			(g & 0xF8) << 2 |
			(b & 0xF8) >> 3);
	}


	//! Creates a 16 bit A1R5G5B5 color
	inline u16 RGB16(u32 r, u32 g, u32 b)
	{
		return RGBA16(r,g,b);
	}


	//! Creates a 16bit A1R5G5B5 color, based on 16bit input values
	inline u16 RGB16from16(u16 r, u16 g, u16 b)
	{
		return (0x8000 |
				(r & 0x1F) << 10 |
				(g & 0x1F) << 5  |
				(b & 0x1F));
	}


	//! Converts a 32bit (X8R8G8B8) color to a 16bit A1R5G5B5 color
	inline u16 X8R8G8B8toA1R5G5B5(u32 color)
	{
		return (u16)(0x8000 |
			( color & 0x00F80000) >> 9 |
			( color & 0x0000F800) >> 6 |
			( color & 0x000000F8) >> 3);
	}


	//! Converts a 32bit (A8R8G8B8) color to a 16bit A1R5G5B5 color
	inline u16 A8R8G8B8toA1R5G5B5(u32 color)
	{
		return (u16)(( color & 0x80000000) >> 16|
			( color & 0x00F80000) >> 9 |
			( color & 0x0000F800) >> 6 |
			( color & 0x000000F8) >> 3);
	}


	//! Converts a 32bit (A8R8G8B8) color to a 16bit R5G6B5 color
	inline u16 A8R8G8B8toR5G6B5(u32 color)
	{
		return (u16)(( color & 0x00F80000) >> 8 |
			( color & 0x0000FC00) >> 5 |
			( color & 0x000000F8) >> 3);
	}


	//! Convert A8R8G8B8 Color from A1R5G5B5 color
	/** build a nicer 32bit Color by extending dest lower bits with source high bits. */
	inline u32 A1R5G5B5toA8R8G8B8(u16 color)
	{
		return ( (( -( (s32) color & 0x00008000 ) >> (s32) 31 ) & 0xFF000000 ) |
				(( color & 0x00007C00 ) << 9) | (( color & 0x00007000 ) << 4) |
				(( color & 0x000003E0 ) << 6) | (( color & 0x00000380 ) << 1) |
				(( color & 0x0000001F ) << 3) | (( color & 0x0000001C ) >> 2)
				);
	}


	//! Returns A8R8G8B8 Color from R5G6B5 color
	inline u32 R5G6B5toA8R8G8B8(u16 color)
	{
		return 0xFF000000 |
			((color & 0xF800) << 8)|
			((color & 0x07E0) << 5)|
			((color & 0x001F) << 3);
	}


	//! Returns A1R5G5B5 Color from R5G6B5 color
	inline u16 R5G6B5toA1R5G5B5(u16 color)
	{
		return 0x8000 | (((color & 0xFFC0) >> 1) | (color & 0x1F));
	}


	//! Returns R5G6B5 Color from A1R5G5B5 color
	inline u16 A1R5G5B5toR5G6B5(u16 color)
	{
		return (((color & 0x7FE0) << 1) | (color & 0x1F));
	}



	//! Returns the alpha component from A1R5G5B5 color
	/** In Irrlicht, alpha refers to opacity.
	\return The alpha value of the color. 0 is transparent, 1 is opaque. */
	inline u32 getAlpha(u16 color)
	{
		return ((color >> 15)&0x1);
	}


	//! Returns the red component from A1R5G5B5 color.
	/** Shift left by 3 to get 8 bit value. */
	inline u32 getRed(u16 color)
	{
		return ((color >> 10)&0x1F);
	}


	//! Returns the green component from A1R5G5B5 color
	/** Shift left by 3 to get 8 bit value. */
	inline u32 getGreen(u16 color)
	{
		return ((color >> 5)&0x1F);
	}


	//! Returns the blue component from A1R5G5B5 color
	/** Shift left by 3 to get 8 bit value. */
	inline u32 getBlue(u16 color)
	{
		return (color & 0x1F);
	}


	//! Returns the average from a 16 bit A1R5G5B5 color
	inline s32 getAverage(s16 color)
	{
		return ((getRed(color)<<3) + (getGreen(color)<<3) + (getBlue(color)<<3)) / 3;
	}


	//! Class representing a 32 bit ARGB color.
	/** The color values for alpha, red, green, and blue are
	stored in a single u32. So all four values may be between 0 and 255.
	Alpha in Irrlicht is opacity, so 0 is fully transparent, 255 is fully opaque (solid).
	This class is used by most parts of the Irrlicht Engine
	to specify a color. Another way is using the class SColorf, which
	stores the color values in 4 floats.
	This class must consist of only one u32 and must not use virtual functions.
	*/
	class SColor
	{
	public:

		//! Constructor of the Color. Does nothing.
		/** The color value is not initialized to save time. */
		SColor() {}

		//! Constructs the color from 4 values representing the alpha, red, green and blue component.
		/** Must be values between 0 and 255. */
		SColor (u32 a, u32 r, u32 g, u32 b)
			: color(((a & 0xff)<<24) | ((r & 0xff)<<16) | ((g & 0xff)<<8) | (b & 0xff)) {}

		//! Constructs the color from a 32 bit value. Could be another color.
		SColor(u32 clr)
			: color(clr) {}

		//! Returns the alpha component of the color.
		/** The alpha component defines how opaque a color is.
		\return The alpha value of the color. 0 is fully transparent, 255 is fully opaque. */
		u32 getAlpha() const { return color>>24; }

		//! Returns the red component of the color.
		/** \return Value between 0 and 255, specifying how red the color is.
		0 means no red, 255 means full red. */
		u32 getRed() const { return (color>>16) & 0xff; }

		//! Returns the green component of the color.
		/** \return Value between 0 and 255, specifying how green the color is.
		0 means no green, 255 means full green. */
		u32 getGreen() const { return (color>>8) & 0xff; }

		//! Returns the blue component of the color.
		/** \return Value between 0 and 255, specifying how blue the color is.
		0 means no blue, 255 means full blue. */
		u32 getBlue() const { return color & 0xff; }

		//! Get lightness of the color in the range [0,255]
		f32 getLightness() const
		{
			return 0.5f*(core::max_(core::max_(getRed(),getGreen()),getBlue())+core::min_(core::min_(getRed(),getGreen()),getBlue()));
		}

		//! Get luminance of the color in the range [0,255].
		f32 getLuminance() const
		{
			return 0.3f*getRed() + 0.59f*getGreen() + 0.11f*getBlue();
		}

		//! Get average intensity of the color in the range [0,255].
		u32 getAverage() const
		{
			return ( getRed() + getGreen() + getBlue() ) / 3;
		}

		//! Sets the alpha component of the Color.
		/** The alpha component defines how transparent a color should be.
		\param a The alpha value of the color. 0 is fully transparent, 255 is fully opaque. */
		void setAlpha(u32 a) { color = ((a & 0xff)<<24) | (color & 0x00ffffff); }

		//! Sets the red component of the Color.
		/** \param r: Has to be a value between 0 and 255.
		0 means no red, 255 means full red. */
		void setRed(u32 r) { color = ((r & 0xff)<<16) | (color & 0xff00ffff); }

		//! Sets the green component of the Color.
		/** \param g: Has to be a value between 0 and 255.
		0 means no green, 255 means full green. */
		void setGreen(u32 g) { color = ((g & 0xff)<<8) | (color & 0xffff00ff); }

		//! Sets the blue component of the Color.
		/** \param b: Has to be a value between 0 and 255.
		0 means no blue, 255 means full blue. */
		void setBlue(u32 b) { color = (b & 0xff) | (color & 0xffffff00); }

		//! Calculates a 16 bit A1R5G5B5 value of this color.
		/** \return 16 bit A1R5G5B5 value of this color. */
		u16 toA1R5G5B5() const { return A8R8G8B8toA1R5G5B5(color); }

		//! Converts color to OpenGL color format
		/** From ARGB to RGBA in 4 byte components for endian aware
		passing to OpenGL
		\param dest: address where the 4x8 bit OpenGL color is stored. */
		void toOpenGLColor(u8* dest) const
		{
			*dest =   (u8)getRed();
			*++dest = (u8)getGreen();
			*++dest = (u8)getBlue();
			*++dest = (u8)getAlpha();
		}

		//! Sets all four components of the color at once.
		/** Constructs the color from 4 values representing the alpha,
		red, green and blue components of the color. Must be values
		between 0 and 255.
		\param a: Alpha component of the color. The alpha component
		defines how transparent a color should be. Has to be a value
		between 0 and 255. 255 means not transparent (opaque), 0 means
		fully transparent.
		\param r: Sets the red component of the Color. Has to be a
		value between 0 and 255. 0 means no red, 255 means full red.
		\param g: Sets the green component of the Color. Has to be a
		value between 0 and 255. 0 means no green, 255 means full
		green.
		\param b: Sets the blue component of the Color. Has to be a
		value between 0 and 255. 0 means no blue, 255 means full blue. */
		void set(u32 a, u32 r, u32 g, u32 b)
		{
			color = (((a & 0xff)<<24) | ((r & 0xff)<<16) | ((g & 0xff)<<8) | (b & 0xff));
		}
		void set(u32 col) { color = col; }

		//! Compares the color to another color.
		/** \return True if the colors are the same, and false if not. */
		bool operator==(const SColor& other) const { return other.color == color; }

		//! Compares the color to another color.
		/** \return True if the colors are different, and false if they are the same. */
		bool operator!=(const SColor& other) const { return other.color != color; }

		//! comparison operator
		/** \return True if this color is smaller than the other one */
		bool operator<(const SColor& other) const { return (color < other.color); }

		//! Adds two colors, result is clamped to 0..255 values
		/** \param other Color to add to this color
		\return Addition of the two colors, clamped to 0..255 values */
		SColor operator+(const SColor& other) const
		{
			return SColor(core::min_(getAlpha() + other.getAlpha(), 255u),
					core::min_(getRed() + other.getRed(), 255u),
					core::min_(getGreen() + other.getGreen(), 255u),
					core::min_(getBlue() + other.getBlue(), 255u));
		}

		//! Interpolates the color with a f32 value to another color
		/** \param other: Other color
		\param d: value between 0.0f and 1.0f
		\return Interpolated color. */
		SColor getInterpolated(const SColor &other, f32 d) const
		{
			d = core::clamp(d, 0.f, 1.f);
			const f32 inv = 1.0f - d;
			return SColor((u32)core::round32(other.getAlpha()*inv + getAlpha()*d),
				(u32)core::round32(other.getRed()*inv + getRed()*d),
				(u32)core::round32(other.getGreen()*inv + getGreen()*d),
				(u32)core::round32(other.getBlue()*inv + getBlue()*d));
		}

		//! Returns interpolated color. ( quadratic )
		/** \param c1: first color to interpolate with
		\param c2: second color to interpolate with
		\param d: value between 0.0f and 1.0f. */
		SColor getInterpolated_quadratic(const SColor& c1, const SColor& c2, f32 d) const
		{
			// this*(1-d)*(1-d) + 2 * c1 * (1-d) + c2 * d * d;
			d = core::clamp(d, 0.f, 1.f);
			const f32 inv = 1.f - d;
			const f32 mul0 = inv * inv;
			const f32 mul1 = 2.f * d * inv;
			const f32 mul2 = d * d;

			return SColor(
					core::clamp( core::floor32(
							getAlpha() * mul0 + c1.getAlpha() * mul1 + c2.getAlpha() * mul2 ), 0, 255 ),
					core::clamp( core::floor32(
							getRed()   * mul0 + c1.getRed()   * mul1 + c2.getRed()   * mul2 ), 0, 255 ),
					core::clamp ( core::floor32(
							getGreen() * mul0 + c1.getGreen() * mul1 + c2.getGreen() * mul2 ), 0, 255 ),
					core::clamp ( core::floor32(
							getBlue()  * mul0 + c1.getBlue()  * mul1 + c2.getBlue()  * mul2 ), 0, 255 ));
		}

		//! set the color by expecting data in the given format
		/** \param data: must point to valid memory containing color information in the given format
			\param format: tells the format in which data is available
		*/
		void setData(const void *data, ECOLOR_FORMAT format)
		{
			switch (format)
			{
				case ECF_A1R5G5B5:
					color = A1R5G5B5toA8R8G8B8(*(u16*)data);
					break;
				case ECF_R5G6B5:
					color = R5G6B5toA8R8G8B8(*(u16*)data);
					break;
				case ECF_A8R8G8B8:
					color = *(u32*)data;
					break;
				case ECF_R8G8B8:
					{
						u8* p = (u8*)data;
						set(255, p[0],p[1],p[2]);
					}
					break;
				default:
					color = 0xffffffff;
				break;
			}
		}

		//! Write the color to data in the defined format
		/** \param data: target to write the color. Must contain sufficiently large memory to receive the number of bytes neede for format
			\param format: tells the format used to write the color into data
		*/
		void getData(void *data, ECOLOR_FORMAT format)
		{
			switch(format)
			{
				case ECF_A1R5G5B5:
				{
					u16 * dest = (u16*)data;
					*dest = video::A8R8G8B8toA1R5G5B5( color );
				} 
				break;

				case ECF_R5G6B5:
				{
					u16 * dest = (u16*)data;
					*dest = video::A8R8G8B8toR5G6B5( color );
				} 
				break;

				case ECF_R8G8B8:
				{
					u8* dest = (u8*)data;
					dest[0] = (u8)getRed();
					dest[1] = (u8)getGreen();
					dest[2] = (u8)getBlue();
				} 
				break;

				case ECF_A8R8G8B8:
				{
					u32 * dest = (u32*)data;
					*dest = color;
				} 
				break;

				default:
				break;
			}
		}

		//! color in A8R8G8B8 Format
		u32 color;
	};


	//! Class representing a color with four floats.
	/** The color values for red, green, blue
	and alpha are each stored in a 32 bit floating point variable.
	So all four values may be between 0.0f and 1.0f.
	Another, faster way to define colors is using the class SColor, which
	stores the color values in a single 32 bit integer.
	*/
	class SColorf
	{
	public:
		//! Default constructor for SColorf.
		/** Sets red, green and blue to 0.0f and alpha to 1.0f. */
		SColorf() : r(0.0f), g(0.0f), b(0.0f), a(1.0f) {}

		//! Constructs a color from up to four color values: red, green, blue, and alpha.
		/** \param r: Red color component. Should be a value between
		0.0f meaning no red and 1.0f, meaning full red.
		\param g: Green color component. Should be a value between 0.0f
		meaning no green and 1.0f, meaning full green.
		\param b: Blue color component. Should be a value between 0.0f
		meaning no blue and 1.0f, meaning full blue.
		\param a: Alpha color component of the color. The alpha
		component defines how transparent a color should be. Has to be
		a value between 0.0f and 1.0f, 1.0f means not transparent
		(opaque), 0.0f means fully transparent. */
		SColorf(f32 r, f32 g, f32 b, f32 a = 1.0f) : r(r), g(g), b(b), a(a) {}

		//! Constructs a color from 32 bit Color.
		/** \param c: 32 bit color from which this SColorf class is
		constructed from. */
		SColorf(SColor c)
		{
			const f32 inv = 1.0f / 255.0f;
			r = c.getRed() * inv;
			g = c.getGreen() * inv;
			b = c.getBlue() * inv;
			a = c.getAlpha() * inv;
		}

		//! Converts this color to a SColor without floats.
		SColor toSColor() const
		{
			return SColor((u32)core::round32(a*255.0f), (u32)core::round32(r*255.0f), (u32)core::round32(g*255.0f), (u32)core::round32(b*255.0f));
		}

		//! Sets three color components to new values at once.
		/** \param rr: Red color component. Should be a value between 0.0f meaning
		no red (=black) and 1.0f, meaning full red.
		\param gg: Green color component. Should be a value between 0.0f meaning
		no green (=black) and 1.0f, meaning full green.
		\param bb: Blue color component. Should be a value between 0.0f meaning
		no blue (=black) and 1.0f, meaning full blue. */
		void set(f32 rr, f32 gg, f32 bb) {r = rr; g =gg; b = bb; }

		//! Sets all four color components to new values at once.
		/** \param aa: Alpha component. Should be a value between 0.0f meaning
		fully transparent and 1.0f, meaning opaque.
		\param rr: Red color component. Should be a value between 0.0f meaning
		no red and 1.0f, meaning full red.
		\param gg: Green color component. Should be a value between 0.0f meaning
		no green and 1.0f, meaning full green.
		\param bb: Blue color component. Should be a value between 0.0f meaning
		no blue and 1.0f, meaning full blue. */
		void set(f32 aa, f32 rr, f32 gg, f32 bb) {a = aa; r = rr; g =gg; b = bb; }

		//! Interpolates the color with a f32 value to another color
		/** \param other: Other color
		\param d: value between 0.0f and 1.0f
		\return Interpolated color. */
		SColorf getInterpolated(const SColorf &other, f32 d) const
		{
			d = core::clamp(d, 0.f, 1.f);
			const f32 inv = 1.0f - d;
			return SColorf(other.r*inv + r*d,
				other.g*inv + g*d, other.b*inv + b*d, other.a*inv + a*d);
		}

		//! Returns interpolated color. ( quadratic )
		/** \param c1: first color to interpolate with
		\param c2: second color to interpolate with
		\param d: value between 0.0f and 1.0f. */
		inline SColorf getInterpolated_quadratic(const SColorf& c1, const SColorf& c2,
				f32 d) const
		{
			d = core::clamp(d, 0.f, 1.f);
			// this*(1-d)*(1-d) + 2 * c1 * (1-d) + c2 * d * d;
			const f32 inv = 1.f - d;
			const f32 mul0 = inv * inv;
			const f32 mul1 = 2.f * d * inv;
			const f32 mul2 = d * d;

			return SColorf (r * mul0 + c1.r * mul1 + c2.r * mul2,
					g * mul0 + c1.g * mul1 + c2.g * mul2,
					b * mul0 + c1.b * mul1 + c2.b * mul2,
					a * mul0 + c1.a * mul1 + c2.a * mul2);
		}


		//! Sets a color component by index. R=0, G=1, B=2, A=3
		void setColorComponentValue(s32 index, f32 value)
		{
			switch(index)
			{
			case 0: r = value; break;
			case 1: g = value; break;
			case 2: b = value; break;
			case 3: a = value; break;
			}
		}

		//! Returns the alpha component of the color in the range 0.0 (transparent) to 1.0 (opaque)
		f32 getAlpha() const { return a; }

		//! Returns the red component of the color in the range 0.0 to 1.0
		f32 getRed() const { return r; }

		//! Returns the green component of the color in the range 0.0 to 1.0
		f32 getGreen() const { return g; }

		//! Returns the blue component of the color in the range 0.0 to 1.0
		f32 getBlue() const { return b; }

		//! red color component
		f32 r;

		//! green color component
		f32 g;

		//! blue component
		f32 b;

		//! alpha color component
		f32 a;
	};


	//! Class representing a color in HSL format
	/** The color values for hue, saturation, luminance
	are stored in 32bit floating point variables. Hue is in range [0,360],
	Luminance and Saturation are in percent [0,100]
	*/
	class SColorHSL
	{
	public:
		SColorHSL ( f32 h = 0.f, f32 s = 0.f, f32 l = 0.f )
			: Hue ( h ), Saturation ( s ), Luminance ( l ) {}

		void fromRGB(const SColorf &color);
		void toRGB(SColorf &color) const;

		f32 Hue;
		f32 Saturation;
		f32 Luminance;

	private:
		inline f32 toRGB1(f32 rm1, f32 rm2, f32 rh) const;

	};

	inline void SColorHSL::fromRGB(const SColorf &color)
	{
		const f32 maxVal = core::max_(color.getRed(), color.getGreen(), color.getBlue());
		const f32 minVal = (f32)core::min_(color.getRed(), color.getGreen(), color.getBlue());
		Luminance = (maxVal+minVal)*50;
		if (core::equals(maxVal, minVal))
		{
			Hue=0.f;
			Saturation=0.f;
			return;
		}

		const f32 delta = maxVal-minVal;
		if ( Luminance <= 50 )
		{
			Saturation = (delta)/(maxVal+minVal);
		}
		else
		{
			Saturation = (delta)/(2-maxVal-minVal);
		}
		Saturation *= 100;

		if (core::equals(maxVal, color.getRed()))
			Hue = (color.getGreen()-color.getBlue())/delta;
		else if (core::equals(maxVal, color.getGreen()))
			Hue = 2+((color.getBlue()-color.getRed())/delta);
		else // blue is max
			Hue = 4+((color.getRed()-color.getGreen())/delta);

		Hue *= 60.0f;
		while ( Hue < 0.f )
			Hue += 360;
	}


	inline void SColorHSL::toRGB(SColorf &color) const
	{
		const f32 l = Luminance/100;
		if (core::iszero(Saturation)) // grey
		{
			color.set(l, l, l);
			return;
		}

		f32 rm2;

		if ( Luminance <= 50 )
		{
			rm2 = l + l * (Saturation/100);
		}
		else
		{
			rm2 = l + (1 - l) * (Saturation/100);
		}

		const f32 rm1 = 2.0f * l - rm2;

		const f32 h = Hue / 360.0f;
		color.set( toRGB1(rm1, rm2, h + 1.f/3.f),
			toRGB1(rm1, rm2, h),
			toRGB1(rm1, rm2, h - 1.f/3.f)
			);
	}


	// algorithm from Foley/Van-Dam
	inline f32 SColorHSL::toRGB1(f32 rm1, f32 rm2, f32 rh) const
	{
		if (rh<0)
			rh += 1;
		if (rh>1)
			rh -= 1;

		if (rh < 1.f/6.f)
			rm1 = rm1 + (rm2 - rm1) * rh*6.f;
		else if (rh < 0.5f)
			rm1 = rm2;
		else if (rh < 2.f/3.f)
			rm1 = rm1 + (rm2 - rm1) * ((2.f/3.f)-rh)*6.f;

		return rm1;
	}

} // end namespace video
} // end namespace irr

#endif