diff options
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c')
-rw-r--r-- | libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c | 454 |
1 files changed, 454 insertions, 0 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c new file mode 100644 index 0000000..b64b46e --- /dev/null +++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c | |||
@@ -0,0 +1,454 @@ | |||
1 | /* | ||
2 | * jccoefct.c | ||
3 | * | ||
4 | * Copyright (C) 1994-1997, Thomas G. Lane. | ||
5 | * Modified 2003-2011 by Guido Vollbeding. | ||
6 | * This file is part of the Independent JPEG Group's software. | ||
7 | * For conditions of distribution and use, see the accompanying README file. | ||
8 | * | ||
9 | * This file contains the coefficient buffer controller for compression. | ||
10 | * This controller is the top level of the JPEG compressor proper. | ||
11 | * The coefficient buffer lies between forward-DCT and entropy encoding steps. | ||
12 | */ | ||
13 | |||
14 | #define JPEG_INTERNALS | ||
15 | #include "jinclude.h" | ||
16 | #include "jpeglib.h" | ||
17 | |||
18 | |||
19 | /* We use a full-image coefficient buffer when doing Huffman optimization, | ||
20 | * and also for writing multiple-scan JPEG files. In all cases, the DCT | ||
21 | * step is run during the first pass, and subsequent passes need only read | ||
22 | * the buffered coefficients. | ||
23 | */ | ||
24 | #ifdef ENTROPY_OPT_SUPPORTED | ||
25 | #define FULL_COEF_BUFFER_SUPPORTED | ||
26 | #else | ||
27 | #ifdef C_MULTISCAN_FILES_SUPPORTED | ||
28 | #define FULL_COEF_BUFFER_SUPPORTED | ||
29 | #endif | ||
30 | #endif | ||
31 | |||
32 | |||
33 | /* Private buffer controller object */ | ||
34 | |||
35 | typedef struct { | ||
36 | struct jpeg_c_coef_controller pub; /* public fields */ | ||
37 | |||
38 | JDIMENSION iMCU_row_num; /* iMCU row # within image */ | ||
39 | JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ | ||
40 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ | ||
41 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ | ||
42 | |||
43 | /* For single-pass compression, it's sufficient to buffer just one MCU | ||
44 | * (although this may prove a bit slow in practice). We allocate a | ||
45 | * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each | ||
46 | * MCU constructed and sent. (On 80x86, the workspace is FAR even though | ||
47 | * it's not really very big; this is to keep the module interfaces unchanged | ||
48 | * when a large coefficient buffer is necessary.) | ||
49 | * In multi-pass modes, this array points to the current MCU's blocks | ||
50 | * within the virtual arrays. | ||
51 | */ | ||
52 | JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; | ||
53 | |||
54 | /* In multi-pass modes, we need a virtual block array for each component. */ | ||
55 | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | ||
56 | } my_coef_controller; | ||
57 | |||
58 | typedef my_coef_controller * my_coef_ptr; | ||
59 | |||
60 | |||
61 | /* Forward declarations */ | ||
62 | METHODDEF(boolean) compress_data | ||
63 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | ||
64 | #ifdef FULL_COEF_BUFFER_SUPPORTED | ||
65 | METHODDEF(boolean) compress_first_pass | ||
66 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | ||
67 | METHODDEF(boolean) compress_output | ||
68 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | ||
69 | #endif | ||
70 | |||
71 | |||
72 | LOCAL(void) | ||
73 | start_iMCU_row (j_compress_ptr cinfo) | ||
74 | /* Reset within-iMCU-row counters for a new row */ | ||
75 | { | ||
76 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
77 | |||
78 | /* In an interleaved scan, an MCU row is the same as an iMCU row. | ||
79 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | ||
80 | * But at the bottom of the image, process only what's left. | ||
81 | */ | ||
82 | if (cinfo->comps_in_scan > 1) { | ||
83 | coef->MCU_rows_per_iMCU_row = 1; | ||
84 | } else { | ||
85 | if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | ||
86 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | ||
87 | else | ||
88 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | ||
89 | } | ||
90 | |||
91 | coef->mcu_ctr = 0; | ||
92 | coef->MCU_vert_offset = 0; | ||
93 | } | ||
94 | |||
95 | |||
96 | /* | ||
97 | * Initialize for a processing pass. | ||
98 | */ | ||
99 | |||
100 | METHODDEF(void) | ||
101 | start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | ||
102 | { | ||
103 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
104 | |||
105 | coef->iMCU_row_num = 0; | ||
106 | start_iMCU_row(cinfo); | ||
107 | |||
108 | switch (pass_mode) { | ||
109 | case JBUF_PASS_THRU: | ||
110 | if (coef->whole_image[0] != NULL) | ||
111 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||
112 | coef->pub.compress_data = compress_data; | ||
113 | break; | ||
114 | #ifdef FULL_COEF_BUFFER_SUPPORTED | ||
115 | case JBUF_SAVE_AND_PASS: | ||
116 | if (coef->whole_image[0] == NULL) | ||
117 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||
118 | coef->pub.compress_data = compress_first_pass; | ||
119 | break; | ||
120 | case JBUF_CRANK_DEST: | ||
121 | if (coef->whole_image[0] == NULL) | ||
122 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||
123 | coef->pub.compress_data = compress_output; | ||
124 | break; | ||
125 | #endif | ||
126 | default: | ||
127 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||
128 | break; | ||
129 | } | ||
130 | } | ||
131 | |||
132 | |||
133 | /* | ||
134 | * Process some data in the single-pass case. | ||
135 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | ||
136 | * per call, ie, v_samp_factor block rows for each component in the image. | ||
137 | * Returns TRUE if the iMCU row is completed, FALSE if suspended. | ||
138 | * | ||
139 | * NB: input_buf contains a plane for each component in image, | ||
140 | * which we index according to the component's SOF position. | ||
141 | */ | ||
142 | |||
143 | METHODDEF(boolean) | ||
144 | compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | ||
145 | { | ||
146 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
147 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | ||
148 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | ||
149 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||
150 | int blkn, bi, ci, yindex, yoffset, blockcnt; | ||
151 | JDIMENSION ypos, xpos; | ||
152 | jpeg_component_info *compptr; | ||
153 | forward_DCT_ptr forward_DCT; | ||
154 | |||
155 | /* Loop to write as much as one whole iMCU row */ | ||
156 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||
157 | yoffset++) { | ||
158 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; | ||
159 | MCU_col_num++) { | ||
160 | /* Determine where data comes from in input_buf and do the DCT thing. | ||
161 | * Each call on forward_DCT processes a horizontal row of DCT blocks | ||
162 | * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks | ||
163 | * sequentially. Dummy blocks at the right or bottom edge are filled in | ||
164 | * specially. The data in them does not matter for image reconstruction, | ||
165 | * so we fill them with values that will encode to the smallest amount of | ||
166 | * data, viz: all zeroes in the AC entries, DC entries equal to previous | ||
167 | * block's DC value. (Thanks to Thomas Kinsman for this idea.) | ||
168 | */ | ||
169 | blkn = 0; | ||
170 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||
171 | compptr = cinfo->cur_comp_info[ci]; | ||
172 | forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; | ||
173 | blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | ||
174 | : compptr->last_col_width; | ||
175 | xpos = MCU_col_num * compptr->MCU_sample_width; | ||
176 | ypos = yoffset * compptr->DCT_v_scaled_size; | ||
177 | /* ypos == (yoffset+yindex) * DCTSIZE */ | ||
178 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||
179 | if (coef->iMCU_row_num < last_iMCU_row || | ||
180 | yoffset+yindex < compptr->last_row_height) { | ||
181 | (*forward_DCT) (cinfo, compptr, | ||
182 | input_buf[compptr->component_index], | ||
183 | coef->MCU_buffer[blkn], | ||
184 | ypos, xpos, (JDIMENSION) blockcnt); | ||
185 | if (blockcnt < compptr->MCU_width) { | ||
186 | /* Create some dummy blocks at the right edge of the image. */ | ||
187 | FMEMZERO((void FAR *) coef->MCU_buffer[blkn + blockcnt], | ||
188 | (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); | ||
189 | for (bi = blockcnt; bi < compptr->MCU_width; bi++) { | ||
190 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; | ||
191 | } | ||
192 | } | ||
193 | } else { | ||
194 | /* Create a row of dummy blocks at the bottom of the image. */ | ||
195 | FMEMZERO((void FAR *) coef->MCU_buffer[blkn], | ||
196 | compptr->MCU_width * SIZEOF(JBLOCK)); | ||
197 | for (bi = 0; bi < compptr->MCU_width; bi++) { | ||
198 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; | ||
199 | } | ||
200 | } | ||
201 | blkn += compptr->MCU_width; | ||
202 | ypos += compptr->DCT_v_scaled_size; | ||
203 | } | ||
204 | } | ||
205 | /* Try to write the MCU. In event of a suspension failure, we will | ||
206 | * re-DCT the MCU on restart (a bit inefficient, could be fixed...) | ||
207 | */ | ||
208 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | ||
209 | /* Suspension forced; update state counters and exit */ | ||
210 | coef->MCU_vert_offset = yoffset; | ||
211 | coef->mcu_ctr = MCU_col_num; | ||
212 | return FALSE; | ||
213 | } | ||
214 | } | ||
215 | /* Completed an MCU row, but perhaps not an iMCU row */ | ||
216 | coef->mcu_ctr = 0; | ||
217 | } | ||
218 | /* Completed the iMCU row, advance counters for next one */ | ||
219 | coef->iMCU_row_num++; | ||
220 | start_iMCU_row(cinfo); | ||
221 | return TRUE; | ||
222 | } | ||
223 | |||
224 | |||
225 | #ifdef FULL_COEF_BUFFER_SUPPORTED | ||
226 | |||
227 | /* | ||
228 | * Process some data in the first pass of a multi-pass case. | ||
229 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | ||
230 | * per call, ie, v_samp_factor block rows for each component in the image. | ||
231 | * This amount of data is read from the source buffer, DCT'd and quantized, | ||
232 | * and saved into the virtual arrays. We also generate suitable dummy blocks | ||
233 | * as needed at the right and lower edges. (The dummy blocks are constructed | ||
234 | * in the virtual arrays, which have been padded appropriately.) This makes | ||
235 | * it possible for subsequent passes not to worry about real vs. dummy blocks. | ||
236 | * | ||
237 | * We must also emit the data to the entropy encoder. This is conveniently | ||
238 | * done by calling compress_output() after we've loaded the current strip | ||
239 | * of the virtual arrays. | ||
240 | * | ||
241 | * NB: input_buf contains a plane for each component in image. All | ||
242 | * components are DCT'd and loaded into the virtual arrays in this pass. | ||
243 | * However, it may be that only a subset of the components are emitted to | ||
244 | * the entropy encoder during this first pass; be careful about looking | ||
245 | * at the scan-dependent variables (MCU dimensions, etc). | ||
246 | */ | ||
247 | |||
248 | METHODDEF(boolean) | ||
249 | compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | ||
250 | { | ||
251 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
252 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||
253 | JDIMENSION blocks_across, MCUs_across, MCUindex; | ||
254 | int bi, ci, h_samp_factor, block_row, block_rows, ndummy; | ||
255 | JCOEF lastDC; | ||
256 | jpeg_component_info *compptr; | ||
257 | JBLOCKARRAY buffer; | ||
258 | JBLOCKROW thisblockrow, lastblockrow; | ||
259 | forward_DCT_ptr forward_DCT; | ||
260 | |||
261 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||
262 | ci++, compptr++) { | ||
263 | /* Align the virtual buffer for this component. */ | ||
264 | buffer = (*cinfo->mem->access_virt_barray) | ||
265 | ((j_common_ptr) cinfo, coef->whole_image[ci], | ||
266 | coef->iMCU_row_num * compptr->v_samp_factor, | ||
267 | (JDIMENSION) compptr->v_samp_factor, TRUE); | ||
268 | /* Count non-dummy DCT block rows in this iMCU row. */ | ||
269 | if (coef->iMCU_row_num < last_iMCU_row) | ||
270 | block_rows = compptr->v_samp_factor; | ||
271 | else { | ||
272 | /* NB: can't use last_row_height here, since may not be set! */ | ||
273 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | ||
274 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | ||
275 | } | ||
276 | blocks_across = compptr->width_in_blocks; | ||
277 | h_samp_factor = compptr->h_samp_factor; | ||
278 | /* Count number of dummy blocks to be added at the right margin. */ | ||
279 | ndummy = (int) (blocks_across % h_samp_factor); | ||
280 | if (ndummy > 0) | ||
281 | ndummy = h_samp_factor - ndummy; | ||
282 | forward_DCT = cinfo->fdct->forward_DCT[ci]; | ||
283 | /* Perform DCT for all non-dummy blocks in this iMCU row. Each call | ||
284 | * on forward_DCT processes a complete horizontal row of DCT blocks. | ||
285 | */ | ||
286 | for (block_row = 0; block_row < block_rows; block_row++) { | ||
287 | thisblockrow = buffer[block_row]; | ||
288 | (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, | ||
289 | (JDIMENSION) (block_row * compptr->DCT_v_scaled_size), | ||
290 | (JDIMENSION) 0, blocks_across); | ||
291 | if (ndummy > 0) { | ||
292 | /* Create dummy blocks at the right edge of the image. */ | ||
293 | thisblockrow += blocks_across; /* => first dummy block */ | ||
294 | FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); | ||
295 | lastDC = thisblockrow[-1][0]; | ||
296 | for (bi = 0; bi < ndummy; bi++) { | ||
297 | thisblockrow[bi][0] = lastDC; | ||
298 | } | ||
299 | } | ||
300 | } | ||
301 | /* If at end of image, create dummy block rows as needed. | ||
302 | * The tricky part here is that within each MCU, we want the DC values | ||
303 | * of the dummy blocks to match the last real block's DC value. | ||
304 | * This squeezes a few more bytes out of the resulting file... | ||
305 | */ | ||
306 | if (coef->iMCU_row_num == last_iMCU_row) { | ||
307 | blocks_across += ndummy; /* include lower right corner */ | ||
308 | MCUs_across = blocks_across / h_samp_factor; | ||
309 | for (block_row = block_rows; block_row < compptr->v_samp_factor; | ||
310 | block_row++) { | ||
311 | thisblockrow = buffer[block_row]; | ||
312 | lastblockrow = buffer[block_row-1]; | ||
313 | FMEMZERO((void FAR *) thisblockrow, | ||
314 | (size_t) (blocks_across * SIZEOF(JBLOCK))); | ||
315 | for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { | ||
316 | lastDC = lastblockrow[h_samp_factor-1][0]; | ||
317 | for (bi = 0; bi < h_samp_factor; bi++) { | ||
318 | thisblockrow[bi][0] = lastDC; | ||
319 | } | ||
320 | thisblockrow += h_samp_factor; /* advance to next MCU in row */ | ||
321 | lastblockrow += h_samp_factor; | ||
322 | } | ||
323 | } | ||
324 | } | ||
325 | } | ||
326 | /* NB: compress_output will increment iMCU_row_num if successful. | ||
327 | * A suspension return will result in redoing all the work above next time. | ||
328 | */ | ||
329 | |||
330 | /* Emit data to the entropy encoder, sharing code with subsequent passes */ | ||
331 | return compress_output(cinfo, input_buf); | ||
332 | } | ||
333 | |||
334 | |||
335 | /* | ||
336 | * Process some data in subsequent passes of a multi-pass case. | ||
337 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | ||
338 | * per call, ie, v_samp_factor block rows for each component in the scan. | ||
339 | * The data is obtained from the virtual arrays and fed to the entropy coder. | ||
340 | * Returns TRUE if the iMCU row is completed, FALSE if suspended. | ||
341 | * | ||
342 | * NB: input_buf is ignored; it is likely to be a NULL pointer. | ||
343 | */ | ||
344 | |||
345 | METHODDEF(boolean) | ||
346 | compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | ||
347 | { | ||
348 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
349 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | ||
350 | int blkn, ci, xindex, yindex, yoffset; | ||
351 | JDIMENSION start_col; | ||
352 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | ||
353 | JBLOCKROW buffer_ptr; | ||
354 | jpeg_component_info *compptr; | ||
355 | |||
356 | /* Align the virtual buffers for the components used in this scan. | ||
357 | * NB: during first pass, this is safe only because the buffers will | ||
358 | * already be aligned properly, so jmemmgr.c won't need to do any I/O. | ||
359 | */ | ||
360 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||
361 | compptr = cinfo->cur_comp_info[ci]; | ||
362 | buffer[ci] = (*cinfo->mem->access_virt_barray) | ||
363 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | ||
364 | coef->iMCU_row_num * compptr->v_samp_factor, | ||
365 | (JDIMENSION) compptr->v_samp_factor, FALSE); | ||
366 | } | ||
367 | |||
368 | /* Loop to process one whole iMCU row */ | ||
369 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||
370 | yoffset++) { | ||
371 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; | ||
372 | MCU_col_num++) { | ||
373 | /* Construct list of pointers to DCT blocks belonging to this MCU */ | ||
374 | blkn = 0; /* index of current DCT block within MCU */ | ||
375 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||
376 | compptr = cinfo->cur_comp_info[ci]; | ||
377 | start_col = MCU_col_num * compptr->MCU_width; | ||
378 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||
379 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | ||
380 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | ||
381 | coef->MCU_buffer[blkn++] = buffer_ptr++; | ||
382 | } | ||
383 | } | ||
384 | } | ||
385 | /* Try to write the MCU. */ | ||
386 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | ||
387 | /* Suspension forced; update state counters and exit */ | ||
388 | coef->MCU_vert_offset = yoffset; | ||
389 | coef->mcu_ctr = MCU_col_num; | ||
390 | return FALSE; | ||
391 | } | ||
392 | } | ||
393 | /* Completed an MCU row, but perhaps not an iMCU row */ | ||
394 | coef->mcu_ctr = 0; | ||
395 | } | ||
396 | /* Completed the iMCU row, advance counters for next one */ | ||
397 | coef->iMCU_row_num++; | ||
398 | start_iMCU_row(cinfo); | ||
399 | return TRUE; | ||
400 | } | ||
401 | |||
402 | #endif /* FULL_COEF_BUFFER_SUPPORTED */ | ||
403 | |||
404 | |||
405 | /* | ||
406 | * Initialize coefficient buffer controller. | ||
407 | */ | ||
408 | |||
409 | GLOBAL(void) | ||
410 | jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) | ||
411 | { | ||
412 | my_coef_ptr coef; | ||
413 | |||
414 | coef = (my_coef_ptr) | ||
415 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
416 | SIZEOF(my_coef_controller)); | ||
417 | cinfo->coef = (struct jpeg_c_coef_controller *) coef; | ||
418 | coef->pub.start_pass = start_pass_coef; | ||
419 | |||
420 | /* Create the coefficient buffer. */ | ||
421 | if (need_full_buffer) { | ||
422 | #ifdef FULL_COEF_BUFFER_SUPPORTED | ||
423 | /* Allocate a full-image virtual array for each component, */ | ||
424 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ | ||
425 | int ci; | ||
426 | jpeg_component_info *compptr; | ||
427 | |||
428 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||
429 | ci++, compptr++) { | ||
430 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | ||
431 | ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | ||
432 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, | ||
433 | (long) compptr->h_samp_factor), | ||
434 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, | ||
435 | (long) compptr->v_samp_factor), | ||
436 | (JDIMENSION) compptr->v_samp_factor); | ||
437 | } | ||
438 | #else | ||
439 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||
440 | #endif | ||
441 | } else { | ||
442 | /* We only need a single-MCU buffer. */ | ||
443 | JBLOCKROW buffer; | ||
444 | int i; | ||
445 | |||
446 | buffer = (JBLOCKROW) | ||
447 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
448 | C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | ||
449 | for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { | ||
450 | coef->MCU_buffer[i] = buffer + i; | ||
451 | } | ||
452 | coef->whole_image[0] = NULL; /* flag for no virtual arrays */ | ||
453 | } | ||
454 | } | ||