aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries
diff options
context:
space:
mode:
authorDavid Walter Seikel2016-03-28 22:18:15 +1000
committerDavid Walter Seikel2016-03-28 22:18:15 +1000
commite6a8af898de06e5dea07c8bd84bc53e5118881ff (patch)
treeea8696ee21b8ae2288c154316cfb3a15830e54dc /libraries
parentAdd stuff to build external projects NetSurf and polipo. (diff)
downloadSledjHamr-e6a8af898de06e5dea07c8bd84bc53e5118881ff.zip
SledjHamr-e6a8af898de06e5dea07c8bd84bc53e5118881ff.tar.gz
SledjHamr-e6a8af898de06e5dea07c8bd84bc53e5118881ff.tar.bz2
SledjHamr-e6a8af898de06e5dea07c8bd84bc53e5118881ff.tar.xz
Move lemon to the src/others directory.
Diffstat (limited to 'libraries')
-rw-r--r--libraries/lemon/README4
-rw-r--r--libraries/lemon/lemon.c5040
-rw-r--r--libraries/lemon/lempar.c850
3 files changed, 0 insertions, 5894 deletions
diff --git a/libraries/lemon/README b/libraries/lemon/README
deleted file mode 100644
index aa84547..0000000
--- a/libraries/lemon/README
+++ /dev/null
@@ -1,4 +0,0 @@
1The lemon parser is maintained at http://www.hwaci.com/sw/lemon/ in
2particular the documentation is at -
3
4http://www.hwaci.com/sw/lemon/lemon.html
diff --git a/libraries/lemon/lemon.c b/libraries/lemon/lemon.c
deleted file mode 100644
index 85e94f7..0000000
--- a/libraries/lemon/lemon.c
+++ /dev/null
@@ -1,5040 +0,0 @@
1/*
2** This file contains all sources (including headers) to the LEMON
3** LALR(1) parser generator. The sources have been combined into a
4** single file to make it easy to include LEMON in the source tree
5** and Makefile of another program.
6**
7** The author of this program disclaims copyright.
8*/
9#include <stdio.h>
10#include <stdarg.h>
11#include <string.h>
12#include <ctype.h>
13#include <stdlib.h>
14#include <assert.h>
15
16#ifndef __WIN32__
17# if defined(_WIN32) || defined(WIN32)
18# define __WIN32__
19# endif
20#endif
21
22#ifdef __WIN32__
23#ifdef __cplusplus
24extern "C" {
25#endif
26extern int access(const char *path, int mode);
27#ifdef __cplusplus
28}
29#endif
30#else
31#include <unistd.h>
32#endif
33
34/* #define PRIVATE static */
35#define PRIVATE
36
37#ifdef TEST
38#define MAXRHS 5 /* Set low to exercise exception code */
39#else
40#define MAXRHS 1000
41#endif
42
43static int showPrecedenceConflict = 0;
44static char *msort(char*,char**,int(*)(const char*,const char*));
45
46/*
47** Compilers are getting increasingly pedantic about type conversions
48** as C evolves ever closer to Ada.... To work around the latest problems
49** we have to define the following variant of strlen().
50*/
51#define lemonStrlen(X) ((int)strlen(X))
52
53/*
54** Compilers are starting to complain about the use of sprintf() and strcpy(),
55** saying they are unsafe. So we define our own versions of those routines too.
56**
57** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
58** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
59** The third is a helper routine for vsnprintf() that adds texts to the end of a
60** buffer, making sure the buffer is always zero-terminated.
61**
62** The string formatter is a minimal subset of stdlib sprintf() supporting only
63** a few simply conversions:
64**
65** %d
66** %s
67** %.*s
68**
69*/
70static void lemon_addtext(
71 char *zBuf, /* The buffer to which text is added */
72 int *pnUsed, /* Slots of the buffer used so far */
73 const char *zIn, /* Text to add */
74 int nIn, /* Bytes of text to add. -1 to use strlen() */
75 int iWidth /* Field width. Negative to left justify */
76){
77 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
78 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
79 if( nIn==0 ) return;
80 memcpy(&zBuf[*pnUsed], zIn, nIn);
81 *pnUsed += nIn;
82 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
83 zBuf[*pnUsed] = 0;
84}
85static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
86 int i, j, k, c;
87 int nUsed = 0;
88 const char *z;
89 char zTemp[50];
90 str[0] = 0;
91 for(i=j=0; (c = zFormat[i])!=0; i++){
92 if( c=='%' ){
93 int iWidth = 0;
94 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
95 c = zFormat[++i];
96 if( isdigit(c) || (c=='-' && isdigit(zFormat[i+1])) ){
97 if( c=='-' ) i++;
98 while( isdigit(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
99 if( c=='-' ) iWidth = -iWidth;
100 c = zFormat[i];
101 }
102 if( c=='d' ){
103 int v = va_arg(ap, int);
104 if( v<0 ){
105 lemon_addtext(str, &nUsed, "-", 1, iWidth);
106 v = -v;
107 }else if( v==0 ){
108 lemon_addtext(str, &nUsed, "0", 1, iWidth);
109 }
110 k = 0;
111 while( v>0 ){
112 k++;
113 zTemp[sizeof(zTemp)-k] = (v%10) + '0';
114 v /= 10;
115 }
116 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
117 }else if( c=='s' ){
118 z = va_arg(ap, const char*);
119 lemon_addtext(str, &nUsed, z, -1, iWidth);
120 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
121 i += 2;
122 k = va_arg(ap, int);
123 z = va_arg(ap, const char*);
124 lemon_addtext(str, &nUsed, z, k, iWidth);
125 }else if( c=='%' ){
126 lemon_addtext(str, &nUsed, "%", 1, 0);
127 }else{
128 fprintf(stderr, "illegal format\n");
129 exit(1);
130 }
131 j = i+1;
132 }
133 }
134 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
135 return nUsed;
136}
137static int lemon_sprintf(char *str, const char *format, ...){
138 va_list ap;
139 int rc;
140 va_start(ap, format);
141 rc = lemon_vsprintf(str, format, ap);
142 va_end(ap);
143 return rc;
144}
145static void lemon_strcpy(char *dest, const char *src){
146 while( (*(dest++) = *(src++))!=0 ){}
147}
148static void lemon_strcat(char *dest, const char *src){
149 while( *dest ) dest++;
150 lemon_strcpy(dest, src);
151}
152
153
154/* a few forward declarations... */
155struct rule;
156struct lemon;
157struct action;
158
159static struct action *Action_new(void);
160static struct action *Action_sort(struct action *);
161
162/********** From the file "build.h" ************************************/
163void FindRulePrecedences();
164void FindFirstSets();
165void FindStates();
166void FindLinks();
167void FindFollowSets();
168void FindActions();
169
170/********* From the file "configlist.h" *********************************/
171void Configlist_init(void);
172struct config *Configlist_add(struct rule *, int);
173struct config *Configlist_addbasis(struct rule *, int);
174void Configlist_closure(struct lemon *);
175void Configlist_sort(void);
176void Configlist_sortbasis(void);
177struct config *Configlist_return(void);
178struct config *Configlist_basis(void);
179void Configlist_eat(struct config *);
180void Configlist_reset(void);
181
182/********* From the file "error.h" ***************************************/
183void ErrorMsg(const char *, int,const char *, ...);
184
185/****** From the file "option.h" ******************************************/
186enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
187 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
188struct s_options {
189 enum option_type type;
190 const char *label;
191 char *arg;
192 const char *message;
193};
194int OptInit(char**,struct s_options*,FILE*);
195int OptNArgs(void);
196char *OptArg(int);
197void OptErr(int);
198void OptPrint(void);
199
200/******** From the file "parse.h" *****************************************/
201void Parse(struct lemon *lemp);
202
203/********* From the file "plink.h" ***************************************/
204struct plink *Plink_new(void);
205void Plink_add(struct plink **, struct config *);
206void Plink_copy(struct plink **, struct plink *);
207void Plink_delete(struct plink *);
208
209/********** From the file "report.h" *************************************/
210void Reprint(struct lemon *);
211void ReportOutput(struct lemon *);
212void ReportTable(struct lemon *, int);
213void ReportHeader(struct lemon *);
214void CompressTables(struct lemon *);
215void ResortStates(struct lemon *);
216
217/********** From the file "set.h" ****************************************/
218void SetSize(int); /* All sets will be of size N */
219char *SetNew(void); /* A new set for element 0..N */
220void SetFree(char*); /* Deallocate a set */
221int SetAdd(char*,int); /* Add element to a set */
222int SetUnion(char *,char *); /* A <- A U B, thru element N */
223#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
224
225/********** From the file "struct.h" *************************************/
226/*
227** Principal data structures for the LEMON parser generator.
228*/
229
230typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
231
232/* Symbols (terminals and nonterminals) of the grammar are stored
233** in the following: */
234enum symbol_type {
235 TERMINAL,
236 NONTERMINAL,
237 MULTITERMINAL
238};
239enum e_assoc {
240 LEFT,
241 RIGHT,
242 NONE,
243 UNK
244};
245struct symbol {
246 const char *name; /* Name of the symbol */
247 int index; /* Index number for this symbol */
248 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
249 struct rule *rule; /* Linked list of rules of this (if an NT) */
250 struct symbol *fallback; /* fallback token in case this token doesn't parse */
251 int prec; /* Precedence if defined (-1 otherwise) */
252 enum e_assoc assoc; /* Associativity if precedence is defined */
253 char *firstset; /* First-set for all rules of this symbol */
254 Boolean lambda; /* True if NT and can generate an empty string */
255 int useCnt; /* Number of times used */
256 char *destructor; /* Code which executes whenever this symbol is
257 ** popped from the stack during error processing */
258 int destLineno; /* Line number for start of destructor */
259 char *datatype; /* The data type of information held by this
260 ** object. Only used if type==NONTERMINAL */
261 int dtnum; /* The data type number. In the parser, the value
262 ** stack is a union. The .yy%d element of this
263 ** union is the correct data type for this object */
264 /* The following fields are used by MULTITERMINALs only */
265 int nsubsym; /* Number of constituent symbols in the MULTI */
266 struct symbol **subsym; /* Array of constituent symbols */
267};
268
269/* Each production rule in the grammar is stored in the following
270** structure. */
271struct rule {
272 struct symbol *lhs; /* Left-hand side of the rule */
273 const char *lhsalias; /* Alias for the LHS (NULL if none) */
274 int lhsStart; /* True if left-hand side is the start symbol */
275 int ruleline; /* Line number for the rule */
276 int nrhs; /* Number of RHS symbols */
277 struct symbol **rhs; /* The RHS symbols */
278 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
279 int line; /* Line number at which code begins */
280 const char *code; /* The code executed when this rule is reduced */
281 struct symbol *precsym; /* Precedence symbol for this rule */
282 int index; /* An index number for this rule */
283 Boolean canReduce; /* True if this rule is ever reduced */
284 struct rule *nextlhs; /* Next rule with the same LHS */
285 struct rule *next; /* Next rule in the global list */
286};
287
288/* A configuration is a production rule of the grammar together with
289** a mark (dot) showing how much of that rule has been processed so far.
290** Configurations also contain a follow-set which is a list of terminal
291** symbols which are allowed to immediately follow the end of the rule.
292** Every configuration is recorded as an instance of the following: */
293enum cfgstatus {
294 COMPLETE,
295 INCOMPLETE
296};
297struct config {
298 struct rule *rp; /* The rule upon which the configuration is based */
299 int dot; /* The parse point */
300 char *fws; /* Follow-set for this configuration only */
301 struct plink *fplp; /* Follow-set forward propagation links */
302 struct plink *bplp; /* Follow-set backwards propagation links */
303 struct state *stp; /* Pointer to state which contains this */
304 enum cfgstatus status; /* used during followset and shift computations */
305 struct config *next; /* Next configuration in the state */
306 struct config *bp; /* The next basis configuration */
307};
308
309enum e_action {
310 SHIFT,
311 ACCEPT,
312 REDUCE,
313 ERROR,
314 SSCONFLICT, /* A shift/shift conflict */
315 SRCONFLICT, /* Was a reduce, but part of a conflict */
316 RRCONFLICT, /* Was a reduce, but part of a conflict */
317 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
318 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
319 NOT_USED /* Deleted by compression */
320};
321
322/* Every shift or reduce operation is stored as one of the following */
323struct action {
324 struct symbol *sp; /* The look-ahead symbol */
325 enum e_action type;
326 union {
327 struct state *stp; /* The new state, if a shift */
328 struct rule *rp; /* The rule, if a reduce */
329 } x;
330 struct action *next; /* Next action for this state */
331 struct action *collide; /* Next action with the same hash */
332};
333
334/* Each state of the generated parser's finite state machine
335** is encoded as an instance of the following structure. */
336struct state {
337 struct config *bp; /* The basis configurations for this state */
338 struct config *cfp; /* All configurations in this set */
339 int statenum; /* Sequential number for this state */
340 struct action *ap; /* Array of actions for this state */
341 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
342 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
343 int iDflt; /* Default action */
344};
345#define NO_OFFSET (-2147483647)
346
347/* A followset propagation link indicates that the contents of one
348** configuration followset should be propagated to another whenever
349** the first changes. */
350struct plink {
351 struct config *cfp; /* The configuration to which linked */
352 struct plink *next; /* The next propagate link */
353};
354
355/* The state vector for the entire parser generator is recorded as
356** follows. (LEMON uses no global variables and makes little use of
357** static variables. Fields in the following structure can be thought
358** of as begin global variables in the program.) */
359struct lemon {
360 struct state **sorted; /* Table of states sorted by state number */
361 struct rule *rule; /* List of all rules */
362 int nstate; /* Number of states */
363 int nrule; /* Number of rules */
364 int nsymbol; /* Number of terminal and nonterminal symbols */
365 int nterminal; /* Number of terminal symbols */
366 struct symbol **symbols; /* Sorted array of pointers to symbols */
367 int errorcnt; /* Number of errors */
368 struct symbol *errsym; /* The error symbol */
369 struct symbol *wildcard; /* Token that matches anything */
370 char *name; /* Name of the generated parser */
371 char *arg; /* Declaration of the 3th argument to parser */
372 char *tokentype; /* Type of terminal symbols in the parser stack */
373 char *vartype; /* The default type of non-terminal symbols */
374 char *start; /* Name of the start symbol for the grammar */
375 char *stacksize; /* Size of the parser stack */
376 char *include; /* Code to put at the start of the C file */
377 char *error; /* Code to execute when an error is seen */
378 char *overflow; /* Code to execute on a stack overflow */
379 char *failure; /* Code to execute on parser failure */
380 char *accept; /* Code to execute when the parser excepts */
381 char *extracode; /* Code appended to the generated file */
382 char *tokendest; /* Code to execute to destroy token data */
383 char *vardest; /* Code for the default non-terminal destructor */
384 char *filename; /* Name of the input file */
385 char *outname; /* Name of the current output file */
386 char *tokenprefix; /* A prefix added to token names in the .h file */
387 int nconflict; /* Number of parsing conflicts */
388 int tablesize; /* Size of the parse tables */
389 int basisflag; /* Print only basis configurations */
390 int has_fallback; /* True if any %fallback is seen in the grammar */
391 int nolinenosflag; /* True if #line statements should not be printed */
392 char *argv0; /* Name of the program */
393};
394
395#define MemoryCheck(X) if((X)==0){ \
396 extern void memory_error(); \
397 memory_error(); \
398}
399
400/**************** From the file "table.h" *********************************/
401/*
402** All code in this file has been automatically generated
403** from a specification in the file
404** "table.q"
405** by the associative array code building program "aagen".
406** Do not edit this file! Instead, edit the specification
407** file, then rerun aagen.
408*/
409/*
410** Code for processing tables in the LEMON parser generator.
411*/
412/* Routines for handling a strings */
413
414const char *Strsafe(const char *);
415
416void Strsafe_init(void);
417int Strsafe_insert(const char *);
418const char *Strsafe_find(const char *);
419
420/* Routines for handling symbols of the grammar */
421
422struct symbol *Symbol_new(const char *);
423int Symbolcmpp(const void *, const void *);
424void Symbol_init(void);
425int Symbol_insert(struct symbol *, const char *);
426struct symbol *Symbol_find(const char *);
427struct symbol *Symbol_Nth(int);
428int Symbol_count(void);
429struct symbol **Symbol_arrayof(void);
430
431/* Routines to manage the state table */
432
433int Configcmp(const char *, const char *);
434struct state *State_new(void);
435void State_init(void);
436int State_insert(struct state *, struct config *);
437struct state *State_find(struct config *);
438struct state **State_arrayof(/* */);
439
440/* Routines used for efficiency in Configlist_add */
441
442void Configtable_init(void);
443int Configtable_insert(struct config *);
444struct config *Configtable_find(struct config *);
445void Configtable_clear(int(*)(struct config *));
446
447/****************** From the file "action.c" *******************************/
448/*
449** Routines processing parser actions in the LEMON parser generator.
450*/
451
452/* Allocate a new parser action */
453static struct action *Action_new(void){
454 static struct action *freelist = 0;
455 struct action *newaction;
456
457 if( freelist==0 ){
458 int i;
459 int amt = 100;
460 freelist = (struct action *)calloc(amt, sizeof(struct action));
461 if( freelist==0 ){
462 fprintf(stderr,"Unable to allocate memory for a new parser action.");
463 exit(1);
464 }
465 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
466 freelist[amt-1].next = 0;
467 }
468 newaction = freelist;
469 freelist = freelist->next;
470 return newaction;
471}
472
473/* Compare two actions for sorting purposes. Return negative, zero, or
474** positive if the first action is less than, equal to, or greater than
475** the first
476*/
477static int actioncmp(
478 struct action *ap1,
479 struct action *ap2
480){
481 int rc;
482 rc = ap1->sp->index - ap2->sp->index;
483 if( rc==0 ){
484 rc = (int)ap1->type - (int)ap2->type;
485 }
486 if( rc==0 && ap1->type==REDUCE ){
487 rc = ap1->x.rp->index - ap2->x.rp->index;
488 }
489 if( rc==0 ){
490 rc = (int) (ap2 - ap1);
491 }
492 return rc;
493}
494
495/* Sort parser actions */
496static struct action *Action_sort(
497 struct action *ap
498){
499 ap = (struct action *)msort((char *)ap,(char **)&ap->next,
500 (int(*)(const char*,const char*))actioncmp);
501 return ap;
502}
503
504void Action_add(
505 struct action **app,
506 enum e_action type,
507 struct symbol *sp,
508 char *arg
509){
510 struct action *newaction;
511 newaction = Action_new();
512 newaction->next = *app;
513 *app = newaction;
514 newaction->type = type;
515 newaction->sp = sp;
516 if( type==SHIFT ){
517 newaction->x.stp = (struct state *)arg;
518 }else{
519 newaction->x.rp = (struct rule *)arg;
520 }
521}
522/********************** New code to implement the "acttab" module ***********/
523/*
524** This module implements routines use to construct the yy_action[] table.
525*/
526
527/*
528** The state of the yy_action table under construction is an instance of
529** the following structure.
530**
531** The yy_action table maps the pair (state_number, lookahead) into an
532** action_number. The table is an array of integers pairs. The state_number
533** determines an initial offset into the yy_action array. The lookahead
534** value is then added to this initial offset to get an index X into the
535** yy_action array. If the aAction[X].lookahead equals the value of the
536** of the lookahead input, then the value of the action_number output is
537** aAction[X].action. If the lookaheads do not match then the
538** default action for the state_number is returned.
539**
540** All actions associated with a single state_number are first entered
541** into aLookahead[] using multiple calls to acttab_action(). Then the
542** actions for that single state_number are placed into the aAction[]
543** array with a single call to acttab_insert(). The acttab_insert() call
544** also resets the aLookahead[] array in preparation for the next
545** state number.
546*/
547struct lookahead_action {
548 int lookahead; /* Value of the lookahead token */
549 int action; /* Action to take on the given lookahead */
550};
551typedef struct acttab acttab;
552struct acttab {
553 int nAction; /* Number of used slots in aAction[] */
554 int nActionAlloc; /* Slots allocated for aAction[] */
555 struct lookahead_action
556 *aAction, /* The yy_action[] table under construction */
557 *aLookahead; /* A single new transaction set */
558 int mnLookahead; /* Minimum aLookahead[].lookahead */
559 int mnAction; /* Action associated with mnLookahead */
560 int mxLookahead; /* Maximum aLookahead[].lookahead */
561 int nLookahead; /* Used slots in aLookahead[] */
562 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
563};
564
565/* Return the number of entries in the yy_action table */
566#define acttab_size(X) ((X)->nAction)
567
568/* The value for the N-th entry in yy_action */
569#define acttab_yyaction(X,N) ((X)->aAction[N].action)
570
571/* The value for the N-th entry in yy_lookahead */
572#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
573
574/* Free all memory associated with the given acttab */
575void acttab_free(acttab *p){
576 free( p->aAction );
577 free( p->aLookahead );
578 free( p );
579}
580
581/* Allocate a new acttab structure */
582acttab *acttab_alloc(void){
583 acttab *p = (acttab *) calloc( 1, sizeof(*p) );
584 if( p==0 ){
585 fprintf(stderr,"Unable to allocate memory for a new acttab.");
586 exit(1);
587 }
588 memset(p, 0, sizeof(*p));
589 return p;
590}
591
592/* Add a new action to the current transaction set.
593**
594** This routine is called once for each lookahead for a particular
595** state.
596*/
597void acttab_action(acttab *p, int lookahead, int action){
598 if( p->nLookahead>=p->nLookaheadAlloc ){
599 p->nLookaheadAlloc += 25;
600 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
601 sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
602 if( p->aLookahead==0 ){
603 fprintf(stderr,"malloc failed\n");
604 exit(1);
605 }
606 }
607 if( p->nLookahead==0 ){
608 p->mxLookahead = lookahead;
609 p->mnLookahead = lookahead;
610 p->mnAction = action;
611 }else{
612 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
613 if( p->mnLookahead>lookahead ){
614 p->mnLookahead = lookahead;
615 p->mnAction = action;
616 }
617 }
618 p->aLookahead[p->nLookahead].lookahead = lookahead;
619 p->aLookahead[p->nLookahead].action = action;
620 p->nLookahead++;
621}
622
623/*
624** Add the transaction set built up with prior calls to acttab_action()
625** into the current action table. Then reset the transaction set back
626** to an empty set in preparation for a new round of acttab_action() calls.
627**
628** Return the offset into the action table of the new transaction.
629*/
630int acttab_insert(acttab *p){
631 int i, j, k, n;
632 assert( p->nLookahead>0 );
633
634 /* Make sure we have enough space to hold the expanded action table
635 ** in the worst case. The worst case occurs if the transaction set
636 ** must be appended to the current action table
637 */
638 n = p->mxLookahead + 1;
639 if( p->nAction + n >= p->nActionAlloc ){
640 int oldAlloc = p->nActionAlloc;
641 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
642 p->aAction = (struct lookahead_action *) realloc( p->aAction,
643 sizeof(p->aAction[0])*p->nActionAlloc);
644 if( p->aAction==0 ){
645 fprintf(stderr,"malloc failed\n");
646 exit(1);
647 }
648 for(i=oldAlloc; i<p->nActionAlloc; i++){
649 p->aAction[i].lookahead = -1;
650 p->aAction[i].action = -1;
651 }
652 }
653
654 /* Scan the existing action table looking for an offset that is a
655 ** duplicate of the current transaction set. Fall out of the loop
656 ** if and when the duplicate is found.
657 **
658 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
659 */
660 for(i=p->nAction-1; i>=0; i--){
661 if( p->aAction[i].lookahead==p->mnLookahead ){
662 /* All lookaheads and actions in the aLookahead[] transaction
663 ** must match against the candidate aAction[i] entry. */
664 if( p->aAction[i].action!=p->mnAction ) continue;
665 for(j=0; j<p->nLookahead; j++){
666 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
667 if( k<0 || k>=p->nAction ) break;
668 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
669 if( p->aLookahead[j].action!=p->aAction[k].action ) break;
670 }
671 if( j<p->nLookahead ) continue;
672
673 /* No possible lookahead value that is not in the aLookahead[]
674 ** transaction is allowed to match aAction[i] */
675 n = 0;
676 for(j=0; j<p->nAction; j++){
677 if( p->aAction[j].lookahead<0 ) continue;
678 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
679 }
680 if( n==p->nLookahead ){
681 break; /* An exact match is found at offset i */
682 }
683 }
684 }
685
686 /* If no existing offsets exactly match the current transaction, find an
687 ** an empty offset in the aAction[] table in which we can add the
688 ** aLookahead[] transaction.
689 */
690 if( i<0 ){
691 /* Look for holes in the aAction[] table that fit the current
692 ** aLookahead[] transaction. Leave i set to the offset of the hole.
693 ** If no holes are found, i is left at p->nAction, which means the
694 ** transaction will be appended. */
695 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
696 if( p->aAction[i].lookahead<0 ){
697 for(j=0; j<p->nLookahead; j++){
698 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
699 if( k<0 ) break;
700 if( p->aAction[k].lookahead>=0 ) break;
701 }
702 if( j<p->nLookahead ) continue;
703 for(j=0; j<p->nAction; j++){
704 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
705 }
706 if( j==p->nAction ){
707 break; /* Fits in empty slots */
708 }
709 }
710 }
711 }
712 /* Insert transaction set at index i. */
713 for(j=0; j<p->nLookahead; j++){
714 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
715 p->aAction[k] = p->aLookahead[j];
716 if( k>=p->nAction ) p->nAction = k+1;
717 }
718 p->nLookahead = 0;
719
720 /* Return the offset that is added to the lookahead in order to get the
721 ** index into yy_action of the action */
722 return i - p->mnLookahead;
723}
724
725/********************** From the file "build.c" *****************************/
726/*
727** Routines to construction the finite state machine for the LEMON
728** parser generator.
729*/
730
731/* Find a precedence symbol of every rule in the grammar.
732**
733** Those rules which have a precedence symbol coded in the input
734** grammar using the "[symbol]" construct will already have the
735** rp->precsym field filled. Other rules take as their precedence
736** symbol the first RHS symbol with a defined precedence. If there
737** are not RHS symbols with a defined precedence, the precedence
738** symbol field is left blank.
739*/
740void FindRulePrecedences(struct lemon *xp)
741{
742 struct rule *rp;
743 for(rp=xp->rule; rp; rp=rp->next){
744 if( rp->precsym==0 ){
745 int i, j;
746 for(i=0; i<rp->nrhs && rp->precsym==0; i++){
747 struct symbol *sp = rp->rhs[i];
748 if( sp->type==MULTITERMINAL ){
749 for(j=0; j<sp->nsubsym; j++){
750 if( sp->subsym[j]->prec>=0 ){
751 rp->precsym = sp->subsym[j];
752 break;
753 }
754 }
755 }else if( sp->prec>=0 ){
756 rp->precsym = rp->rhs[i];
757 }
758 }
759 }
760 }
761 return;
762}
763
764/* Find all nonterminals which will generate the empty string.
765** Then go back and compute the first sets of every nonterminal.
766** The first set is the set of all terminal symbols which can begin
767** a string generated by that nonterminal.
768*/
769void FindFirstSets(struct lemon *lemp)
770{
771 int i, j;
772 struct rule *rp;
773 int progress;
774
775 for(i=0; i<lemp->nsymbol; i++){
776 lemp->symbols[i]->lambda = LEMON_FALSE;
777 }
778 for(i=lemp->nterminal; i<lemp->nsymbol; i++){
779 lemp->symbols[i]->firstset = SetNew();
780 }
781
782 /* First compute all lambdas */
783 do{
784 progress = 0;
785 for(rp=lemp->rule; rp; rp=rp->next){
786 if( rp->lhs->lambda ) continue;
787 for(i=0; i<rp->nrhs; i++){
788 struct symbol *sp = rp->rhs[i];
789 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
790 if( sp->lambda==LEMON_FALSE ) break;
791 }
792 if( i==rp->nrhs ){
793 rp->lhs->lambda = LEMON_TRUE;
794 progress = 1;
795 }
796 }
797 }while( progress );
798
799 /* Now compute all first sets */
800 do{
801 struct symbol *s1, *s2;
802 progress = 0;
803 for(rp=lemp->rule; rp; rp=rp->next){
804 s1 = rp->lhs;
805 for(i=0; i<rp->nrhs; i++){
806 s2 = rp->rhs[i];
807 if( s2->type==TERMINAL ){
808 progress += SetAdd(s1->firstset,s2->index);
809 break;
810 }else if( s2->type==MULTITERMINAL ){
811 for(j=0; j<s2->nsubsym; j++){
812 progress += SetAdd(s1->firstset,s2->subsym[j]->index);
813 }
814 break;
815 }else if( s1==s2 ){
816 if( s1->lambda==LEMON_FALSE ) break;
817 }else{
818 progress += SetUnion(s1->firstset,s2->firstset);
819 if( s2->lambda==LEMON_FALSE ) break;
820 }
821 }
822 }
823 }while( progress );
824 return;
825}
826
827/* Compute all LR(0) states for the grammar. Links
828** are added to between some states so that the LR(1) follow sets
829** can be computed later.
830*/
831PRIVATE struct state *getstate(struct lemon *); /* forward reference */
832void FindStates(struct lemon *lemp)
833{
834 struct symbol *sp;
835 struct rule *rp;
836
837 Configlist_init();
838
839 /* Find the start symbol */
840 if( lemp->start ){
841 sp = Symbol_find(lemp->start);
842 if( sp==0 ){
843 ErrorMsg(lemp->filename,0,
844"The specified start symbol \"%s\" is not \
845in a nonterminal of the grammar. \"%s\" will be used as the start \
846symbol instead.",lemp->start,lemp->rule->lhs->name);
847 lemp->errorcnt++;
848 sp = lemp->rule->lhs;
849 }
850 }else{
851 sp = lemp->rule->lhs;
852 }
853
854 /* Make sure the start symbol doesn't occur on the right-hand side of
855 ** any rule. Report an error if it does. (YACC would generate a new
856 ** start symbol in this case.) */
857 for(rp=lemp->rule; rp; rp=rp->next){
858 int i;
859 for(i=0; i<rp->nrhs; i++){
860 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
861 ErrorMsg(lemp->filename,0,
862"The start symbol \"%s\" occurs on the \
863right-hand side of a rule. This will result in a parser which \
864does not work properly.",sp->name);
865 lemp->errorcnt++;
866 }
867 }
868 }
869
870 /* The basis configuration set for the first state
871 ** is all rules which have the start symbol as their
872 ** left-hand side */
873 for(rp=sp->rule; rp; rp=rp->nextlhs){
874 struct config *newcfp;
875 rp->lhsStart = 1;
876 newcfp = Configlist_addbasis(rp,0);
877 SetAdd(newcfp->fws,0);
878 }
879
880 /* Compute the first state. All other states will be
881 ** computed automatically during the computation of the first one.
882 ** The returned pointer to the first state is not used. */
883 (void)getstate(lemp);
884 return;
885}
886
887/* Return a pointer to a state which is described by the configuration
888** list which has been built from calls to Configlist_add.
889*/
890PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
891PRIVATE struct state *getstate(struct lemon *lemp)
892{
893 struct config *cfp, *bp;
894 struct state *stp;
895
896 /* Extract the sorted basis of the new state. The basis was constructed
897 ** by prior calls to "Configlist_addbasis()". */
898 Configlist_sortbasis();
899 bp = Configlist_basis();
900
901 /* Get a state with the same basis */
902 stp = State_find(bp);
903 if( stp ){
904 /* A state with the same basis already exists! Copy all the follow-set
905 ** propagation links from the state under construction into the
906 ** preexisting state, then return a pointer to the preexisting state */
907 struct config *x, *y;
908 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
909 Plink_copy(&y->bplp,x->bplp);
910 Plink_delete(x->fplp);
911 x->fplp = x->bplp = 0;
912 }
913 cfp = Configlist_return();
914 Configlist_eat(cfp);
915 }else{
916 /* This really is a new state. Construct all the details */
917 Configlist_closure(lemp); /* Compute the configuration closure */
918 Configlist_sort(); /* Sort the configuration closure */
919 cfp = Configlist_return(); /* Get a pointer to the config list */
920 stp = State_new(); /* A new state structure */
921 MemoryCheck(stp);
922 stp->bp = bp; /* Remember the configuration basis */
923 stp->cfp = cfp; /* Remember the configuration closure */
924 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
925 stp->ap = 0; /* No actions, yet. */
926 State_insert(stp,stp->bp); /* Add to the state table */
927 buildshifts(lemp,stp); /* Recursively compute successor states */
928 }
929 return stp;
930}
931
932/*
933** Return true if two symbols are the same.
934*/
935int same_symbol(struct symbol *a, struct symbol *b)
936{
937 int i;
938 if( a==b ) return 1;
939 if( a->type!=MULTITERMINAL ) return 0;
940 if( b->type!=MULTITERMINAL ) return 0;
941 if( a->nsubsym!=b->nsubsym ) return 0;
942 for(i=0; i<a->nsubsym; i++){
943 if( a->subsym[i]!=b->subsym[i] ) return 0;
944 }
945 return 1;
946}
947
948/* Construct all successor states to the given state. A "successor"
949** state is any state which can be reached by a shift action.
950*/
951PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
952{
953 struct config *cfp; /* For looping thru the config closure of "stp" */
954 struct config *bcfp; /* For the inner loop on config closure of "stp" */
955 struct config *newcfg; /* */
956 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
957 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
958 struct state *newstp; /* A pointer to a successor state */
959
960 /* Each configuration becomes complete after it contibutes to a successor
961 ** state. Initially, all configurations are incomplete */
962 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
963
964 /* Loop through all configurations of the state "stp" */
965 for(cfp=stp->cfp; cfp; cfp=cfp->next){
966 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
967 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
968 Configlist_reset(); /* Reset the new config set */
969 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
970
971 /* For every configuration in the state "stp" which has the symbol "sp"
972 ** following its dot, add the same configuration to the basis set under
973 ** construction but with the dot shifted one symbol to the right. */
974 for(bcfp=cfp; bcfp; bcfp=bcfp->next){
975 if( bcfp->status==COMPLETE ) continue; /* Already used */
976 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
977 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
978 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
979 bcfp->status = COMPLETE; /* Mark this config as used */
980 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
981 Plink_add(&newcfg->bplp,bcfp);
982 }
983
984 /* Get a pointer to the state described by the basis configuration set
985 ** constructed in the preceding loop */
986 newstp = getstate(lemp);
987
988 /* The state "newstp" is reached from the state "stp" by a shift action
989 ** on the symbol "sp" */
990 if( sp->type==MULTITERMINAL ){
991 int i;
992 for(i=0; i<sp->nsubsym; i++){
993 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
994 }
995 }else{
996 Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
997 }
998 }
999}
1000
1001/*
1002** Construct the propagation links
1003*/
1004void FindLinks(struct lemon *lemp)
1005{
1006 int i;
1007 struct config *cfp, *other;
1008 struct state *stp;
1009 struct plink *plp;
1010
1011 /* Housekeeping detail:
1012 ** Add to every propagate link a pointer back to the state to
1013 ** which the link is attached. */
1014 for(i=0; i<lemp->nstate; i++){
1015 stp = lemp->sorted[i];
1016 for(cfp=stp->cfp; cfp; cfp=cfp->next){
1017 cfp->stp = stp;
1018 }
1019 }
1020
1021 /* Convert all backlinks into forward links. Only the forward
1022 ** links are used in the follow-set computation. */
1023 for(i=0; i<lemp->nstate; i++){
1024 stp = lemp->sorted[i];
1025 for(cfp=stp->cfp; cfp; cfp=cfp->next){
1026 for(plp=cfp->bplp; plp; plp=plp->next){
1027 other = plp->cfp;
1028 Plink_add(&other->fplp,cfp);
1029 }
1030 }
1031 }
1032}
1033
1034/* Compute all followsets.
1035**
1036** A followset is the set of all symbols which can come immediately
1037** after a configuration.
1038*/
1039void FindFollowSets(struct lemon *lemp)
1040{
1041 int i;
1042 struct config *cfp;
1043 struct plink *plp;
1044 int progress;
1045 int change;
1046
1047 for(i=0; i<lemp->nstate; i++){
1048 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1049 cfp->status = INCOMPLETE;
1050 }
1051 }
1052
1053 do{
1054 progress = 0;
1055 for(i=0; i<lemp->nstate; i++){
1056 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1057 if( cfp->status==COMPLETE ) continue;
1058 for(plp=cfp->fplp; plp; plp=plp->next){
1059 change = SetUnion(plp->cfp->fws,cfp->fws);
1060 if( change ){
1061 plp->cfp->status = INCOMPLETE;
1062 progress = 1;
1063 }
1064 }
1065 cfp->status = COMPLETE;
1066 }
1067 }
1068 }while( progress );
1069}
1070
1071static int resolve_conflict(struct action *,struct action *);
1072
1073/* Compute the reduce actions, and resolve conflicts.
1074*/
1075void FindActions(struct lemon *lemp)
1076{
1077 int i,j;
1078 struct config *cfp;
1079 struct state *stp;
1080 struct symbol *sp;
1081 struct rule *rp;
1082
1083 /* Add all of the reduce actions
1084 ** A reduce action is added for each element of the followset of
1085 ** a configuration which has its dot at the extreme right.
1086 */
1087 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
1088 stp = lemp->sorted[i];
1089 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
1090 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
1091 for(j=0; j<lemp->nterminal; j++){
1092 if( SetFind(cfp->fws,j) ){
1093 /* Add a reduce action to the state "stp" which will reduce by the
1094 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1095 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1096 }
1097 }
1098 }
1099 }
1100 }
1101
1102 /* Add the accepting token */
1103 if( lemp->start ){
1104 sp = Symbol_find(lemp->start);
1105 if( sp==0 ) sp = lemp->rule->lhs;
1106 }else{
1107 sp = lemp->rule->lhs;
1108 }
1109 /* Add to the first state (which is always the starting state of the
1110 ** finite state machine) an action to ACCEPT if the lookahead is the
1111 ** start nonterminal. */
1112 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1113
1114 /* Resolve conflicts */
1115 for(i=0; i<lemp->nstate; i++){
1116 struct action *ap, *nap;
1117 struct state *stp;
1118 stp = lemp->sorted[i];
1119 /* assert( stp->ap ); */
1120 stp->ap = Action_sort(stp->ap);
1121 for(ap=stp->ap; ap && ap->next; ap=ap->next){
1122 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1123 /* The two actions "ap" and "nap" have the same lookahead.
1124 ** Figure out which one should be used */
1125 lemp->nconflict += resolve_conflict(ap,nap);
1126 }
1127 }
1128 }
1129
1130 /* Report an error for each rule that can never be reduced. */
1131 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1132 for(i=0; i<lemp->nstate; i++){
1133 struct action *ap;
1134 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1135 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1136 }
1137 }
1138 for(rp=lemp->rule; rp; rp=rp->next){
1139 if( rp->canReduce ) continue;
1140 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1141 lemp->errorcnt++;
1142 }
1143}
1144
1145/* Resolve a conflict between the two given actions. If the
1146** conflict can't be resolved, return non-zero.
1147**
1148** NO LONGER TRUE:
1149** To resolve a conflict, first look to see if either action
1150** is on an error rule. In that case, take the action which
1151** is not associated with the error rule. If neither or both
1152** actions are associated with an error rule, then try to
1153** use precedence to resolve the conflict.
1154**
1155** If either action is a SHIFT, then it must be apx. This
1156** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1157*/
1158static int resolve_conflict(
1159 struct action *apx,
1160 struct action *apy
1161){
1162 struct symbol *spx, *spy;
1163 int errcnt = 0;
1164 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
1165 if( apx->type==SHIFT && apy->type==SHIFT ){
1166 apy->type = SSCONFLICT;
1167 errcnt++;
1168 }
1169 if( apx->type==SHIFT && apy->type==REDUCE ){
1170 spx = apx->sp;
1171 spy = apy->x.rp->precsym;
1172 if( spy==0 || spx->prec<0 || spy->prec<0 ){
1173 /* Not enough precedence information. */
1174 apy->type = SRCONFLICT;
1175 errcnt++;
1176 }else if( spx->prec>spy->prec ){ /* higher precedence wins */
1177 apy->type = RD_RESOLVED;
1178 }else if( spx->prec<spy->prec ){
1179 apx->type = SH_RESOLVED;
1180 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1181 apy->type = RD_RESOLVED; /* associativity */
1182 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
1183 apx->type = SH_RESOLVED;
1184 }else{
1185 assert( spx->prec==spy->prec && spx->assoc==NONE );
1186 apx->type = ERROR;
1187 }
1188 }else if( apx->type==REDUCE && apy->type==REDUCE ){
1189 spx = apx->x.rp->precsym;
1190 spy = apy->x.rp->precsym;
1191 if( spx==0 || spy==0 || spx->prec<0 ||
1192 spy->prec<0 || spx->prec==spy->prec ){
1193 apy->type = RRCONFLICT;
1194 errcnt++;
1195 }else if( spx->prec>spy->prec ){
1196 apy->type = RD_RESOLVED;
1197 }else if( spx->prec<spy->prec ){
1198 apx->type = RD_RESOLVED;
1199 }
1200 }else{
1201 assert(
1202 apx->type==SH_RESOLVED ||
1203 apx->type==RD_RESOLVED ||
1204 apx->type==SSCONFLICT ||
1205 apx->type==SRCONFLICT ||
1206 apx->type==RRCONFLICT ||
1207 apy->type==SH_RESOLVED ||
1208 apy->type==RD_RESOLVED ||
1209 apy->type==SSCONFLICT ||
1210 apy->type==SRCONFLICT ||
1211 apy->type==RRCONFLICT
1212 );
1213 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1214 ** REDUCEs on the list. If we reach this point it must be because
1215 ** the parser conflict had already been resolved. */
1216 }
1217 return errcnt;
1218}
1219/********************* From the file "configlist.c" *************************/
1220/*
1221** Routines to processing a configuration list and building a state
1222** in the LEMON parser generator.
1223*/
1224
1225static struct config *freelist = 0; /* List of free configurations */
1226static struct config *current = 0; /* Top of list of configurations */
1227static struct config **currentend = 0; /* Last on list of configs */
1228static struct config *basis = 0; /* Top of list of basis configs */
1229static struct config **basisend = 0; /* End of list of basis configs */
1230
1231/* Return a pointer to a new configuration */
1232PRIVATE struct config *newconfig(){
1233 struct config *newcfg;
1234 if( freelist==0 ){
1235 int i;
1236 int amt = 3;
1237 freelist = (struct config *)calloc( amt, sizeof(struct config) );
1238 if( freelist==0 ){
1239 fprintf(stderr,"Unable to allocate memory for a new configuration.");
1240 exit(1);
1241 }
1242 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1243 freelist[amt-1].next = 0;
1244 }
1245 newcfg = freelist;
1246 freelist = freelist->next;
1247 return newcfg;
1248}
1249
1250/* The configuration "old" is no longer used */
1251PRIVATE void deleteconfig(struct config *old)
1252{
1253 old->next = freelist;
1254 freelist = old;
1255}
1256
1257/* Initialized the configuration list builder */
1258void Configlist_init(){
1259 current = 0;
1260 currentend = &current;
1261 basis = 0;
1262 basisend = &basis;
1263 Configtable_init();
1264 return;
1265}
1266
1267/* Initialized the configuration list builder */
1268void Configlist_reset(){
1269 current = 0;
1270 currentend = &current;
1271 basis = 0;
1272 basisend = &basis;
1273 Configtable_clear(0);
1274 return;
1275}
1276
1277/* Add another configuration to the configuration list */
1278struct config *Configlist_add(
1279 struct rule *rp, /* The rule */
1280 int dot /* Index into the RHS of the rule where the dot goes */
1281){
1282 struct config *cfp, model;
1283
1284 assert( currentend!=0 );
1285 model.rp = rp;
1286 model.dot = dot;
1287 cfp = Configtable_find(&model);
1288 if( cfp==0 ){
1289 cfp = newconfig();
1290 cfp->rp = rp;
1291 cfp->dot = dot;
1292 cfp->fws = SetNew();
1293 cfp->stp = 0;
1294 cfp->fplp = cfp->bplp = 0;
1295 cfp->next = 0;
1296 cfp->bp = 0;
1297 *currentend = cfp;
1298 currentend = &cfp->next;
1299 Configtable_insert(cfp);
1300 }
1301 return cfp;
1302}
1303
1304/* Add a basis configuration to the configuration list */
1305struct config *Configlist_addbasis(struct rule *rp, int dot)
1306{
1307 struct config *cfp, model;
1308
1309 assert( basisend!=0 );
1310 assert( currentend!=0 );
1311 model.rp = rp;
1312 model.dot = dot;
1313 cfp = Configtable_find(&model);
1314 if( cfp==0 ){
1315 cfp = newconfig();
1316 cfp->rp = rp;
1317 cfp->dot = dot;
1318 cfp->fws = SetNew();
1319 cfp->stp = 0;
1320 cfp->fplp = cfp->bplp = 0;
1321 cfp->next = 0;
1322 cfp->bp = 0;
1323 *currentend = cfp;
1324 currentend = &cfp->next;
1325 *basisend = cfp;
1326 basisend = &cfp->bp;
1327 Configtable_insert(cfp);
1328 }
1329 return cfp;
1330}
1331
1332/* Compute the closure of the configuration list */
1333void Configlist_closure(struct lemon *lemp)
1334{
1335 struct config *cfp, *newcfp;
1336 struct rule *rp, *newrp;
1337 struct symbol *sp, *xsp;
1338 int i, dot;
1339
1340 assert( currentend!=0 );
1341 for(cfp=current; cfp; cfp=cfp->next){
1342 rp = cfp->rp;
1343 dot = cfp->dot;
1344 if( dot>=rp->nrhs ) continue;
1345 sp = rp->rhs[dot];
1346 if( sp->type==NONTERMINAL ){
1347 if( sp->rule==0 && sp!=lemp->errsym ){
1348 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1349 sp->name);
1350 lemp->errorcnt++;
1351 }
1352 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1353 newcfp = Configlist_add(newrp,0);
1354 for(i=dot+1; i<rp->nrhs; i++){
1355 xsp = rp->rhs[i];
1356 if( xsp->type==TERMINAL ){
1357 SetAdd(newcfp->fws,xsp->index);
1358 break;
1359 }else if( xsp->type==MULTITERMINAL ){
1360 int k;
1361 for(k=0; k<xsp->nsubsym; k++){
1362 SetAdd(newcfp->fws, xsp->subsym[k]->index);
1363 }
1364 break;
1365 }else{
1366 SetUnion(newcfp->fws,xsp->firstset);
1367 if( xsp->lambda==LEMON_FALSE ) break;
1368 }
1369 }
1370 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1371 }
1372 }
1373 }
1374 return;
1375}
1376
1377/* Sort the configuration list */
1378void Configlist_sort(){
1379 current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
1380 currentend = 0;
1381 return;
1382}
1383
1384/* Sort the basis configuration list */
1385void Configlist_sortbasis(){
1386 basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
1387 basisend = 0;
1388 return;
1389}
1390
1391/* Return a pointer to the head of the configuration list and
1392** reset the list */
1393struct config *Configlist_return(){
1394 struct config *old;
1395 old = current;
1396 current = 0;
1397 currentend = 0;
1398 return old;
1399}
1400
1401/* Return a pointer to the head of the configuration list and
1402** reset the list */
1403struct config *Configlist_basis(){
1404 struct config *old;
1405 old = basis;
1406 basis = 0;
1407 basisend = 0;
1408 return old;
1409}
1410
1411/* Free all elements of the given configuration list */
1412void Configlist_eat(struct config *cfp)
1413{
1414 struct config *nextcfp;
1415 for(; cfp; cfp=nextcfp){
1416 nextcfp = cfp->next;
1417 assert( cfp->fplp==0 );
1418 assert( cfp->bplp==0 );
1419 if( cfp->fws ) SetFree(cfp->fws);
1420 deleteconfig(cfp);
1421 }
1422 return;
1423}
1424/***************** From the file "error.c" *********************************/
1425/*
1426** Code for printing error message.
1427*/
1428
1429void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1430 va_list ap;
1431 fprintf(stderr, "%s:%d: ", filename, lineno);
1432 va_start(ap, format);
1433 vfprintf(stderr,format,ap);
1434 va_end(ap);
1435 fprintf(stderr, "\n");
1436}
1437/**************** From the file "main.c" ************************************/
1438/*
1439** Main program file for the LEMON parser generator.
1440*/
1441
1442/* Report an out-of-memory condition and abort. This function
1443** is used mostly by the "MemoryCheck" macro in struct.h
1444*/
1445void memory_error(){
1446 fprintf(stderr,"Out of memory. Aborting...\n");
1447 exit(1);
1448}
1449
1450static int nDefine = 0; /* Number of -D options on the command line */
1451static char **azDefine = 0; /* Name of the -D macros */
1452
1453/* This routine is called with the argument to each -D command-line option.
1454** Add the macro defined to the azDefine array.
1455*/
1456static void handle_D_option(char *z){
1457 char **paz;
1458 nDefine++;
1459 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1460 if( azDefine==0 ){
1461 fprintf(stderr,"out of memory\n");
1462 exit(1);
1463 }
1464 paz = &azDefine[nDefine-1];
1465 *paz = (char *) malloc( lemonStrlen(z)+1 );
1466 if( *paz==0 ){
1467 fprintf(stderr,"out of memory\n");
1468 exit(1);
1469 }
1470 lemon_strcpy(*paz, z);
1471 for(z=*paz; *z && *z!='='; z++){}
1472 *z = 0;
1473}
1474
1475static char *user_templatename = NULL;
1476static void handle_T_option(char *z){
1477 user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1478 if( user_templatename==0 ){
1479 memory_error();
1480 }
1481 lemon_strcpy(user_templatename, z);
1482}
1483
1484/* The main program. Parse the command line and do it... */
1485int main(int argc, char **argv)
1486{
1487 static int version = 0;
1488 static int rpflag = 0;
1489 static int basisflag = 0;
1490 static int compress = 0;
1491 static int quiet = 0;
1492 static int statistics = 0;
1493 static int mhflag = 0;
1494 static int nolinenosflag = 0;
1495 static int noResort = 0;
1496 static struct s_options options[] = {
1497 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1498 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1499 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1500 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1501 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1502 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1503 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1504 {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1505 "Show conflicts resolved by precedence rules"},
1506 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1507 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1508 {OPT_FLAG, "s", (char*)&statistics,
1509 "Print parser stats to standard output."},
1510 {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1511 {OPT_FLAG,0,0,0}
1512 };
1513 int i;
1514 int exitcode;
1515 struct lemon lem;
1516
1517 OptInit(argv,options,stderr);
1518 if( version ){
1519 printf("Lemon version 1.0\n");
1520 exit(0);
1521 }
1522 if( OptNArgs()!=1 ){
1523 fprintf(stderr,"Exactly one filename argument is required.\n");
1524 exit(1);
1525 }
1526 memset(&lem, 0, sizeof(lem));
1527 lem.errorcnt = 0;
1528
1529 /* Initialize the machine */
1530 Strsafe_init();
1531 Symbol_init();
1532 State_init();
1533 lem.argv0 = argv[0];
1534 lem.filename = OptArg(0);
1535 lem.basisflag = basisflag;
1536 lem.nolinenosflag = nolinenosflag;
1537 Symbol_new("$");
1538 lem.errsym = Symbol_new("error");
1539 lem.errsym->useCnt = 0;
1540
1541 /* Parse the input file */
1542 Parse(&lem);
1543 if( lem.errorcnt ) exit(lem.errorcnt);
1544 if( lem.nrule==0 ){
1545 fprintf(stderr,"Empty grammar.\n");
1546 exit(1);
1547 }
1548
1549 /* Count and index the symbols of the grammar */
1550 Symbol_new("{default}");
1551 lem.nsymbol = Symbol_count();
1552 lem.symbols = Symbol_arrayof();
1553 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1554 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
1555 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1556 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
1557 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
1558 lem.nsymbol = i - 1;
1559 for(i=1; isupper(lem.symbols[i]->name[0]); i++);
1560 lem.nterminal = i;
1561
1562 /* Generate a reprint of the grammar, if requested on the command line */
1563 if( rpflag ){
1564 Reprint(&lem);
1565 }else{
1566 /* Initialize the size for all follow and first sets */
1567 SetSize(lem.nterminal+1);
1568
1569 /* Find the precedence for every production rule (that has one) */
1570 FindRulePrecedences(&lem);
1571
1572 /* Compute the lambda-nonterminals and the first-sets for every
1573 ** nonterminal */
1574 FindFirstSets(&lem);
1575
1576 /* Compute all LR(0) states. Also record follow-set propagation
1577 ** links so that the follow-set can be computed later */
1578 lem.nstate = 0;
1579 FindStates(&lem);
1580 lem.sorted = State_arrayof();
1581
1582 /* Tie up loose ends on the propagation links */
1583 FindLinks(&lem);
1584
1585 /* Compute the follow set of every reducible configuration */
1586 FindFollowSets(&lem);
1587
1588 /* Compute the action tables */
1589 FindActions(&lem);
1590
1591 /* Compress the action tables */
1592 if( compress==0 ) CompressTables(&lem);
1593
1594 /* Reorder and renumber the states so that states with fewer choices
1595 ** occur at the end. This is an optimization that helps make the
1596 ** generated parser tables smaller. */
1597 if( noResort==0 ) ResortStates(&lem);
1598
1599 /* Generate a report of the parser generated. (the "y.output" file) */
1600 if( !quiet ) ReportOutput(&lem);
1601
1602 /* Generate the source code for the parser */
1603 ReportTable(&lem, mhflag);
1604
1605 /* Produce a header file for use by the scanner. (This step is
1606 ** omitted if the "-m" option is used because makeheaders will
1607 ** generate the file for us.) */
1608 if( !mhflag ) ReportHeader(&lem);
1609 }
1610 if( statistics ){
1611 printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1612 lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
1613 printf(" %d states, %d parser table entries, %d conflicts\n",
1614 lem.nstate, lem.tablesize, lem.nconflict);
1615 }
1616 if( lem.nconflict > 0 ){
1617 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1618 }
1619
1620 /* return 0 on success, 1 on failure. */
1621 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1622 exit(exitcode);
1623 return (exitcode);
1624}
1625/******************** From the file "msort.c" *******************************/
1626/*
1627** A generic merge-sort program.
1628**
1629** USAGE:
1630** Let "ptr" be a pointer to some structure which is at the head of
1631** a null-terminated list. Then to sort the list call:
1632**
1633** ptr = msort(ptr,&(ptr->next),cmpfnc);
1634**
1635** In the above, "cmpfnc" is a pointer to a function which compares
1636** two instances of the structure and returns an integer, as in
1637** strcmp. The second argument is a pointer to the pointer to the
1638** second element of the linked list. This address is used to compute
1639** the offset to the "next" field within the structure. The offset to
1640** the "next" field must be constant for all structures in the list.
1641**
1642** The function returns a new pointer which is the head of the list
1643** after sorting.
1644**
1645** ALGORITHM:
1646** Merge-sort.
1647*/
1648
1649/*
1650** Return a pointer to the next structure in the linked list.
1651*/
1652#define NEXT(A) (*(char**)(((char*)A)+offset))
1653
1654/*
1655** Inputs:
1656** a: A sorted, null-terminated linked list. (May be null).
1657** b: A sorted, null-terminated linked list. (May be null).
1658** cmp: A pointer to the comparison function.
1659** offset: Offset in the structure to the "next" field.
1660**
1661** Return Value:
1662** A pointer to the head of a sorted list containing the elements
1663** of both a and b.
1664**
1665** Side effects:
1666** The "next" pointers for elements in the lists a and b are
1667** changed.
1668*/
1669static char *merge(
1670 char *a,
1671 char *b,
1672 int (*cmp)(const char*,const char*),
1673 int offset
1674){
1675 char *ptr, *head;
1676
1677 if( a==0 ){
1678 head = b;
1679 }else if( b==0 ){
1680 head = a;
1681 }else{
1682 if( (*cmp)(a,b)<=0 ){
1683 ptr = a;
1684 a = NEXT(a);
1685 }else{
1686 ptr = b;
1687 b = NEXT(b);
1688 }
1689 head = ptr;
1690 while( a && b ){
1691 if( (*cmp)(a,b)<=0 ){
1692 NEXT(ptr) = a;
1693 ptr = a;
1694 a = NEXT(a);
1695 }else{
1696 NEXT(ptr) = b;
1697 ptr = b;
1698 b = NEXT(b);
1699 }
1700 }
1701 if( a ) NEXT(ptr) = a;
1702 else NEXT(ptr) = b;
1703 }
1704 return head;
1705}
1706
1707/*
1708** Inputs:
1709** list: Pointer to a singly-linked list of structures.
1710** next: Pointer to pointer to the second element of the list.
1711** cmp: A comparison function.
1712**
1713** Return Value:
1714** A pointer to the head of a sorted list containing the elements
1715** orginally in list.
1716**
1717** Side effects:
1718** The "next" pointers for elements in list are changed.
1719*/
1720#define LISTSIZE 30
1721static char *msort(
1722 char *list,
1723 char **next,
1724 int (*cmp)(const char*,const char*)
1725){
1726 unsigned long offset;
1727 char *ep;
1728 char *set[LISTSIZE];
1729 int i;
1730 offset = (unsigned long)next - (unsigned long)list;
1731 for(i=0; i<LISTSIZE; i++) set[i] = 0;
1732 while( list ){
1733 ep = list;
1734 list = NEXT(list);
1735 NEXT(ep) = 0;
1736 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1737 ep = merge(ep,set[i],cmp,offset);
1738 set[i] = 0;
1739 }
1740 set[i] = ep;
1741 }
1742 ep = 0;
1743 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1744 return ep;
1745}
1746/************************ From the file "option.c" **************************/
1747static char **argv;
1748static struct s_options *op;
1749static FILE *errstream;
1750
1751#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1752
1753/*
1754** Print the command line with a carrot pointing to the k-th character
1755** of the n-th field.
1756*/
1757static void errline(int n, int k, FILE *err)
1758{
1759 int spcnt, i;
1760 if( argv[0] ) fprintf(err,"%s",argv[0]);
1761 spcnt = lemonStrlen(argv[0]) + 1;
1762 for(i=1; i<n && argv[i]; i++){
1763 fprintf(err," %s",argv[i]);
1764 spcnt += lemonStrlen(argv[i])+1;
1765 }
1766 spcnt += k;
1767 for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1768 if( spcnt<20 ){
1769 fprintf(err,"\n%*s^-- here\n",spcnt,"");
1770 }else{
1771 fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1772 }
1773}
1774
1775/*
1776** Return the index of the N-th non-switch argument. Return -1
1777** if N is out of range.
1778*/
1779static int argindex(int n)
1780{
1781 int i;
1782 int dashdash = 0;
1783 if( argv!=0 && *argv!=0 ){
1784 for(i=1; argv[i]; i++){
1785 if( dashdash || !ISOPT(argv[i]) ){
1786 if( n==0 ) return i;
1787 n--;
1788 }
1789 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1790 }
1791 }
1792 return -1;
1793}
1794
1795static char emsg[] = "Command line syntax error: ";
1796
1797/*
1798** Process a flag command line argument.
1799*/
1800static int handleflags(int i, FILE *err)
1801{
1802 int v;
1803 int errcnt = 0;
1804 int j;
1805 for(j=0; op[j].label; j++){
1806 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1807 }
1808 v = argv[i][0]=='-' ? 1 : 0;
1809 if( op[j].label==0 ){
1810 if( err ){
1811 fprintf(err,"%sundefined option.\n",emsg);
1812 errline(i,1,err);
1813 }
1814 errcnt++;
1815 }else if( op[j].type==OPT_FLAG ){
1816 *((int*)op[j].arg) = v;
1817 }else if( op[j].type==OPT_FFLAG ){
1818 (*(void(*)(int))(op[j].arg))(v);
1819 }else if( op[j].type==OPT_FSTR ){
1820 (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
1821 }else{
1822 if( err ){
1823 fprintf(err,"%smissing argument on switch.\n",emsg);
1824 errline(i,1,err);
1825 }
1826 errcnt++;
1827 }
1828 return errcnt;
1829}
1830
1831/*
1832** Process a command line switch which has an argument.
1833*/
1834static int handleswitch(int i, FILE *err)
1835{
1836 int lv = 0;
1837 double dv = 0.0;
1838 char *sv = 0, *end;
1839 char *cp;
1840 int j;
1841 int errcnt = 0;
1842 cp = strchr(argv[i],'=');
1843 assert( cp!=0 );
1844 *cp = 0;
1845 for(j=0; op[j].label; j++){
1846 if( strcmp(argv[i],op[j].label)==0 ) break;
1847 }
1848 *cp = '=';
1849 if( op[j].label==0 ){
1850 if( err ){
1851 fprintf(err,"%sundefined option.\n",emsg);
1852 errline(i,0,err);
1853 }
1854 errcnt++;
1855 }else{
1856 cp++;
1857 switch( op[j].type ){
1858 case OPT_FLAG:
1859 case OPT_FFLAG:
1860 if( err ){
1861 fprintf(err,"%soption requires an argument.\n",emsg);
1862 errline(i,0,err);
1863 }
1864 errcnt++;
1865 break;
1866 case OPT_DBL:
1867 case OPT_FDBL:
1868 dv = strtod(cp,&end);
1869 if( *end ){
1870 if( err ){
1871 fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
1872 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1873 }
1874 errcnt++;
1875 }
1876 break;
1877 case OPT_INT:
1878 case OPT_FINT:
1879 lv = strtol(cp,&end,0);
1880 if( *end ){
1881 if( err ){
1882 fprintf(err,"%sillegal character in integer argument.\n",emsg);
1883 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1884 }
1885 errcnt++;
1886 }
1887 break;
1888 case OPT_STR:
1889 case OPT_FSTR:
1890 sv = cp;
1891 break;
1892 }
1893 switch( op[j].type ){
1894 case OPT_FLAG:
1895 case OPT_FFLAG:
1896 break;
1897 case OPT_DBL:
1898 *(double*)(op[j].arg) = dv;
1899 break;
1900 case OPT_FDBL:
1901 (*(void(*)(double))(op[j].arg))(dv);
1902 break;
1903 case OPT_INT:
1904 *(int*)(op[j].arg) = lv;
1905 break;
1906 case OPT_FINT:
1907 (*(void(*)(int))(op[j].arg))((int)lv);
1908 break;
1909 case OPT_STR:
1910 *(char**)(op[j].arg) = sv;
1911 break;
1912 case OPT_FSTR:
1913 (*(void(*)(char *))(op[j].arg))(sv);
1914 break;
1915 }
1916 }
1917 return errcnt;
1918}
1919
1920int OptInit(char **a, struct s_options *o, FILE *err)
1921{
1922 int errcnt = 0;
1923 argv = a;
1924 op = o;
1925 errstream = err;
1926 if( argv && *argv && op ){
1927 int i;
1928 for(i=1; argv[i]; i++){
1929 if( argv[i][0]=='+' || argv[i][0]=='-' ){
1930 errcnt += handleflags(i,err);
1931 }else if( strchr(argv[i],'=') ){
1932 errcnt += handleswitch(i,err);
1933 }
1934 }
1935 }
1936 if( errcnt>0 ){
1937 fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
1938 OptPrint();
1939 exit(1);
1940 }
1941 return 0;
1942}
1943
1944int OptNArgs(){
1945 int cnt = 0;
1946 int dashdash = 0;
1947 int i;
1948 if( argv!=0 && argv[0]!=0 ){
1949 for(i=1; argv[i]; i++){
1950 if( dashdash || !ISOPT(argv[i]) ) cnt++;
1951 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1952 }
1953 }
1954 return cnt;
1955}
1956
1957char *OptArg(int n)
1958{
1959 int i;
1960 i = argindex(n);
1961 return i>=0 ? argv[i] : 0;
1962}
1963
1964void OptErr(int n)
1965{
1966 int i;
1967 i = argindex(n);
1968 if( i>=0 ) errline(i,0,errstream);
1969}
1970
1971void OptPrint(){
1972 int i;
1973 int max, len;
1974 max = 0;
1975 for(i=0; op[i].label; i++){
1976 len = lemonStrlen(op[i].label) + 1;
1977 switch( op[i].type ){
1978 case OPT_FLAG:
1979 case OPT_FFLAG:
1980 break;
1981 case OPT_INT:
1982 case OPT_FINT:
1983 len += 9; /* length of "<integer>" */
1984 break;
1985 case OPT_DBL:
1986 case OPT_FDBL:
1987 len += 6; /* length of "<real>" */
1988 break;
1989 case OPT_STR:
1990 case OPT_FSTR:
1991 len += 8; /* length of "<string>" */
1992 break;
1993 }
1994 if( len>max ) max = len;
1995 }
1996 for(i=0; op[i].label; i++){
1997 switch( op[i].type ){
1998 case OPT_FLAG:
1999 case OPT_FFLAG:
2000 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
2001 break;
2002 case OPT_INT:
2003 case OPT_FINT:
2004 fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
2005 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
2006 break;
2007 case OPT_DBL:
2008 case OPT_FDBL:
2009 fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
2010 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
2011 break;
2012 case OPT_STR:
2013 case OPT_FSTR:
2014 fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
2015 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
2016 break;
2017 }
2018 }
2019}
2020/*********************** From the file "parse.c" ****************************/
2021/*
2022** Input file parser for the LEMON parser generator.
2023*/
2024
2025/* The state of the parser */
2026enum e_state {
2027 INITIALIZE,
2028 WAITING_FOR_DECL_OR_RULE,
2029 WAITING_FOR_DECL_KEYWORD,
2030 WAITING_FOR_DECL_ARG,
2031 WAITING_FOR_PRECEDENCE_SYMBOL,
2032 WAITING_FOR_ARROW,
2033 IN_RHS,
2034 LHS_ALIAS_1,
2035 LHS_ALIAS_2,
2036 LHS_ALIAS_3,
2037 RHS_ALIAS_1,
2038 RHS_ALIAS_2,
2039 PRECEDENCE_MARK_1,
2040 PRECEDENCE_MARK_2,
2041 RESYNC_AFTER_RULE_ERROR,
2042 RESYNC_AFTER_DECL_ERROR,
2043 WAITING_FOR_DESTRUCTOR_SYMBOL,
2044 WAITING_FOR_DATATYPE_SYMBOL,
2045 WAITING_FOR_FALLBACK_ID,
2046 WAITING_FOR_WILDCARD_ID,
2047 WAITING_FOR_CLASS_ID,
2048 WAITING_FOR_CLASS_TOKEN
2049};
2050struct pstate {
2051 char *filename; /* Name of the input file */
2052 int tokenlineno; /* Linenumber at which current token starts */
2053 int errorcnt; /* Number of errors so far */
2054 char *tokenstart; /* Text of current token */
2055 struct lemon *gp; /* Global state vector */
2056 enum e_state state; /* The state of the parser */
2057 struct symbol *fallback; /* The fallback token */
2058 struct symbol *tkclass; /* Token class symbol */
2059 struct symbol *lhs; /* Left-hand side of current rule */
2060 const char *lhsalias; /* Alias for the LHS */
2061 int nrhs; /* Number of right-hand side symbols seen */
2062 struct symbol *rhs[MAXRHS]; /* RHS symbols */
2063 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
2064 struct rule *prevrule; /* Previous rule parsed */
2065 const char *declkeyword; /* Keyword of a declaration */
2066 char **declargslot; /* Where the declaration argument should be put */
2067 int insertLineMacro; /* Add #line before declaration insert */
2068 int *decllinenoslot; /* Where to write declaration line number */
2069 enum e_assoc declassoc; /* Assign this association to decl arguments */
2070 int preccounter; /* Assign this precedence to decl arguments */
2071 struct rule *firstrule; /* Pointer to first rule in the grammar */
2072 struct rule *lastrule; /* Pointer to the most recently parsed rule */
2073};
2074
2075/* Parse a single token */
2076static void parseonetoken(struct pstate *psp)
2077{
2078 const char *x;
2079 x = Strsafe(psp->tokenstart); /* Save the token permanently */
2080#if 0
2081 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
2082 x,psp->state);
2083#endif
2084 switch( psp->state ){
2085 case INITIALIZE:
2086 psp->prevrule = 0;
2087 psp->preccounter = 0;
2088 psp->firstrule = psp->lastrule = 0;
2089 psp->gp->nrule = 0;
2090 /* Fall thru to next case */
2091 case WAITING_FOR_DECL_OR_RULE:
2092 if( x[0]=='%' ){
2093 psp->state = WAITING_FOR_DECL_KEYWORD;
2094 }else if( islower(x[0]) ){
2095 psp->lhs = Symbol_new(x);
2096 psp->nrhs = 0;
2097 psp->lhsalias = 0;
2098 psp->state = WAITING_FOR_ARROW;
2099 }else if( x[0]=='{' ){
2100 if( psp->prevrule==0 ){
2101 ErrorMsg(psp->filename,psp->tokenlineno,
2102"There is no prior rule upon which to attach the code \
2103fragment which begins on this line.");
2104 psp->errorcnt++;
2105 }else if( psp->prevrule->code!=0 ){
2106 ErrorMsg(psp->filename,psp->tokenlineno,
2107"Code fragment beginning on this line is not the first \
2108to follow the previous rule.");
2109 psp->errorcnt++;
2110 }else{
2111 psp->prevrule->line = psp->tokenlineno;
2112 psp->prevrule->code = &x[1];
2113 }
2114 }else if( x[0]=='[' ){
2115 psp->state = PRECEDENCE_MARK_1;
2116 }else{
2117 ErrorMsg(psp->filename,psp->tokenlineno,
2118 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2119 x);
2120 psp->errorcnt++;
2121 }
2122 break;
2123 case PRECEDENCE_MARK_1:
2124 if( !isupper(x[0]) ){
2125 ErrorMsg(psp->filename,psp->tokenlineno,
2126 "The precedence symbol must be a terminal.");
2127 psp->errorcnt++;
2128 }else if( psp->prevrule==0 ){
2129 ErrorMsg(psp->filename,psp->tokenlineno,
2130 "There is no prior rule to assign precedence \"[%s]\".",x);
2131 psp->errorcnt++;
2132 }else if( psp->prevrule->precsym!=0 ){
2133 ErrorMsg(psp->filename,psp->tokenlineno,
2134"Precedence mark on this line is not the first \
2135to follow the previous rule.");
2136 psp->errorcnt++;
2137 }else{
2138 psp->prevrule->precsym = Symbol_new(x);
2139 }
2140 psp->state = PRECEDENCE_MARK_2;
2141 break;
2142 case PRECEDENCE_MARK_2:
2143 if( x[0]!=']' ){
2144 ErrorMsg(psp->filename,psp->tokenlineno,
2145 "Missing \"]\" on precedence mark.");
2146 psp->errorcnt++;
2147 }
2148 psp->state = WAITING_FOR_DECL_OR_RULE;
2149 break;
2150 case WAITING_FOR_ARROW:
2151 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2152 psp->state = IN_RHS;
2153 }else if( x[0]=='(' ){
2154 psp->state = LHS_ALIAS_1;
2155 }else{
2156 ErrorMsg(psp->filename,psp->tokenlineno,
2157 "Expected to see a \":\" following the LHS symbol \"%s\".",
2158 psp->lhs->name);
2159 psp->errorcnt++;
2160 psp->state = RESYNC_AFTER_RULE_ERROR;
2161 }
2162 break;
2163 case LHS_ALIAS_1:
2164 if( isalpha(x[0]) ){
2165 psp->lhsalias = x;
2166 psp->state = LHS_ALIAS_2;
2167 }else{
2168 ErrorMsg(psp->filename,psp->tokenlineno,
2169 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2170 x,psp->lhs->name);
2171 psp->errorcnt++;
2172 psp->state = RESYNC_AFTER_RULE_ERROR;
2173 }
2174 break;
2175 case LHS_ALIAS_2:
2176 if( x[0]==')' ){
2177 psp->state = LHS_ALIAS_3;
2178 }else{
2179 ErrorMsg(psp->filename,psp->tokenlineno,
2180 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2181 psp->errorcnt++;
2182 psp->state = RESYNC_AFTER_RULE_ERROR;
2183 }
2184 break;
2185 case LHS_ALIAS_3:
2186 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2187 psp->state = IN_RHS;
2188 }else{
2189 ErrorMsg(psp->filename,psp->tokenlineno,
2190 "Missing \"->\" following: \"%s(%s)\".",
2191 psp->lhs->name,psp->lhsalias);
2192 psp->errorcnt++;
2193 psp->state = RESYNC_AFTER_RULE_ERROR;
2194 }
2195 break;
2196 case IN_RHS:
2197 if( x[0]=='.' ){
2198 struct rule *rp;
2199 rp = (struct rule *)calloc( sizeof(struct rule) +
2200 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2201 if( rp==0 ){
2202 ErrorMsg(psp->filename,psp->tokenlineno,
2203 "Can't allocate enough memory for this rule.");
2204 psp->errorcnt++;
2205 psp->prevrule = 0;
2206 }else{
2207 int i;
2208 rp->ruleline = psp->tokenlineno;
2209 rp->rhs = (struct symbol**)&rp[1];
2210 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2211 for(i=0; i<psp->nrhs; i++){
2212 rp->rhs[i] = psp->rhs[i];
2213 rp->rhsalias[i] = psp->alias[i];
2214 }
2215 rp->lhs = psp->lhs;
2216 rp->lhsalias = psp->lhsalias;
2217 rp->nrhs = psp->nrhs;
2218 rp->code = 0;
2219 rp->precsym = 0;
2220 rp->index = psp->gp->nrule++;
2221 rp->nextlhs = rp->lhs->rule;
2222 rp->lhs->rule = rp;
2223 rp->next = 0;
2224 if( psp->firstrule==0 ){
2225 psp->firstrule = psp->lastrule = rp;
2226 }else{
2227 psp->lastrule->next = rp;
2228 psp->lastrule = rp;
2229 }
2230 psp->prevrule = rp;
2231 }
2232 psp->state = WAITING_FOR_DECL_OR_RULE;
2233 }else if( isalpha(x[0]) ){
2234 if( psp->nrhs>=MAXRHS ){
2235 ErrorMsg(psp->filename,psp->tokenlineno,
2236 "Too many symbols on RHS of rule beginning at \"%s\".",
2237 x);
2238 psp->errorcnt++;
2239 psp->state = RESYNC_AFTER_RULE_ERROR;
2240 }else{
2241 psp->rhs[psp->nrhs] = Symbol_new(x);
2242 psp->alias[psp->nrhs] = 0;
2243 psp->nrhs++;
2244 }
2245 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
2246 struct symbol *msp = psp->rhs[psp->nrhs-1];
2247 if( msp->type!=MULTITERMINAL ){
2248 struct symbol *origsp = msp;
2249 msp = (struct symbol *) calloc(1,sizeof(*msp));
2250 memset(msp, 0, sizeof(*msp));
2251 msp->type = MULTITERMINAL;
2252 msp->nsubsym = 1;
2253 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2254 msp->subsym[0] = origsp;
2255 msp->name = origsp->name;
2256 psp->rhs[psp->nrhs-1] = msp;
2257 }
2258 msp->nsubsym++;
2259 msp->subsym = (struct symbol **) realloc(msp->subsym,
2260 sizeof(struct symbol*)*msp->nsubsym);
2261 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2262 if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
2263 ErrorMsg(psp->filename,psp->tokenlineno,
2264 "Cannot form a compound containing a non-terminal");
2265 psp->errorcnt++;
2266 }
2267 }else if( x[0]=='(' && psp->nrhs>0 ){
2268 psp->state = RHS_ALIAS_1;
2269 }else{
2270 ErrorMsg(psp->filename,psp->tokenlineno,
2271 "Illegal character on RHS of rule: \"%s\".",x);
2272 psp->errorcnt++;
2273 psp->state = RESYNC_AFTER_RULE_ERROR;
2274 }
2275 break;
2276 case RHS_ALIAS_1:
2277 if( isalpha(x[0]) ){
2278 psp->alias[psp->nrhs-1] = x;
2279 psp->state = RHS_ALIAS_2;
2280 }else{
2281 ErrorMsg(psp->filename,psp->tokenlineno,
2282 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2283 x,psp->rhs[psp->nrhs-1]->name);
2284 psp->errorcnt++;
2285 psp->state = RESYNC_AFTER_RULE_ERROR;
2286 }
2287 break;
2288 case RHS_ALIAS_2:
2289 if( x[0]==')' ){
2290 psp->state = IN_RHS;
2291 }else{
2292 ErrorMsg(psp->filename,psp->tokenlineno,
2293 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2294 psp->errorcnt++;
2295 psp->state = RESYNC_AFTER_RULE_ERROR;
2296 }
2297 break;
2298 case WAITING_FOR_DECL_KEYWORD:
2299 if( isalpha(x[0]) ){
2300 psp->declkeyword = x;
2301 psp->declargslot = 0;
2302 psp->decllinenoslot = 0;
2303 psp->insertLineMacro = 1;
2304 psp->state = WAITING_FOR_DECL_ARG;
2305 if( strcmp(x,"name")==0 ){
2306 psp->declargslot = &(psp->gp->name);
2307 psp->insertLineMacro = 0;
2308 }else if( strcmp(x,"include")==0 ){
2309 psp->declargslot = &(psp->gp->include);
2310 }else if( strcmp(x,"code")==0 ){
2311 psp->declargslot = &(psp->gp->extracode);
2312 }else if( strcmp(x,"token_destructor")==0 ){
2313 psp->declargslot = &psp->gp->tokendest;
2314 }else if( strcmp(x,"default_destructor")==0 ){
2315 psp->declargslot = &psp->gp->vardest;
2316 }else if( strcmp(x,"token_prefix")==0 ){
2317 psp->declargslot = &psp->gp->tokenprefix;
2318 psp->insertLineMacro = 0;
2319 }else if( strcmp(x,"syntax_error")==0 ){
2320 psp->declargslot = &(psp->gp->error);
2321 }else if( strcmp(x,"parse_accept")==0 ){
2322 psp->declargslot = &(psp->gp->accept);
2323 }else if( strcmp(x,"parse_failure")==0 ){
2324 psp->declargslot = &(psp->gp->failure);
2325 }else if( strcmp(x,"stack_overflow")==0 ){
2326 psp->declargslot = &(psp->gp->overflow);
2327 }else if( strcmp(x,"extra_argument")==0 ){
2328 psp->declargslot = &(psp->gp->arg);
2329 psp->insertLineMacro = 0;
2330 }else if( strcmp(x,"token_type")==0 ){
2331 psp->declargslot = &(psp->gp->tokentype);
2332 psp->insertLineMacro = 0;
2333 }else if( strcmp(x,"default_type")==0 ){
2334 psp->declargslot = &(psp->gp->vartype);
2335 psp->insertLineMacro = 0;
2336 }else if( strcmp(x,"stack_size")==0 ){
2337 psp->declargslot = &(psp->gp->stacksize);
2338 psp->insertLineMacro = 0;
2339 }else if( strcmp(x,"start_symbol")==0 ){
2340 psp->declargslot = &(psp->gp->start);
2341 psp->insertLineMacro = 0;
2342 }else if( strcmp(x,"left")==0 ){
2343 psp->preccounter++;
2344 psp->declassoc = LEFT;
2345 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2346 }else if( strcmp(x,"right")==0 ){
2347 psp->preccounter++;
2348 psp->declassoc = RIGHT;
2349 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2350 }else if( strcmp(x,"nonassoc")==0 ){
2351 psp->preccounter++;
2352 psp->declassoc = NONE;
2353 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2354 }else if( strcmp(x,"destructor")==0 ){
2355 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2356 }else if( strcmp(x,"type")==0 ){
2357 psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2358 }else if( strcmp(x,"fallback")==0 ){
2359 psp->fallback = 0;
2360 psp->state = WAITING_FOR_FALLBACK_ID;
2361 }else if( strcmp(x,"wildcard")==0 ){
2362 psp->state = WAITING_FOR_WILDCARD_ID;
2363 }else if( strcmp(x,"token_class")==0 ){
2364 psp->state = WAITING_FOR_CLASS_ID;
2365 }else{
2366 ErrorMsg(psp->filename,psp->tokenlineno,
2367 "Unknown declaration keyword: \"%%%s\".",x);
2368 psp->errorcnt++;
2369 psp->state = RESYNC_AFTER_DECL_ERROR;
2370 }
2371 }else{
2372 ErrorMsg(psp->filename,psp->tokenlineno,
2373 "Illegal declaration keyword: \"%s\".",x);
2374 psp->errorcnt++;
2375 psp->state = RESYNC_AFTER_DECL_ERROR;
2376 }
2377 break;
2378 case WAITING_FOR_DESTRUCTOR_SYMBOL:
2379 if( !isalpha(x[0]) ){
2380 ErrorMsg(psp->filename,psp->tokenlineno,
2381 "Symbol name missing after %%destructor keyword");
2382 psp->errorcnt++;
2383 psp->state = RESYNC_AFTER_DECL_ERROR;
2384 }else{
2385 struct symbol *sp = Symbol_new(x);
2386 psp->declargslot = &sp->destructor;
2387 psp->decllinenoslot = &sp->destLineno;
2388 psp->insertLineMacro = 1;
2389 psp->state = WAITING_FOR_DECL_ARG;
2390 }
2391 break;
2392 case WAITING_FOR_DATATYPE_SYMBOL:
2393 if( !isalpha(x[0]) ){
2394 ErrorMsg(psp->filename,psp->tokenlineno,
2395 "Symbol name missing after %%type keyword");
2396 psp->errorcnt++;
2397 psp->state = RESYNC_AFTER_DECL_ERROR;
2398 }else{
2399 struct symbol *sp = Symbol_find(x);
2400 if((sp) && (sp->datatype)){
2401 ErrorMsg(psp->filename,psp->tokenlineno,
2402 "Symbol %%type \"%s\" already defined", x);
2403 psp->errorcnt++;
2404 psp->state = RESYNC_AFTER_DECL_ERROR;
2405 }else{
2406 if (!sp){
2407 sp = Symbol_new(x);
2408 }
2409 psp->declargslot = &sp->datatype;
2410 psp->insertLineMacro = 0;
2411 psp->state = WAITING_FOR_DECL_ARG;
2412 }
2413 }
2414 break;
2415 case WAITING_FOR_PRECEDENCE_SYMBOL:
2416 if( x[0]=='.' ){
2417 psp->state = WAITING_FOR_DECL_OR_RULE;
2418 }else if( isupper(x[0]) ){
2419 struct symbol *sp;
2420 sp = Symbol_new(x);
2421 if( sp->prec>=0 ){
2422 ErrorMsg(psp->filename,psp->tokenlineno,
2423 "Symbol \"%s\" has already be given a precedence.",x);
2424 psp->errorcnt++;
2425 }else{
2426 sp->prec = psp->preccounter;
2427 sp->assoc = psp->declassoc;
2428 }
2429 }else{
2430 ErrorMsg(psp->filename,psp->tokenlineno,
2431 "Can't assign a precedence to \"%s\".",x);
2432 psp->errorcnt++;
2433 }
2434 break;
2435 case WAITING_FOR_DECL_ARG:
2436 if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
2437 const char *zOld, *zNew;
2438 char *zBuf, *z;
2439 int nOld, n, nLine, nNew, nBack;
2440 int addLineMacro;
2441 char zLine[50];
2442 zNew = x;
2443 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2444 nNew = lemonStrlen(zNew);
2445 if( *psp->declargslot ){
2446 zOld = *psp->declargslot;
2447 }else{
2448 zOld = "";
2449 }
2450 nOld = lemonStrlen(zOld);
2451 n = nOld + nNew + 20;
2452 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
2453 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2454 if( addLineMacro ){
2455 for(z=psp->filename, nBack=0; *z; z++){
2456 if( *z=='\\' ) nBack++;
2457 }
2458 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
2459 nLine = lemonStrlen(zLine);
2460 n += nLine + lemonStrlen(psp->filename) + nBack;
2461 }
2462 *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2463 zBuf = *psp->declargslot + nOld;
2464 if( addLineMacro ){
2465 if( nOld && zBuf[-1]!='\n' ){
2466 *(zBuf++) = '\n';
2467 }
2468 memcpy(zBuf, zLine, nLine);
2469 zBuf += nLine;
2470 *(zBuf++) = '"';
2471 for(z=psp->filename; *z; z++){
2472 if( *z=='\\' ){
2473 *(zBuf++) = '\\';
2474 }
2475 *(zBuf++) = *z;
2476 }
2477 *(zBuf++) = '"';
2478 *(zBuf++) = '\n';
2479 }
2480 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2481 psp->decllinenoslot[0] = psp->tokenlineno;
2482 }
2483 memcpy(zBuf, zNew, nNew);
2484 zBuf += nNew;
2485 *zBuf = 0;
2486 psp->state = WAITING_FOR_DECL_OR_RULE;
2487 }else{
2488 ErrorMsg(psp->filename,psp->tokenlineno,
2489 "Illegal argument to %%%s: %s",psp->declkeyword,x);
2490 psp->errorcnt++;
2491 psp->state = RESYNC_AFTER_DECL_ERROR;
2492 }
2493 break;
2494 case WAITING_FOR_FALLBACK_ID:
2495 if( x[0]=='.' ){
2496 psp->state = WAITING_FOR_DECL_OR_RULE;
2497 }else if( !isupper(x[0]) ){
2498 ErrorMsg(psp->filename, psp->tokenlineno,
2499 "%%fallback argument \"%s\" should be a token", x);
2500 psp->errorcnt++;
2501 }else{
2502 struct symbol *sp = Symbol_new(x);
2503 if( psp->fallback==0 ){
2504 psp->fallback = sp;
2505 }else if( sp->fallback ){
2506 ErrorMsg(psp->filename, psp->tokenlineno,
2507 "More than one fallback assigned to token %s", x);
2508 psp->errorcnt++;
2509 }else{
2510 sp->fallback = psp->fallback;
2511 psp->gp->has_fallback = 1;
2512 }
2513 }
2514 break;
2515 case WAITING_FOR_WILDCARD_ID:
2516 if( x[0]=='.' ){
2517 psp->state = WAITING_FOR_DECL_OR_RULE;
2518 }else if( !isupper(x[0]) ){
2519 ErrorMsg(psp->filename, psp->tokenlineno,
2520 "%%wildcard argument \"%s\" should be a token", x);
2521 psp->errorcnt++;
2522 }else{
2523 struct symbol *sp = Symbol_new(x);
2524 if( psp->gp->wildcard==0 ){
2525 psp->gp->wildcard = sp;
2526 }else{
2527 ErrorMsg(psp->filename, psp->tokenlineno,
2528 "Extra wildcard to token: %s", x);
2529 psp->errorcnt++;
2530 }
2531 }
2532 break;
2533 case WAITING_FOR_CLASS_ID:
2534 if( !islower(x[0]) ){
2535 ErrorMsg(psp->filename, psp->tokenlineno,
2536 "%%token_class must be followed by an identifier: ", x);
2537 psp->errorcnt++;
2538 psp->state = RESYNC_AFTER_DECL_ERROR;
2539 }else if( Symbol_find(x) ){
2540 ErrorMsg(psp->filename, psp->tokenlineno,
2541 "Symbol \"%s\" already used", x);
2542 psp->errorcnt++;
2543 psp->state = RESYNC_AFTER_DECL_ERROR;
2544 }else{
2545 psp->tkclass = Symbol_new(x);
2546 psp->tkclass->type = MULTITERMINAL;
2547 psp->state = WAITING_FOR_CLASS_TOKEN;
2548 }
2549 break;
2550 case WAITING_FOR_CLASS_TOKEN:
2551 if( x[0]=='.' ){
2552 psp->state = WAITING_FOR_DECL_OR_RULE;
2553 }else if( isupper(x[0]) || ((x[0]=='|' || x[0]=='/') && isupper(x[1])) ){
2554 struct symbol *msp = psp->tkclass;
2555 msp->nsubsym++;
2556 msp->subsym = (struct symbol **) realloc(msp->subsym,
2557 sizeof(struct symbol*)*msp->nsubsym);
2558 if( !isupper(x[0]) ) x++;
2559 msp->subsym[msp->nsubsym-1] = Symbol_new(x);
2560 }else{
2561 ErrorMsg(psp->filename, psp->tokenlineno,
2562 "%%token_class argument \"%s\" should be a token", x);
2563 psp->errorcnt++;
2564 psp->state = RESYNC_AFTER_DECL_ERROR;
2565 }
2566 break;
2567 case RESYNC_AFTER_RULE_ERROR:
2568/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2569** break; */
2570 case RESYNC_AFTER_DECL_ERROR:
2571 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2572 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2573 break;
2574 }
2575}
2576
2577/* Run the preprocessor over the input file text. The global variables
2578** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2579** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2580** comments them out. Text in between is also commented out as appropriate.
2581*/
2582static void preprocess_input(char *z){
2583 int i, j, k, n;
2584 int exclude = 0;
2585 int start = 0;
2586 int lineno = 1;
2587 int start_lineno = 1;
2588 for(i=0; z[i]; i++){
2589 if( z[i]=='\n' ) lineno++;
2590 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2591 if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
2592 if( exclude ){
2593 exclude--;
2594 if( exclude==0 ){
2595 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2596 }
2597 }
2598 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2599 }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
2600 || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
2601 if( exclude ){
2602 exclude++;
2603 }else{
2604 for(j=i+7; isspace(z[j]); j++){}
2605 for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
2606 exclude = 1;
2607 for(k=0; k<nDefine; k++){
2608 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
2609 exclude = 0;
2610 break;
2611 }
2612 }
2613 if( z[i+3]=='n' ) exclude = !exclude;
2614 if( exclude ){
2615 start = i;
2616 start_lineno = lineno;
2617 }
2618 }
2619 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2620 }
2621 }
2622 if( exclude ){
2623 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2624 exit(1);
2625 }
2626}
2627
2628/* In spite of its name, this function is really a scanner. It read
2629** in the entire input file (all at once) then tokenizes it. Each
2630** token is passed to the function "parseonetoken" which builds all
2631** the appropriate data structures in the global state vector "gp".
2632*/
2633void Parse(struct lemon *gp)
2634{
2635 struct pstate ps;
2636 FILE *fp;
2637 char *filebuf;
2638 int filesize;
2639 int lineno;
2640 int c;
2641 char *cp, *nextcp;
2642 int startline = 0;
2643
2644 memset(&ps, '\0', sizeof(ps));
2645 ps.gp = gp;
2646 ps.filename = gp->filename;
2647 ps.errorcnt = 0;
2648 ps.state = INITIALIZE;
2649
2650 /* Begin by reading the input file */
2651 fp = fopen(ps.filename,"rb");
2652 if( fp==0 ){
2653 ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2654 gp->errorcnt++;
2655 return;
2656 }
2657 fseek(fp,0,2);
2658 filesize = ftell(fp);
2659 rewind(fp);
2660 filebuf = (char *)malloc( filesize+1 );
2661 if( filesize>100000000 || filebuf==0 ){
2662 ErrorMsg(ps.filename,0,"Input file too large.");
2663 gp->errorcnt++;
2664 fclose(fp);
2665 return;
2666 }
2667 if( fread(filebuf,1,filesize,fp)!=filesize ){
2668 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2669 filesize);
2670 free(filebuf);
2671 gp->errorcnt++;
2672 fclose(fp);
2673 return;
2674 }
2675 fclose(fp);
2676 filebuf[filesize] = 0;
2677
2678 /* Make an initial pass through the file to handle %ifdef and %ifndef */
2679 preprocess_input(filebuf);
2680
2681 /* Now scan the text of the input file */
2682 lineno = 1;
2683 for(cp=filebuf; (c= *cp)!=0; ){
2684 if( c=='\n' ) lineno++; /* Keep track of the line number */
2685 if( isspace(c) ){ cp++; continue; } /* Skip all white space */
2686 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
2687 cp+=2;
2688 while( (c= *cp)!=0 && c!='\n' ) cp++;
2689 continue;
2690 }
2691 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
2692 cp+=2;
2693 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2694 if( c=='\n' ) lineno++;
2695 cp++;
2696 }
2697 if( c ) cp++;
2698 continue;
2699 }
2700 ps.tokenstart = cp; /* Mark the beginning of the token */
2701 ps.tokenlineno = lineno; /* Linenumber on which token begins */
2702 if( c=='\"' ){ /* String literals */
2703 cp++;
2704 while( (c= *cp)!=0 && c!='\"' ){
2705 if( c=='\n' ) lineno++;
2706 cp++;
2707 }
2708 if( c==0 ){
2709 ErrorMsg(ps.filename,startline,
2710"String starting on this line is not terminated before the end of the file.");
2711 ps.errorcnt++;
2712 nextcp = cp;
2713 }else{
2714 nextcp = cp+1;
2715 }
2716 }else if( c=='{' ){ /* A block of C code */
2717 int level;
2718 cp++;
2719 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2720 if( c=='\n' ) lineno++;
2721 else if( c=='{' ) level++;
2722 else if( c=='}' ) level--;
2723 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
2724 int prevc;
2725 cp = &cp[2];
2726 prevc = 0;
2727 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2728 if( c=='\n' ) lineno++;
2729 prevc = c;
2730 cp++;
2731 }
2732 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
2733 cp = &cp[2];
2734 while( (c= *cp)!=0 && c!='\n' ) cp++;
2735 if( c ) lineno++;
2736 }else if( c=='\'' || c=='\"' ){ /* String a character literals */
2737 int startchar, prevc;
2738 startchar = c;
2739 prevc = 0;
2740 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2741 if( c=='\n' ) lineno++;
2742 if( prevc=='\\' ) prevc = 0;
2743 else prevc = c;
2744 }
2745 }
2746 }
2747 if( c==0 ){
2748 ErrorMsg(ps.filename,ps.tokenlineno,
2749"C code starting on this line is not terminated before the end of the file.");
2750 ps.errorcnt++;
2751 nextcp = cp;
2752 }else{
2753 nextcp = cp+1;
2754 }
2755 }else if( isalnum(c) ){ /* Identifiers */
2756 while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2757 nextcp = cp;
2758 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2759 cp += 3;
2760 nextcp = cp;
2761 }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
2762 cp += 2;
2763 while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2764 nextcp = cp;
2765 }else{ /* All other (one character) operators */
2766 cp++;
2767 nextcp = cp;
2768 }
2769 c = *cp;
2770 *cp = 0; /* Null terminate the token */
2771 parseonetoken(&ps); /* Parse the token */
2772 *cp = c; /* Restore the buffer */
2773 cp = nextcp;
2774 }
2775 free(filebuf); /* Release the buffer after parsing */
2776 gp->rule = ps.firstrule;
2777 gp->errorcnt = ps.errorcnt;
2778}
2779/*************************** From the file "plink.c" *********************/
2780/*
2781** Routines processing configuration follow-set propagation links
2782** in the LEMON parser generator.
2783*/
2784static struct plink *plink_freelist = 0;
2785
2786/* Allocate a new plink */
2787struct plink *Plink_new(){
2788 struct plink *newlink;
2789
2790 if( plink_freelist==0 ){
2791 int i;
2792 int amt = 100;
2793 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
2794 if( plink_freelist==0 ){
2795 fprintf(stderr,
2796 "Unable to allocate memory for a new follow-set propagation link.\n");
2797 exit(1);
2798 }
2799 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2800 plink_freelist[amt-1].next = 0;
2801 }
2802 newlink = plink_freelist;
2803 plink_freelist = plink_freelist->next;
2804 return newlink;
2805}
2806
2807/* Add a plink to a plink list */
2808void Plink_add(struct plink **plpp, struct config *cfp)
2809{
2810 struct plink *newlink;
2811 newlink = Plink_new();
2812 newlink->next = *plpp;
2813 *plpp = newlink;
2814 newlink->cfp = cfp;
2815}
2816
2817/* Transfer every plink on the list "from" to the list "to" */
2818void Plink_copy(struct plink **to, struct plink *from)
2819{
2820 struct plink *nextpl;
2821 while( from ){
2822 nextpl = from->next;
2823 from->next = *to;
2824 *to = from;
2825 from = nextpl;
2826 }
2827}
2828
2829/* Delete every plink on the list */
2830void Plink_delete(struct plink *plp)
2831{
2832 struct plink *nextpl;
2833
2834 while( plp ){
2835 nextpl = plp->next;
2836 plp->next = plink_freelist;
2837 plink_freelist = plp;
2838 plp = nextpl;
2839 }
2840}
2841/*********************** From the file "report.c" **************************/
2842/*
2843** Procedures for generating reports and tables in the LEMON parser generator.
2844*/
2845
2846/* Generate a filename with the given suffix. Space to hold the
2847** name comes from malloc() and must be freed by the calling
2848** function.
2849*/
2850PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
2851{
2852 char *name;
2853 char *cp;
2854
2855 name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
2856 if( name==0 ){
2857 fprintf(stderr,"Can't allocate space for a filename.\n");
2858 exit(1);
2859 }
2860 lemon_strcpy(name,lemp->filename);
2861 cp = strrchr(name,'.');
2862 if( cp ) *cp = 0;
2863 lemon_strcat(name,suffix);
2864 return name;
2865}
2866
2867/* Open a file with a name based on the name of the input file,
2868** but with a different (specified) suffix, and return a pointer
2869** to the stream */
2870PRIVATE FILE *file_open(
2871 struct lemon *lemp,
2872 const char *suffix,
2873 const char *mode
2874){
2875 FILE *fp;
2876
2877 if( lemp->outname ) free(lemp->outname);
2878 lemp->outname = file_makename(lemp, suffix);
2879 fp = fopen(lemp->outname,mode);
2880 if( fp==0 && *mode=='w' ){
2881 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2882 lemp->errorcnt++;
2883 return 0;
2884 }
2885 return fp;
2886}
2887
2888/* Duplicate the input file without comments and without actions
2889** on rules */
2890void Reprint(struct lemon *lemp)
2891{
2892 struct rule *rp;
2893 struct symbol *sp;
2894 int i, j, maxlen, len, ncolumns, skip;
2895 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
2896 maxlen = 10;
2897 for(i=0; i<lemp->nsymbol; i++){
2898 sp = lemp->symbols[i];
2899 len = lemonStrlen(sp->name);
2900 if( len>maxlen ) maxlen = len;
2901 }
2902 ncolumns = 76/(maxlen+5);
2903 if( ncolumns<1 ) ncolumns = 1;
2904 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
2905 for(i=0; i<skip; i++){
2906 printf("//");
2907 for(j=i; j<lemp->nsymbol; j+=skip){
2908 sp = lemp->symbols[j];
2909 assert( sp->index==j );
2910 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
2911 }
2912 printf("\n");
2913 }
2914 for(rp=lemp->rule; rp; rp=rp->next){
2915 printf("%s",rp->lhs->name);
2916 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2917 printf(" ::=");
2918 for(i=0; i<rp->nrhs; i++){
2919 sp = rp->rhs[i];
2920 if( sp->type==MULTITERMINAL ){
2921 printf(" %s", sp->subsym[0]->name);
2922 for(j=1; j<sp->nsubsym; j++){
2923 printf("|%s", sp->subsym[j]->name);
2924 }
2925 }else{
2926 printf(" %s", sp->name);
2927 }
2928 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2929 }
2930 printf(".");
2931 if( rp->precsym ) printf(" [%s]",rp->precsym->name);
2932 /* if( rp->code ) printf("\n %s",rp->code); */
2933 printf("\n");
2934 }
2935}
2936
2937void ConfigPrint(FILE *fp, struct config *cfp)
2938{
2939 struct rule *rp;
2940 struct symbol *sp;
2941 int i, j;
2942 rp = cfp->rp;
2943 fprintf(fp,"%s ::=",rp->lhs->name);
2944 for(i=0; i<=rp->nrhs; i++){
2945 if( i==cfp->dot ) fprintf(fp," *");
2946 if( i==rp->nrhs ) break;
2947 sp = rp->rhs[i];
2948 if( sp->type==MULTITERMINAL ){
2949 fprintf(fp," %s", sp->subsym[0]->name);
2950 for(j=1; j<sp->nsubsym; j++){
2951 fprintf(fp,"|%s",sp->subsym[j]->name);
2952 }
2953 }else{
2954 fprintf(fp," %s", sp->name);
2955 }
2956 }
2957}
2958
2959/* #define TEST */
2960#if 0
2961/* Print a set */
2962PRIVATE void SetPrint(out,set,lemp)
2963FILE *out;
2964char *set;
2965struct lemon *lemp;
2966{
2967 int i;
2968 char *spacer;
2969 spacer = "";
2970 fprintf(out,"%12s[","");
2971 for(i=0; i<lemp->nterminal; i++){
2972 if( SetFind(set,i) ){
2973 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
2974 spacer = " ";
2975 }
2976 }
2977 fprintf(out,"]\n");
2978}
2979
2980/* Print a plink chain */
2981PRIVATE void PlinkPrint(out,plp,tag)
2982FILE *out;
2983struct plink *plp;
2984char *tag;
2985{
2986 while( plp ){
2987 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
2988 ConfigPrint(out,plp->cfp);
2989 fprintf(out,"\n");
2990 plp = plp->next;
2991 }
2992}
2993#endif
2994
2995/* Print an action to the given file descriptor. Return FALSE if
2996** nothing was actually printed.
2997*/
2998int PrintAction(struct action *ap, FILE *fp, int indent){
2999 int result = 1;
3000 switch( ap->type ){
3001 case SHIFT:
3002 fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
3003 break;
3004 case REDUCE:
3005 fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
3006 break;
3007 case ACCEPT:
3008 fprintf(fp,"%*s accept",indent,ap->sp->name);
3009 break;
3010 case ERROR:
3011 fprintf(fp,"%*s error",indent,ap->sp->name);
3012 break;
3013 case SRCONFLICT:
3014 case RRCONFLICT:
3015 fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
3016 indent,ap->sp->name,ap->x.rp->index);
3017 break;
3018 case SSCONFLICT:
3019 fprintf(fp,"%*s shift %-3d ** Parsing conflict **",
3020 indent,ap->sp->name,ap->x.stp->statenum);
3021 break;
3022 case SH_RESOLVED:
3023 if( showPrecedenceConflict ){
3024 fprintf(fp,"%*s shift %-3d -- dropped by precedence",
3025 indent,ap->sp->name,ap->x.stp->statenum);
3026 }else{
3027 result = 0;
3028 }
3029 break;
3030 case RD_RESOLVED:
3031 if( showPrecedenceConflict ){
3032 fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
3033 indent,ap->sp->name,ap->x.rp->index);
3034 }else{
3035 result = 0;
3036 }
3037 break;
3038 case NOT_USED:
3039 result = 0;
3040 break;
3041 }
3042 return result;
3043}
3044
3045/* Generate the "y.output" log file */
3046void ReportOutput(struct lemon *lemp)
3047{
3048 int i;
3049 struct state *stp;
3050 struct config *cfp;
3051 struct action *ap;
3052 FILE *fp;
3053
3054 fp = file_open(lemp,".out","wb");
3055 if( fp==0 ) return;
3056 for(i=0; i<lemp->nstate; i++){
3057 stp = lemp->sorted[i];
3058 fprintf(fp,"State %d:\n",stp->statenum);
3059 if( lemp->basisflag ) cfp=stp->bp;
3060 else cfp=stp->cfp;
3061 while( cfp ){
3062 char buf[20];
3063 if( cfp->dot==cfp->rp->nrhs ){
3064 lemon_sprintf(buf,"(%d)",cfp->rp->index);
3065 fprintf(fp," %5s ",buf);
3066 }else{
3067 fprintf(fp," ");
3068 }
3069 ConfigPrint(fp,cfp);
3070 fprintf(fp,"\n");
3071#if 0
3072 SetPrint(fp,cfp->fws,lemp);
3073 PlinkPrint(fp,cfp->fplp,"To ");
3074 PlinkPrint(fp,cfp->bplp,"From");
3075#endif
3076 if( lemp->basisflag ) cfp=cfp->bp;
3077 else cfp=cfp->next;
3078 }
3079 fprintf(fp,"\n");
3080 for(ap=stp->ap; ap; ap=ap->next){
3081 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
3082 }
3083 fprintf(fp,"\n");
3084 }
3085 fprintf(fp, "----------------------------------------------------\n");
3086 fprintf(fp, "Symbols:\n");
3087 for(i=0; i<lemp->nsymbol; i++){
3088 int j;
3089 struct symbol *sp;
3090
3091 sp = lemp->symbols[i];
3092 fprintf(fp, " %3d: %s", i, sp->name);
3093 if( sp->type==NONTERMINAL ){
3094 fprintf(fp, ":");
3095 if( sp->lambda ){
3096 fprintf(fp, " <lambda>");
3097 }
3098 for(j=0; j<lemp->nterminal; j++){
3099 if( sp->firstset && SetFind(sp->firstset, j) ){
3100 fprintf(fp, " %s", lemp->symbols[j]->name);
3101 }
3102 }
3103 }
3104 fprintf(fp, "\n");
3105 }
3106 fclose(fp);
3107 return;
3108}
3109
3110/* Search for the file "name" which is in the same directory as
3111** the exacutable */
3112PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3113{
3114 const char *pathlist;
3115 char *pathbufptr;
3116 char *pathbuf;
3117 char *path,*cp;
3118 char c;
3119
3120#ifdef __WIN32__
3121 cp = strrchr(argv0,'\\');
3122#else
3123 cp = strrchr(argv0,'/');
3124#endif
3125 if( cp ){
3126 c = *cp;
3127 *cp = 0;
3128 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3129 if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
3130 *cp = c;
3131 }else{
3132 pathlist = getenv("PATH");
3133 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3134 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
3135 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3136 if( (pathbuf != 0) && (path!=0) ){
3137 pathbufptr = pathbuf;
3138 lemon_strcpy(pathbuf, pathlist);
3139 while( *pathbuf ){
3140 cp = strchr(pathbuf,':');
3141 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3142 c = *cp;
3143 *cp = 0;
3144 lemon_sprintf(path,"%s/%s",pathbuf,name);
3145 *cp = c;
3146 if( c==0 ) pathbuf[0] = 0;
3147 else pathbuf = &cp[1];
3148 if( access(path,modemask)==0 ) break;
3149 }
3150 free(pathbufptr);
3151 }
3152 }
3153 return path;
3154}
3155
3156/* Given an action, compute the integer value for that action
3157** which is to be put in the action table of the generated machine.
3158** Return negative if no action should be generated.
3159*/
3160PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3161{
3162 int act;
3163 switch( ap->type ){
3164 case SHIFT: act = ap->x.stp->statenum; break;
3165 case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
3166 case ERROR: act = lemp->nstate + lemp->nrule; break;
3167 case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
3168 default: act = -1; break;
3169 }
3170 return act;
3171}
3172
3173#define LINESIZE 1000
3174/* The next cluster of routines are for reading the template file
3175** and writing the results to the generated parser */
3176/* The first function transfers data from "in" to "out" until
3177** a line is seen which begins with "%%". The line number is
3178** tracked.
3179**
3180** if name!=0, then any word that begin with "Parse" is changed to
3181** begin with *name instead.
3182*/
3183PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3184{
3185 int i, iStart;
3186 char line[LINESIZE];
3187 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3188 (*lineno)++;
3189 iStart = 0;
3190 if( name ){
3191 for(i=0; line[i]; i++){
3192 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3193 && (i==0 || !isalpha(line[i-1]))
3194 ){
3195 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3196 fprintf(out,"%s",name);
3197 i += 4;
3198 iStart = i+1;
3199 }
3200 }
3201 }
3202 fprintf(out,"%s",&line[iStart]);
3203 }
3204}
3205
3206/* The next function finds the template file and opens it, returning
3207** a pointer to the opened file. */
3208PRIVATE FILE *tplt_open(struct lemon *lemp)
3209{
3210 static char templatename[] = "lempar.c";
3211 char buf[1000];
3212 FILE *in;
3213 char *tpltname;
3214 char *cp;
3215
3216 /* first, see if user specified a template filename on the command line. */
3217 if (user_templatename != 0) {
3218 if( access(user_templatename,004)==-1 ){
3219 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3220 user_templatename);
3221 lemp->errorcnt++;
3222 return 0;
3223 }
3224 in = fopen(user_templatename,"rb");
3225 if( in==0 ){
3226 fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename);
3227 lemp->errorcnt++;
3228 return 0;
3229 }
3230 return in;
3231 }
3232
3233 cp = strrchr(lemp->filename,'.');
3234 if( cp ){
3235 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3236 }else{
3237 lemon_sprintf(buf,"%s.lt",lemp->filename);
3238 }
3239 if( access(buf,004)==0 ){
3240 tpltname = buf;
3241 }else if( access(templatename,004)==0 ){
3242 tpltname = templatename;
3243 }else{
3244 tpltname = pathsearch(lemp->argv0,templatename,0);
3245 }
3246 if( tpltname==0 ){
3247 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3248 templatename);
3249 lemp->errorcnt++;
3250 return 0;
3251 }
3252 in = fopen(tpltname,"rb");
3253 if( in==0 ){
3254 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
3255 lemp->errorcnt++;
3256 return 0;
3257 }
3258 return in;
3259}
3260
3261/* Print a #line directive line to the output file. */
3262PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3263{
3264 fprintf(out,"#line %d \"",lineno);
3265 while( *filename ){
3266 if( *filename == '\\' ) putc('\\',out);
3267 putc(*filename,out);
3268 filename++;
3269 }
3270 fprintf(out,"\"\n");
3271}
3272
3273/* Print a string to the file and keep the linenumber up to date */
3274PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3275{
3276 if( str==0 ) return;
3277 while( *str ){
3278 putc(*str,out);
3279 if( *str=='\n' ) (*lineno)++;
3280 str++;
3281 }
3282 if( str[-1]!='\n' ){
3283 putc('\n',out);
3284 (*lineno)++;
3285 }
3286 if (!lemp->nolinenosflag) {
3287 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3288 }
3289 return;
3290}
3291
3292/*
3293** The following routine emits code for the destructor for the
3294** symbol sp
3295*/
3296void emit_destructor_code(
3297 FILE *out,
3298 struct symbol *sp,
3299 struct lemon *lemp,
3300 int *lineno
3301){
3302 char *cp = 0;
3303
3304 if( sp->type==TERMINAL ){
3305 cp = lemp->tokendest;
3306 if( cp==0 ) return;
3307 fprintf(out,"{\n"); (*lineno)++;
3308 }else if( sp->destructor ){
3309 cp = sp->destructor;
3310 fprintf(out,"{\n"); (*lineno)++;
3311 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
3312 }else if( lemp->vardest ){
3313 cp = lemp->vardest;
3314 if( cp==0 ) return;
3315 fprintf(out,"{\n"); (*lineno)++;
3316 }else{
3317 assert( 0 ); /* Cannot happen */
3318 }
3319 for(; *cp; cp++){
3320 if( *cp=='$' && cp[1]=='$' ){
3321 fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3322 cp++;
3323 continue;
3324 }
3325 if( *cp=='\n' ) (*lineno)++;
3326 fputc(*cp,out);
3327 }
3328 fprintf(out,"\n"); (*lineno)++;
3329 if (!lemp->nolinenosflag) {
3330 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3331 }
3332 fprintf(out,"}\n"); (*lineno)++;
3333 return;
3334}
3335
3336/*
3337** Return TRUE (non-zero) if the given symbol has a destructor.
3338*/
3339int has_destructor(struct symbol *sp, struct lemon *lemp)
3340{
3341 int ret;
3342 if( sp->type==TERMINAL ){
3343 ret = lemp->tokendest!=0;
3344 }else{
3345 ret = lemp->vardest!=0 || sp->destructor!=0;
3346 }
3347 return ret;
3348}
3349
3350/*
3351** Append text to a dynamically allocated string. If zText is 0 then
3352** reset the string to be empty again. Always return the complete text
3353** of the string (which is overwritten with each call).
3354**
3355** n bytes of zText are stored. If n==0 then all of zText up to the first
3356** \000 terminator is stored. zText can contain up to two instances of
3357** %d. The values of p1 and p2 are written into the first and second
3358** %d.
3359**
3360** If n==-1, then the previous character is overwritten.
3361*/
3362PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3363 static char empty[1] = { 0 };
3364 static char *z = 0;
3365 static int alloced = 0;
3366 static int used = 0;
3367 int c;
3368 char zInt[40];
3369 if( zText==0 ){
3370 used = 0;
3371 return z;
3372 }
3373 if( n<=0 ){
3374 if( n<0 ){
3375 used += n;
3376 assert( used>=0 );
3377 }
3378 n = lemonStrlen(zText);
3379 }
3380 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3381 alloced = n + sizeof(zInt)*2 + used + 200;
3382 z = (char *) realloc(z, alloced);
3383 }
3384 if( z==0 ) return empty;
3385 while( n-- > 0 ){
3386 c = *(zText++);
3387 if( c=='%' && n>0 && zText[0]=='d' ){
3388 lemon_sprintf(zInt, "%d", p1);
3389 p1 = p2;
3390 lemon_strcpy(&z[used], zInt);
3391 used += lemonStrlen(&z[used]);
3392 zText++;
3393 n--;
3394 }else{
3395 z[used++] = c;
3396 }
3397 }
3398 z[used] = 0;
3399 return z;
3400}
3401
3402/*
3403** zCode is a string that is the action associated with a rule. Expand
3404** the symbols in this string so that the refer to elements of the parser
3405** stack.
3406*/
3407PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
3408 char *cp, *xp;
3409 int i;
3410 char lhsused = 0; /* True if the LHS element has been used */
3411 char used[MAXRHS]; /* True for each RHS element which is used */
3412
3413 for(i=0; i<rp->nrhs; i++) used[i] = 0;
3414 lhsused = 0;
3415
3416 if( rp->code==0 ){
3417 static char newlinestr[2] = { '\n', '\0' };
3418 rp->code = newlinestr;
3419 rp->line = rp->ruleline;
3420 }
3421
3422 append_str(0,0,0,0);
3423
3424 /* This const cast is wrong but harmless, if we're careful. */
3425 for(cp=(char *)rp->code; *cp; cp++){
3426 if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
3427 char saved;
3428 for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
3429 saved = *xp;
3430 *xp = 0;
3431 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3432 append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
3433 cp = xp;
3434 lhsused = 1;
3435 }else{
3436 for(i=0; i<rp->nrhs; i++){
3437 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3438 if( cp!=rp->code && cp[-1]=='@' ){
3439 /* If the argument is of the form @X then substituted
3440 ** the token number of X, not the value of X */
3441 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3442 }else{
3443 struct symbol *sp = rp->rhs[i];
3444 int dtnum;
3445 if( sp->type==MULTITERMINAL ){
3446 dtnum = sp->subsym[0]->dtnum;
3447 }else{
3448 dtnum = sp->dtnum;
3449 }
3450 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3451 }
3452 cp = xp;
3453 used[i] = 1;
3454 break;
3455 }
3456 }
3457 }
3458 *xp = saved;
3459 }
3460 append_str(cp, 1, 0, 0);
3461 } /* End loop */
3462
3463 /* Check to make sure the LHS has been used */
3464 if( rp->lhsalias && !lhsused ){
3465 ErrorMsg(lemp->filename,rp->ruleline,
3466 "Label \"%s\" for \"%s(%s)\" is never used.",
3467 rp->lhsalias,rp->lhs->name,rp->lhsalias);
3468 lemp->errorcnt++;
3469 }
3470
3471 /* Generate destructor code for RHS symbols which are not used in the
3472 ** reduce code */
3473 for(i=0; i<rp->nrhs; i++){
3474 if( rp->rhsalias[i] && !used[i] ){
3475 ErrorMsg(lemp->filename,rp->ruleline,
3476 "Label %s for \"%s(%s)\" is never used.",
3477 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
3478 lemp->errorcnt++;
3479 }else if( rp->rhsalias[i]==0 ){
3480 if( has_destructor(rp->rhs[i],lemp) ){
3481 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3482 rp->rhs[i]->index,i-rp->nrhs+1);
3483 }else{
3484 /* No destructor defined for this term */
3485 }
3486 }
3487 }
3488 if( rp->code ){
3489 cp = append_str(0,0,0,0);
3490 rp->code = Strsafe(cp?cp:"");
3491 }
3492}
3493
3494/*
3495** Generate code which executes when the rule "rp" is reduced. Write
3496** the code to "out". Make sure lineno stays up-to-date.
3497*/
3498PRIVATE void emit_code(
3499 FILE *out,
3500 struct rule *rp,
3501 struct lemon *lemp,
3502 int *lineno
3503){
3504 const char *cp;
3505
3506 /* Generate code to do the reduce action */
3507 if( rp->code ){
3508 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
3509 fprintf(out,"{%s",rp->code);
3510 for(cp=rp->code; *cp; cp++){
3511 if( *cp=='\n' ) (*lineno)++;
3512 } /* End loop */
3513 fprintf(out,"}\n"); (*lineno)++;
3514 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
3515 } /* End if( rp->code ) */
3516
3517 return;
3518}
3519
3520/*
3521** Print the definition of the union used for the parser's data stack.
3522** This union contains fields for every possible data type for tokens
3523** and nonterminals. In the process of computing and printing this
3524** union, also set the ".dtnum" field of every terminal and nonterminal
3525** symbol.
3526*/
3527void print_stack_union(
3528 FILE *out, /* The output stream */
3529 struct lemon *lemp, /* The main info structure for this parser */
3530 int *plineno, /* Pointer to the line number */
3531 int mhflag /* True if generating makeheaders output */
3532){
3533 int lineno = *plineno; /* The line number of the output */
3534 char **types; /* A hash table of datatypes */
3535 int arraysize; /* Size of the "types" array */
3536 int maxdtlength; /* Maximum length of any ".datatype" field. */
3537 char *stddt; /* Standardized name for a datatype */
3538 int i,j; /* Loop counters */
3539 unsigned hash; /* For hashing the name of a type */
3540 const char *name; /* Name of the parser */
3541
3542 /* Allocate and initialize types[] and allocate stddt[] */
3543 arraysize = lemp->nsymbol * 2;
3544 types = (char**)calloc( arraysize, sizeof(char*) );
3545 if( types==0 ){
3546 fprintf(stderr,"Out of memory.\n");
3547 exit(1);
3548 }
3549 for(i=0; i<arraysize; i++) types[i] = 0;
3550 maxdtlength = 0;
3551 if( lemp->vartype ){
3552 maxdtlength = lemonStrlen(lemp->vartype);
3553 }
3554 for(i=0; i<lemp->nsymbol; i++){
3555 int len;
3556 struct symbol *sp = lemp->symbols[i];
3557 if( sp->datatype==0 ) continue;
3558 len = lemonStrlen(sp->datatype);
3559 if( len>maxdtlength ) maxdtlength = len;
3560 }
3561 stddt = (char*)malloc( maxdtlength*2 + 1 );
3562 if( stddt==0 ){
3563 fprintf(stderr,"Out of memory.\n");
3564 exit(1);
3565 }
3566
3567 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3568 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
3569 ** used for terminal symbols. If there is no %default_type defined then
3570 ** 0 is also used as the .dtnum value for nonterminals which do not specify
3571 ** a datatype using the %type directive.
3572 */
3573 for(i=0; i<lemp->nsymbol; i++){
3574 struct symbol *sp = lemp->symbols[i];
3575 char *cp;
3576 if( sp==lemp->errsym ){
3577 sp->dtnum = arraysize+1;
3578 continue;
3579 }
3580 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3581 sp->dtnum = 0;
3582 continue;
3583 }
3584 cp = sp->datatype;
3585 if( cp==0 ) cp = lemp->vartype;
3586 j = 0;
3587 while( isspace(*cp) ) cp++;
3588 while( *cp ) stddt[j++] = *cp++;
3589 while( j>0 && isspace(stddt[j-1]) ) j--;
3590 stddt[j] = 0;
3591 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
3592 sp->dtnum = 0;
3593 continue;
3594 }
3595 hash = 0;
3596 for(j=0; stddt[j]; j++){
3597 hash = hash*53 + stddt[j];
3598 }
3599 hash = (hash & 0x7fffffff)%arraysize;
3600 while( types[hash] ){
3601 if( strcmp(types[hash],stddt)==0 ){
3602 sp->dtnum = hash + 1;
3603 break;
3604 }
3605 hash++;
3606 if( hash>=(unsigned)arraysize ) hash = 0;
3607 }
3608 if( types[hash]==0 ){
3609 sp->dtnum = hash + 1;
3610 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
3611 if( types[hash]==0 ){
3612 fprintf(stderr,"Out of memory.\n");
3613 exit(1);
3614 }
3615 lemon_strcpy(types[hash],stddt);
3616 }
3617 }
3618
3619 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3620 name = lemp->name ? lemp->name : "Parse";
3621 lineno = *plineno;
3622 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3623 fprintf(out,"#define %sTOKENTYPE %s\n",name,
3624 lemp->tokentype?lemp->tokentype:"void*"); lineno++;
3625 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3626 fprintf(out,"typedef union {\n"); lineno++;
3627 fprintf(out," int yyinit;\n"); lineno++;
3628 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
3629 for(i=0; i<arraysize; i++){
3630 if( types[i]==0 ) continue;
3631 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
3632 free(types[i]);
3633 }
3634 if( lemp->errsym->useCnt ){
3635 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
3636 }
3637 free(stddt);
3638 free(types);
3639 fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3640 *plineno = lineno;
3641}
3642
3643/*
3644** Return the name of a C datatype able to represent values between
3645** lwr and upr, inclusive.
3646*/
3647static const char *minimum_size_type(int lwr, int upr){
3648 if( lwr>=0 ){
3649 if( upr<=255 ){
3650 return "unsigned char";
3651 }else if( upr<65535 ){
3652 return "unsigned short int";
3653 }else{
3654 return "unsigned int";
3655 }
3656 }else if( lwr>=-127 && upr<=127 ){
3657 return "signed char";
3658 }else if( lwr>=-32767 && upr<32767 ){
3659 return "short";
3660 }else{
3661 return "int";
3662 }
3663}
3664
3665/*
3666** Each state contains a set of token transaction and a set of
3667** nonterminal transactions. Each of these sets makes an instance
3668** of the following structure. An array of these structures is used
3669** to order the creation of entries in the yy_action[] table.
3670*/
3671struct axset {
3672 struct state *stp; /* A pointer to a state */
3673 int isTkn; /* True to use tokens. False for non-terminals */
3674 int nAction; /* Number of actions */
3675 int iOrder; /* Original order of action sets */
3676};
3677
3678/*
3679** Compare to axset structures for sorting purposes
3680*/
3681static int axset_compare(const void *a, const void *b){
3682 struct axset *p1 = (struct axset*)a;
3683 struct axset *p2 = (struct axset*)b;
3684 int c;
3685 c = p2->nAction - p1->nAction;
3686 if( c==0 ){
3687 c = p2->iOrder - p1->iOrder;
3688 }
3689 assert( c!=0 || p1==p2 );
3690 return c;
3691}
3692
3693/*
3694** Write text on "out" that describes the rule "rp".
3695*/
3696static void writeRuleText(FILE *out, struct rule *rp){
3697 int j;
3698 fprintf(out,"%s ::=", rp->lhs->name);
3699 for(j=0; j<rp->nrhs; j++){
3700 struct symbol *sp = rp->rhs[j];
3701 if( sp->type!=MULTITERMINAL ){
3702 fprintf(out," %s", sp->name);
3703 }else{
3704 int k;
3705 fprintf(out," %s", sp->subsym[0]->name);
3706 for(k=1; k<sp->nsubsym; k++){
3707 fprintf(out,"|%s",sp->subsym[k]->name);
3708 }
3709 }
3710 }
3711}
3712
3713
3714/* Generate C source code for the parser */
3715void ReportTable(
3716 struct lemon *lemp,
3717 int mhflag /* Output in makeheaders format if true */
3718){
3719 FILE *out, *in;
3720 char line[LINESIZE];
3721 int lineno;
3722 struct state *stp;
3723 struct action *ap;
3724 struct rule *rp;
3725 struct acttab *pActtab;
3726 int i, j, n;
3727 const char *name;
3728 int mnTknOfst, mxTknOfst;
3729 int mnNtOfst, mxNtOfst;
3730 struct axset *ax;
3731
3732 in = tplt_open(lemp);
3733 if( in==0 ) return;
3734 out = file_open(lemp,".c","wb");
3735 if( out==0 ){
3736 fclose(in);
3737 return;
3738 }
3739 lineno = 1;
3740 tplt_xfer(lemp->name,in,out,&lineno);
3741
3742 /* Generate the include code, if any */
3743 tplt_print(out,lemp,lemp->include,&lineno);
3744 if( mhflag ){
3745 char *name = file_makename(lemp, ".h");
3746 fprintf(out,"#include \"%s\"\n", name); lineno++;
3747 free(name);
3748 }
3749 tplt_xfer(lemp->name,in,out,&lineno);
3750
3751 /* Generate #defines for all tokens */
3752 if( mhflag ){
3753 const char *prefix;
3754 fprintf(out,"#if INTERFACE\n"); lineno++;
3755 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3756 else prefix = "";
3757 for(i=1; i<lemp->nterminal; i++){
3758 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3759 lineno++;
3760 }
3761 fprintf(out,"#endif\n"); lineno++;
3762 }
3763 tplt_xfer(lemp->name,in,out,&lineno);
3764
3765 /* Generate the defines */
3766 fprintf(out,"#define YYCODETYPE %s\n",
3767 minimum_size_type(0, lemp->nsymbol+1)); lineno++;
3768 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
3769 fprintf(out,"#define YYACTIONTYPE %s\n",
3770 minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
3771 if( lemp->wildcard ){
3772 fprintf(out,"#define YYWILDCARD %d\n",
3773 lemp->wildcard->index); lineno++;
3774 }
3775 print_stack_union(out,lemp,&lineno,mhflag);
3776 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
3777 if( lemp->stacksize ){
3778 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
3779 }else{
3780 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
3781 }
3782 fprintf(out, "#endif\n"); lineno++;
3783 if( mhflag ){
3784 fprintf(out,"#if INTERFACE\n"); lineno++;
3785 }
3786 name = lemp->name ? lemp->name : "Parse";
3787 if( lemp->arg && lemp->arg[0] ){
3788 int i;
3789 i = lemonStrlen(lemp->arg);
3790 while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
3791 while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
3792 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
3793 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
3794 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
3795 name,lemp->arg,&lemp->arg[i]); lineno++;
3796 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
3797 name,&lemp->arg[i],&lemp->arg[i]); lineno++;
3798 }else{
3799 fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
3800 fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
3801 fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
3802 fprintf(out,"#define %sARG_STORE\n",name); lineno++;
3803 }
3804 if( mhflag ){
3805 fprintf(out,"#endif\n"); lineno++;
3806 }
3807 fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
3808 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
3809 if( lemp->errsym->useCnt ){
3810 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
3811 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
3812 }
3813 if( lemp->has_fallback ){
3814 fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
3815 }
3816 tplt_xfer(lemp->name,in,out,&lineno);
3817
3818 /* Generate the action table and its associates:
3819 **
3820 ** yy_action[] A single table containing all actions.
3821 ** yy_lookahead[] A table containing the lookahead for each entry in
3822 ** yy_action. Used to detect hash collisions.
3823 ** yy_shift_ofst[] For each state, the offset into yy_action for
3824 ** shifting terminals.
3825 ** yy_reduce_ofst[] For each state, the offset into yy_action for
3826 ** shifting non-terminals after a reduce.
3827 ** yy_default[] Default action for each state.
3828 */
3829
3830 /* Compute the actions on all states and count them up */
3831 ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
3832 if( ax==0 ){
3833 fprintf(stderr,"malloc failed\n");
3834 exit(1);
3835 }
3836 for(i=0; i<lemp->nstate; i++){
3837 stp = lemp->sorted[i];
3838 ax[i*2].stp = stp;
3839 ax[i*2].isTkn = 1;
3840 ax[i*2].nAction = stp->nTknAct;
3841 ax[i*2+1].stp = stp;
3842 ax[i*2+1].isTkn = 0;
3843 ax[i*2+1].nAction = stp->nNtAct;
3844 }
3845 mxTknOfst = mnTknOfst = 0;
3846 mxNtOfst = mnNtOfst = 0;
3847
3848 /* Compute the action table. In order to try to keep the size of the
3849 ** action table to a minimum, the heuristic of placing the largest action
3850 ** sets first is used.
3851 */
3852 for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
3853 qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
3854 pActtab = acttab_alloc();
3855 for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
3856 stp = ax[i].stp;
3857 if( ax[i].isTkn ){
3858 for(ap=stp->ap; ap; ap=ap->next){
3859 int action;
3860 if( ap->sp->index>=lemp->nterminal ) continue;
3861 action = compute_action(lemp, ap);
3862 if( action<0 ) continue;
3863 acttab_action(pActtab, ap->sp->index, action);
3864 }
3865 stp->iTknOfst = acttab_insert(pActtab);
3866 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
3867 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
3868 }else{
3869 for(ap=stp->ap; ap; ap=ap->next){
3870 int action;
3871 if( ap->sp->index<lemp->nterminal ) continue;
3872 if( ap->sp->index==lemp->nsymbol ) continue;
3873 action = compute_action(lemp, ap);
3874 if( action<0 ) continue;
3875 acttab_action(pActtab, ap->sp->index, action);
3876 }
3877 stp->iNtOfst = acttab_insert(pActtab);
3878 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
3879 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
3880 }
3881 }
3882 free(ax);
3883
3884 /* Output the yy_action table */
3885 n = acttab_size(pActtab);
3886 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
3887 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
3888 for(i=j=0; i<n; i++){
3889 int action = acttab_yyaction(pActtab, i);
3890 if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
3891 if( j==0 ) fprintf(out," /* %5d */ ", i);
3892 fprintf(out, " %4d,", action);
3893 if( j==9 || i==n-1 ){
3894 fprintf(out, "\n"); lineno++;
3895 j = 0;
3896 }else{
3897 j++;
3898 }
3899 }
3900 fprintf(out, "};\n"); lineno++;
3901
3902 /* Output the yy_lookahead table */
3903 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
3904 for(i=j=0; i<n; i++){
3905 int la = acttab_yylookahead(pActtab, i);
3906 if( la<0 ) la = lemp->nsymbol;
3907 if( j==0 ) fprintf(out," /* %5d */ ", i);
3908 fprintf(out, " %4d,", la);
3909 if( j==9 || i==n-1 ){
3910 fprintf(out, "\n"); lineno++;
3911 j = 0;
3912 }else{
3913 j++;
3914 }
3915 }
3916 fprintf(out, "};\n"); lineno++;
3917
3918 /* Output the yy_shift_ofst[] table */
3919 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
3920 n = lemp->nstate;
3921 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
3922 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
3923 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
3924 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
3925 fprintf(out, "static const %s yy_shift_ofst[] = {\n",
3926 minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
3927 for(i=j=0; i<n; i++){
3928 int ofst;
3929 stp = lemp->sorted[i];
3930 ofst = stp->iTknOfst;
3931 if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
3932 if( j==0 ) fprintf(out," /* %5d */ ", i);
3933 fprintf(out, " %4d,", ofst);
3934 if( j==9 || i==n-1 ){
3935 fprintf(out, "\n"); lineno++;
3936 j = 0;
3937 }else{
3938 j++;
3939 }
3940 }
3941 fprintf(out, "};\n"); lineno++;
3942
3943 /* Output the yy_reduce_ofst[] table */
3944 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
3945 n = lemp->nstate;
3946 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
3947 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
3948 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
3949 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
3950 fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
3951 minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
3952 for(i=j=0; i<n; i++){
3953 int ofst;
3954 stp = lemp->sorted[i];
3955 ofst = stp->iNtOfst;
3956 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
3957 if( j==0 ) fprintf(out," /* %5d */ ", i);
3958 fprintf(out, " %4d,", ofst);
3959 if( j==9 || i==n-1 ){
3960 fprintf(out, "\n"); lineno++;
3961 j = 0;
3962 }else{
3963 j++;
3964 }
3965 }
3966 fprintf(out, "};\n"); lineno++;
3967
3968 /* Output the default action table */
3969 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
3970 n = lemp->nstate;
3971 for(i=j=0; i<n; i++){
3972 stp = lemp->sorted[i];
3973 if( j==0 ) fprintf(out," /* %5d */ ", i);
3974 fprintf(out, " %4d,", stp->iDflt);
3975 if( j==9 || i==n-1 ){
3976 fprintf(out, "\n"); lineno++;
3977 j = 0;
3978 }else{
3979 j++;
3980 }
3981 }
3982 fprintf(out, "};\n"); lineno++;
3983 tplt_xfer(lemp->name,in,out,&lineno);
3984
3985 /* Generate the table of fallback tokens.
3986 */
3987 if( lemp->has_fallback ){
3988 int mx = lemp->nterminal - 1;
3989 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
3990 for(i=0; i<=mx; i++){
3991 struct symbol *p = lemp->symbols[i];
3992 if( p->fallback==0 ){
3993 fprintf(out, " 0, /* %10s => nothing */\n", p->name);
3994 }else{
3995 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
3996 p->name, p->fallback->name);
3997 }
3998 lineno++;
3999 }
4000 }
4001 tplt_xfer(lemp->name, in, out, &lineno);
4002
4003 /* Generate a table containing the symbolic name of every symbol
4004 */
4005 for(i=0; i<lemp->nsymbol; i++){
4006 lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
4007 fprintf(out," %-15s",line);
4008 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
4009 }
4010 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
4011 tplt_xfer(lemp->name,in,out,&lineno);
4012
4013 /* Generate a table containing a text string that describes every
4014 ** rule in the rule set of the grammar. This information is used
4015 ** when tracing REDUCE actions.
4016 */
4017 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4018 assert( rp->index==i );
4019 fprintf(out," /* %3d */ \"", i);
4020 writeRuleText(out, rp);
4021 fprintf(out,"\",\n"); lineno++;
4022 }
4023 tplt_xfer(lemp->name,in,out,&lineno);
4024
4025 /* Generate code which executes every time a symbol is popped from
4026 ** the stack while processing errors or while destroying the parser.
4027 ** (In other words, generate the %destructor actions)
4028 */
4029 if( lemp->tokendest ){
4030 int once = 1;
4031 for(i=0; i<lemp->nsymbol; i++){
4032 struct symbol *sp = lemp->symbols[i];
4033 if( sp==0 || sp->type!=TERMINAL ) continue;
4034 if( once ){
4035 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
4036 once = 0;
4037 }
4038 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4039 }
4040 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
4041 if( i<lemp->nsymbol ){
4042 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4043 fprintf(out," break;\n"); lineno++;
4044 }
4045 }
4046 if( lemp->vardest ){
4047 struct symbol *dflt_sp = 0;
4048 int once = 1;
4049 for(i=0; i<lemp->nsymbol; i++){
4050 struct symbol *sp = lemp->symbols[i];
4051 if( sp==0 || sp->type==TERMINAL ||
4052 sp->index<=0 || sp->destructor!=0 ) continue;
4053 if( once ){
4054 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
4055 once = 0;
4056 }
4057 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4058 dflt_sp = sp;
4059 }
4060 if( dflt_sp!=0 ){
4061 emit_destructor_code(out,dflt_sp,lemp,&lineno);
4062 }
4063 fprintf(out," break;\n"); lineno++;
4064 }
4065 for(i=0; i<lemp->nsymbol; i++){
4066 struct symbol *sp = lemp->symbols[i];
4067 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
4068 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4069
4070 /* Combine duplicate destructors into a single case */
4071 for(j=i+1; j<lemp->nsymbol; j++){
4072 struct symbol *sp2 = lemp->symbols[j];
4073 if( sp2 && sp2->type!=TERMINAL && sp2->destructor
4074 && sp2->dtnum==sp->dtnum
4075 && strcmp(sp->destructor,sp2->destructor)==0 ){
4076 fprintf(out," case %d: /* %s */\n",
4077 sp2->index, sp2->name); lineno++;
4078 sp2->destructor = 0;
4079 }
4080 }
4081
4082 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4083 fprintf(out," break;\n"); lineno++;
4084 }
4085 tplt_xfer(lemp->name,in,out,&lineno);
4086
4087 /* Generate code which executes whenever the parser stack overflows */
4088 tplt_print(out,lemp,lemp->overflow,&lineno);
4089 tplt_xfer(lemp->name,in,out,&lineno);
4090
4091 /* Generate the table of rule information
4092 **
4093 ** Note: This code depends on the fact that rules are number
4094 ** sequentually beginning with 0.
4095 */
4096 for(rp=lemp->rule; rp; rp=rp->next){
4097 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
4098 }
4099 tplt_xfer(lemp->name,in,out,&lineno);
4100
4101 /* Generate code which execution during each REDUCE action */
4102 for(rp=lemp->rule; rp; rp=rp->next){
4103 translate_code(lemp, rp);
4104 }
4105 /* First output rules other than the default: rule */
4106 for(rp=lemp->rule; rp; rp=rp->next){
4107 struct rule *rp2; /* Other rules with the same action */
4108 if( rp->code==0 ) continue;
4109 if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
4110 fprintf(out," case %d: /* ", rp->index);
4111 writeRuleText(out, rp);
4112 fprintf(out, " */\n"); lineno++;
4113 for(rp2=rp->next; rp2; rp2=rp2->next){
4114 if( rp2->code==rp->code ){
4115 fprintf(out," case %d: /* ", rp2->index);
4116 writeRuleText(out, rp2);
4117 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
4118 rp2->code = 0;
4119 }
4120 }
4121 emit_code(out,rp,lemp,&lineno);
4122 fprintf(out," break;\n"); lineno++;
4123 rp->code = 0;
4124 }
4125 /* Finally, output the default: rule. We choose as the default: all
4126 ** empty actions. */
4127 fprintf(out," default:\n"); lineno++;
4128 for(rp=lemp->rule; rp; rp=rp->next){
4129 if( rp->code==0 ) continue;
4130 assert( rp->code[0]=='\n' && rp->code[1]==0 );
4131 fprintf(out," /* (%d) ", rp->index);
4132 writeRuleText(out, rp);
4133 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
4134 }
4135 fprintf(out," break;\n"); lineno++;
4136 tplt_xfer(lemp->name,in,out,&lineno);
4137
4138 /* Generate code which executes if a parse fails */
4139 tplt_print(out,lemp,lemp->failure,&lineno);
4140 tplt_xfer(lemp->name,in,out,&lineno);
4141
4142 /* Generate code which executes when a syntax error occurs */
4143 tplt_print(out,lemp,lemp->error,&lineno);
4144 tplt_xfer(lemp->name,in,out,&lineno);
4145
4146 /* Generate code which executes when the parser accepts its input */
4147 tplt_print(out,lemp,lemp->accept,&lineno);
4148 tplt_xfer(lemp->name,in,out,&lineno);
4149
4150 /* Append any addition code the user desires */
4151 tplt_print(out,lemp,lemp->extracode,&lineno);
4152
4153 fclose(in);
4154 fclose(out);
4155 return;
4156}
4157
4158/* Generate a header file for the parser */
4159void ReportHeader(struct lemon *lemp)
4160{
4161 FILE *out, *in;
4162 const char *prefix;
4163 char line[LINESIZE];
4164 char pattern[LINESIZE];
4165 int i;
4166
4167 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4168 else prefix = "";
4169 in = file_open(lemp,".h","rb");
4170 if( in ){
4171 int nextChar;
4172 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4173 lemon_sprintf(pattern,"#define %s%-30s %3d\n",
4174 prefix,lemp->symbols[i]->name,i);
4175 if( strcmp(line,pattern) ) break;
4176 }
4177 nextChar = fgetc(in);
4178 fclose(in);
4179 if( i==lemp->nterminal && nextChar==EOF ){
4180 /* No change in the file. Don't rewrite it. */
4181 return;
4182 }
4183 }
4184 out = file_open(lemp,".h","wb");
4185 if( out ){
4186 for(i=1; i<lemp->nterminal; i++){
4187 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
4188 }
4189 fclose(out);
4190 }
4191 return;
4192}
4193
4194/* Reduce the size of the action tables, if possible, by making use
4195** of defaults.
4196**
4197** In this version, we take the most frequent REDUCE action and make
4198** it the default. Except, there is no default if the wildcard token
4199** is a possible look-ahead.
4200*/
4201void CompressTables(struct lemon *lemp)
4202{
4203 struct state *stp;
4204 struct action *ap, *ap2;
4205 struct rule *rp, *rp2, *rbest;
4206 int nbest, n;
4207 int i;
4208 int usesWildcard;
4209
4210 for(i=0; i<lemp->nstate; i++){
4211 stp = lemp->sorted[i];
4212 nbest = 0;
4213 rbest = 0;
4214 usesWildcard = 0;
4215
4216 for(ap=stp->ap; ap; ap=ap->next){
4217 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
4218 usesWildcard = 1;
4219 }
4220 if( ap->type!=REDUCE ) continue;
4221 rp = ap->x.rp;
4222 if( rp->lhsStart ) continue;
4223 if( rp==rbest ) continue;
4224 n = 1;
4225 for(ap2=ap->next; ap2; ap2=ap2->next){
4226 if( ap2->type!=REDUCE ) continue;
4227 rp2 = ap2->x.rp;
4228 if( rp2==rbest ) continue;
4229 if( rp2==rp ) n++;
4230 }
4231 if( n>nbest ){
4232 nbest = n;
4233 rbest = rp;
4234 }
4235 }
4236
4237 /* Do not make a default if the number of rules to default
4238 ** is not at least 1 or if the wildcard token is a possible
4239 ** lookahead.
4240 */
4241 if( nbest<1 || usesWildcard ) continue;
4242
4243
4244 /* Combine matching REDUCE actions into a single default */
4245 for(ap=stp->ap; ap; ap=ap->next){
4246 if( ap->type==REDUCE && ap->x.rp==rbest ) break;
4247 }
4248 assert( ap );
4249 ap->sp = Symbol_new("{default}");
4250 for(ap=ap->next; ap; ap=ap->next){
4251 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
4252 }
4253 stp->ap = Action_sort(stp->ap);
4254 }
4255}
4256
4257
4258/*
4259** Compare two states for sorting purposes. The smaller state is the
4260** one with the most non-terminal actions. If they have the same number
4261** of non-terminal actions, then the smaller is the one with the most
4262** token actions.
4263*/
4264static int stateResortCompare(const void *a, const void *b){
4265 const struct state *pA = *(const struct state**)a;
4266 const struct state *pB = *(const struct state**)b;
4267 int n;
4268
4269 n = pB->nNtAct - pA->nNtAct;
4270 if( n==0 ){
4271 n = pB->nTknAct - pA->nTknAct;
4272 if( n==0 ){
4273 n = pB->statenum - pA->statenum;
4274 }
4275 }
4276 assert( n!=0 );
4277 return n;
4278}
4279
4280
4281/*
4282** Renumber and resort states so that states with fewer choices
4283** occur at the end. Except, keep state 0 as the first state.
4284*/
4285void ResortStates(struct lemon *lemp)
4286{
4287 int i;
4288 struct state *stp;
4289 struct action *ap;
4290
4291 for(i=0; i<lemp->nstate; i++){
4292 stp = lemp->sorted[i];
4293 stp->nTknAct = stp->nNtAct = 0;
4294 stp->iDflt = lemp->nstate + lemp->nrule;
4295 stp->iTknOfst = NO_OFFSET;
4296 stp->iNtOfst = NO_OFFSET;
4297 for(ap=stp->ap; ap; ap=ap->next){
4298 if( compute_action(lemp,ap)>=0 ){
4299 if( ap->sp->index<lemp->nterminal ){
4300 stp->nTknAct++;
4301 }else if( ap->sp->index<lemp->nsymbol ){
4302 stp->nNtAct++;
4303 }else{
4304 stp->iDflt = compute_action(lemp, ap);
4305 }
4306 }
4307 }
4308 }
4309 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
4310 stateResortCompare);
4311 for(i=0; i<lemp->nstate; i++){
4312 lemp->sorted[i]->statenum = i;
4313 }
4314}
4315
4316
4317/***************** From the file "set.c" ************************************/
4318/*
4319** Set manipulation routines for the LEMON parser generator.
4320*/
4321
4322static int size = 0;
4323
4324/* Set the set size */
4325void SetSize(int n)
4326{
4327 size = n+1;
4328}
4329
4330/* Allocate a new set */
4331char *SetNew(){
4332 char *s;
4333 s = (char*)calloc( size, 1);
4334 if( s==0 ){
4335 extern void memory_error();
4336 memory_error();
4337 }
4338 return s;
4339}
4340
4341/* Deallocate a set */
4342void SetFree(char *s)
4343{
4344 free(s);
4345}
4346
4347/* Add a new element to the set. Return TRUE if the element was added
4348** and FALSE if it was already there. */
4349int SetAdd(char *s, int e)
4350{
4351 int rv;
4352 assert( e>=0 && e<size );
4353 rv = s[e];
4354 s[e] = 1;
4355 return !rv;
4356}
4357
4358/* Add every element of s2 to s1. Return TRUE if s1 changes. */
4359int SetUnion(char *s1, char *s2)
4360{
4361 int i, progress;
4362 progress = 0;
4363 for(i=0; i<size; i++){
4364 if( s2[i]==0 ) continue;
4365 if( s1[i]==0 ){
4366 progress = 1;
4367 s1[i] = 1;
4368 }
4369 }
4370 return progress;
4371}
4372/********************** From the file "table.c" ****************************/
4373/*
4374** All code in this file has been automatically generated
4375** from a specification in the file
4376** "table.q"
4377** by the associative array code building program "aagen".
4378** Do not edit this file! Instead, edit the specification
4379** file, then rerun aagen.
4380*/
4381/*
4382** Code for processing tables in the LEMON parser generator.
4383*/
4384
4385PRIVATE unsigned strhash(const char *x)
4386{
4387 unsigned h = 0;
4388 while( *x ) h = h*13 + *(x++);
4389 return h;
4390}
4391
4392/* Works like strdup, sort of. Save a string in malloced memory, but
4393** keep strings in a table so that the same string is not in more
4394** than one place.
4395*/
4396const char *Strsafe(const char *y)
4397{
4398 const char *z;
4399 char *cpy;
4400
4401 if( y==0 ) return 0;
4402 z = Strsafe_find(y);
4403 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
4404 lemon_strcpy(cpy,y);
4405 z = cpy;
4406 Strsafe_insert(z);
4407 }
4408 MemoryCheck(z);
4409 return z;
4410}
4411
4412/* There is one instance of the following structure for each
4413** associative array of type "x1".
4414*/
4415struct s_x1 {
4416 int size; /* The number of available slots. */
4417 /* Must be a power of 2 greater than or */
4418 /* equal to 1 */
4419 int count; /* Number of currently slots filled */
4420 struct s_x1node *tbl; /* The data stored here */
4421 struct s_x1node **ht; /* Hash table for lookups */
4422};
4423
4424/* There is one instance of this structure for every data element
4425** in an associative array of type "x1".
4426*/
4427typedef struct s_x1node {
4428 const char *data; /* The data */
4429 struct s_x1node *next; /* Next entry with the same hash */
4430 struct s_x1node **from; /* Previous link */
4431} x1node;
4432
4433/* There is only one instance of the array, which is the following */
4434static struct s_x1 *x1a;
4435
4436/* Allocate a new associative array */
4437void Strsafe_init(){
4438 if( x1a ) return;
4439 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
4440 if( x1a ){
4441 x1a->size = 1024;
4442 x1a->count = 0;
4443 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
4444 if( x1a->tbl==0 ){
4445 free(x1a);
4446 x1a = 0;
4447 }else{
4448 int i;
4449 x1a->ht = (x1node**)&(x1a->tbl[1024]);
4450 for(i=0; i<1024; i++) x1a->ht[i] = 0;
4451 }
4452 }
4453}
4454/* Insert a new record into the array. Return TRUE if successful.
4455** Prior data with the same key is NOT overwritten */
4456int Strsafe_insert(const char *data)
4457{
4458 x1node *np;
4459 unsigned h;
4460 unsigned ph;
4461
4462 if( x1a==0 ) return 0;
4463 ph = strhash(data);
4464 h = ph & (x1a->size-1);
4465 np = x1a->ht[h];
4466 while( np ){
4467 if( strcmp(np->data,data)==0 ){
4468 /* An existing entry with the same key is found. */
4469 /* Fail because overwrite is not allows. */
4470 return 0;
4471 }
4472 np = np->next;
4473 }
4474 if( x1a->count>=x1a->size ){
4475 /* Need to make the hash table bigger */
4476 int i,size;
4477 struct s_x1 array;
4478 array.size = size = x1a->size*2;
4479 array.count = x1a->count;
4480 array.tbl = (x1node*)calloc(size, sizeof(x1node) + sizeof(x1node*));
4481 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4482 array.ht = (x1node**)&(array.tbl[size]);
4483 for(i=0; i<size; i++) array.ht[i] = 0;
4484 for(i=0; i<x1a->count; i++){
4485 x1node *oldnp, *newnp;
4486 oldnp = &(x1a->tbl[i]);
4487 h = strhash(oldnp->data) & (size-1);
4488 newnp = &(array.tbl[i]);
4489 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4490 newnp->next = array.ht[h];
4491 newnp->data = oldnp->data;
4492 newnp->from = &(array.ht[h]);
4493 array.ht[h] = newnp;
4494 }
4495 free(x1a->tbl);
4496 *x1a = array;
4497 }
4498 /* Insert the new data */
4499 h = ph & (x1a->size-1);
4500 np = &(x1a->tbl[x1a->count++]);
4501 np->data = data;
4502 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
4503 np->next = x1a->ht[h];
4504 x1a->ht[h] = np;
4505 np->from = &(x1a->ht[h]);
4506 return 1;
4507}
4508
4509/* Return a pointer to data assigned to the given key. Return NULL
4510** if no such key. */
4511const char *Strsafe_find(const char *key)
4512{
4513 unsigned h;
4514 x1node *np;
4515
4516 if( x1a==0 ) return 0;
4517 h = strhash(key) & (x1a->size-1);
4518 np = x1a->ht[h];
4519 while( np ){
4520 if( strcmp(np->data,key)==0 ) break;
4521 np = np->next;
4522 }
4523 return np ? np->data : 0;
4524}
4525
4526/* Return a pointer to the (terminal or nonterminal) symbol "x".
4527** Create a new symbol if this is the first time "x" has been seen.
4528*/
4529struct symbol *Symbol_new(const char *x)
4530{
4531 struct symbol *sp;
4532
4533 sp = Symbol_find(x);
4534 if( sp==0 ){
4535 sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
4536 MemoryCheck(sp);
4537 sp->name = Strsafe(x);
4538 sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
4539 sp->rule = 0;
4540 sp->fallback = 0;
4541 sp->prec = -1;
4542 sp->assoc = UNK;
4543 sp->firstset = 0;
4544 sp->lambda = LEMON_FALSE;
4545 sp->destructor = 0;
4546 sp->destLineno = 0;
4547 sp->datatype = 0;
4548 sp->useCnt = 0;
4549 Symbol_insert(sp,sp->name);
4550 }
4551 sp->useCnt++;
4552 return sp;
4553}
4554
4555/* Compare two symbols for sorting purposes. Return negative,
4556** zero, or positive if a is less then, equal to, or greater
4557** than b.
4558**
4559** Symbols that begin with upper case letters (terminals or tokens)
4560** must sort before symbols that begin with lower case letters
4561** (non-terminals). And MULTITERMINAL symbols (created using the
4562** %token_class directive) must sort at the very end. Other than
4563** that, the order does not matter.
4564**
4565** We find experimentally that leaving the symbols in their original
4566** order (the order they appeared in the grammar file) gives the
4567** smallest parser tables in SQLite.
4568*/
4569int Symbolcmpp(const void *_a, const void *_b)
4570{
4571 const struct symbol *a = *(const struct symbol **) _a;
4572 const struct symbol *b = *(const struct symbol **) _b;
4573 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
4574 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
4575 return i1==i2 ? a->index - b->index : i1 - i2;
4576}
4577
4578/* There is one instance of the following structure for each
4579** associative array of type "x2".
4580*/
4581struct s_x2 {
4582 int size; /* The number of available slots. */
4583 /* Must be a power of 2 greater than or */
4584 /* equal to 1 */
4585 int count; /* Number of currently slots filled */
4586 struct s_x2node *tbl; /* The data stored here */
4587 struct s_x2node **ht; /* Hash table for lookups */
4588};
4589
4590/* There is one instance of this structure for every data element
4591** in an associative array of type "x2".
4592*/
4593typedef struct s_x2node {
4594 struct symbol *data; /* The data */
4595 const char *key; /* The key */
4596 struct s_x2node *next; /* Next entry with the same hash */
4597 struct s_x2node **from; /* Previous link */
4598} x2node;
4599
4600/* There is only one instance of the array, which is the following */
4601static struct s_x2 *x2a;
4602
4603/* Allocate a new associative array */
4604void Symbol_init(){
4605 if( x2a ) return;
4606 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
4607 if( x2a ){
4608 x2a->size = 128;
4609 x2a->count = 0;
4610 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
4611 if( x2a->tbl==0 ){
4612 free(x2a);
4613 x2a = 0;
4614 }else{
4615 int i;
4616 x2a->ht = (x2node**)&(x2a->tbl[128]);
4617 for(i=0; i<128; i++) x2a->ht[i] = 0;
4618 }
4619 }
4620}
4621/* Insert a new record into the array. Return TRUE if successful.
4622** Prior data with the same key is NOT overwritten */
4623int Symbol_insert(struct symbol *data, const char *key)
4624{
4625 x2node *np;
4626 unsigned h;
4627 unsigned ph;
4628
4629 if( x2a==0 ) return 0;
4630 ph = strhash(key);
4631 h = ph & (x2a->size-1);
4632 np = x2a->ht[h];
4633 while( np ){
4634 if( strcmp(np->key,key)==0 ){
4635 /* An existing entry with the same key is found. */
4636 /* Fail because overwrite is not allows. */
4637 return 0;
4638 }
4639 np = np->next;
4640 }
4641 if( x2a->count>=x2a->size ){
4642 /* Need to make the hash table bigger */
4643 int i,size;
4644 struct s_x2 array;
4645 array.size = size = x2a->size*2;
4646 array.count = x2a->count;
4647 array.tbl = (x2node*)calloc(size, sizeof(x2node) + sizeof(x2node*));
4648 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4649 array.ht = (x2node**)&(array.tbl[size]);
4650 for(i=0; i<size; i++) array.ht[i] = 0;
4651 for(i=0; i<x2a->count; i++){
4652 x2node *oldnp, *newnp;
4653 oldnp = &(x2a->tbl[i]);
4654 h = strhash(oldnp->key) & (size-1);
4655 newnp = &(array.tbl[i]);
4656 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4657 newnp->next = array.ht[h];
4658 newnp->key = oldnp->key;
4659 newnp->data = oldnp->data;
4660 newnp->from = &(array.ht[h]);
4661 array.ht[h] = newnp;
4662 }
4663 free(x2a->tbl);
4664 *x2a = array;
4665 }
4666 /* Insert the new data */
4667 h = ph & (x2a->size-1);
4668 np = &(x2a->tbl[x2a->count++]);
4669 np->key = key;
4670 np->data = data;
4671 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
4672 np->next = x2a->ht[h];
4673 x2a->ht[h] = np;
4674 np->from = &(x2a->ht[h]);
4675 return 1;
4676}
4677
4678/* Return a pointer to data assigned to the given key. Return NULL
4679** if no such key. */
4680struct symbol *Symbol_find(const char *key)
4681{
4682 unsigned h;
4683 x2node *np;
4684
4685 if( x2a==0 ) return 0;
4686 h = strhash(key) & (x2a->size-1);
4687 np = x2a->ht[h];
4688 while( np ){
4689 if( strcmp(np->key,key)==0 ) break;
4690 np = np->next;
4691 }
4692 return np ? np->data : 0;
4693}
4694
4695/* Return the n-th data. Return NULL if n is out of range. */
4696struct symbol *Symbol_Nth(int n)
4697{
4698 struct symbol *data;
4699 if( x2a && n>0 && n<=x2a->count ){
4700 data = x2a->tbl[n-1].data;
4701 }else{
4702 data = 0;
4703 }
4704 return data;
4705}
4706
4707/* Return the size of the array */
4708int Symbol_count()
4709{
4710 return x2a ? x2a->count : 0;
4711}
4712
4713/* Return an array of pointers to all data in the table.
4714** The array is obtained from malloc. Return NULL if memory allocation
4715** problems, or if the array is empty. */
4716struct symbol **Symbol_arrayof()
4717{
4718 struct symbol **array;
4719 int i,size;
4720 if( x2a==0 ) return 0;
4721 size = x2a->count;
4722 array = (struct symbol **)calloc(size, sizeof(struct symbol *));
4723 if( array ){
4724 for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
4725 }
4726 return array;
4727}
4728
4729/* Compare two configurations */
4730int Configcmp(const char *_a,const char *_b)
4731{
4732 const struct config *a = (struct config *) _a;
4733 const struct config *b = (struct config *) _b;
4734 int x;
4735 x = a->rp->index - b->rp->index;
4736 if( x==0 ) x = a->dot - b->dot;
4737 return x;
4738}
4739
4740/* Compare two states */
4741PRIVATE int statecmp(struct config *a, struct config *b)
4742{
4743 int rc;
4744 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
4745 rc = a->rp->index - b->rp->index;
4746 if( rc==0 ) rc = a->dot - b->dot;
4747 }
4748 if( rc==0 ){
4749 if( a ) rc = 1;
4750 if( b ) rc = -1;
4751 }
4752 return rc;
4753}
4754
4755/* Hash a state */
4756PRIVATE unsigned statehash(struct config *a)
4757{
4758 unsigned h=0;
4759 while( a ){
4760 h = h*571 + a->rp->index*37 + a->dot;
4761 a = a->bp;
4762 }
4763 return h;
4764}
4765
4766/* Allocate a new state structure */
4767struct state *State_new()
4768{
4769 struct state *newstate;
4770 newstate = (struct state *)calloc(1, sizeof(struct state) );
4771 MemoryCheck(newstate);
4772 return newstate;
4773}
4774
4775/* There is one instance of the following structure for each
4776** associative array of type "x3".
4777*/
4778struct s_x3 {
4779 int size; /* The number of available slots. */
4780 /* Must be a power of 2 greater than or */
4781 /* equal to 1 */
4782 int count; /* Number of currently slots filled */
4783 struct s_x3node *tbl; /* The data stored here */
4784 struct s_x3node **ht; /* Hash table for lookups */
4785};
4786
4787/* There is one instance of this structure for every data element
4788** in an associative array of type "x3".
4789*/
4790typedef struct s_x3node {
4791 struct state *data; /* The data */
4792 struct config *key; /* The key */
4793 struct s_x3node *next; /* Next entry with the same hash */
4794 struct s_x3node **from; /* Previous link */
4795} x3node;
4796
4797/* There is only one instance of the array, which is the following */
4798static struct s_x3 *x3a;
4799
4800/* Allocate a new associative array */
4801void State_init(){
4802 if( x3a ) return;
4803 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
4804 if( x3a ){
4805 x3a->size = 128;
4806 x3a->count = 0;
4807 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
4808 if( x3a->tbl==0 ){
4809 free(x3a);
4810 x3a = 0;
4811 }else{
4812 int i;
4813 x3a->ht = (x3node**)&(x3a->tbl[128]);
4814 for(i=0; i<128; i++) x3a->ht[i] = 0;
4815 }
4816 }
4817}
4818/* Insert a new record into the array. Return TRUE if successful.
4819** Prior data with the same key is NOT overwritten */
4820int State_insert(struct state *data, struct config *key)
4821{
4822 x3node *np;
4823 unsigned h;
4824 unsigned ph;
4825
4826 if( x3a==0 ) return 0;
4827 ph = statehash(key);
4828 h = ph & (x3a->size-1);
4829 np = x3a->ht[h];
4830 while( np ){
4831 if( statecmp(np->key,key)==0 ){
4832 /* An existing entry with the same key is found. */
4833 /* Fail because overwrite is not allows. */
4834 return 0;
4835 }
4836 np = np->next;
4837 }
4838 if( x3a->count>=x3a->size ){
4839 /* Need to make the hash table bigger */
4840 int i,size;
4841 struct s_x3 array;
4842 array.size = size = x3a->size*2;
4843 array.count = x3a->count;
4844 array.tbl = (x3node*)calloc(size, sizeof(x3node) + sizeof(x3node*));
4845 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4846 array.ht = (x3node**)&(array.tbl[size]);
4847 for(i=0; i<size; i++) array.ht[i] = 0;
4848 for(i=0; i<x3a->count; i++){
4849 x3node *oldnp, *newnp;
4850 oldnp = &(x3a->tbl[i]);
4851 h = statehash(oldnp->key) & (size-1);
4852 newnp = &(array.tbl[i]);
4853 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4854 newnp->next = array.ht[h];
4855 newnp->key = oldnp->key;
4856 newnp->data = oldnp->data;
4857 newnp->from = &(array.ht[h]);
4858 array.ht[h] = newnp;
4859 }
4860 free(x3a->tbl);
4861 *x3a = array;
4862 }
4863 /* Insert the new data */
4864 h = ph & (x3a->size-1);
4865 np = &(x3a->tbl[x3a->count++]);
4866 np->key = key;
4867 np->data = data;
4868 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
4869 np->next = x3a->ht[h];
4870 x3a->ht[h] = np;
4871 np->from = &(x3a->ht[h]);
4872 return 1;
4873}
4874
4875/* Return a pointer to data assigned to the given key. Return NULL
4876** if no such key. */
4877struct state *State_find(struct config *key)
4878{
4879 unsigned h;
4880 x3node *np;
4881
4882 if( x3a==0 ) return 0;
4883 h = statehash(key) & (x3a->size-1);
4884 np = x3a->ht[h];
4885 while( np ){
4886 if( statecmp(np->key,key)==0 ) break;
4887 np = np->next;
4888 }
4889 return np ? np->data : 0;
4890}
4891
4892/* Return an array of pointers to all data in the table.
4893** The array is obtained from malloc. Return NULL if memory allocation
4894** problems, or if the array is empty. */
4895struct state **State_arrayof()
4896{
4897 struct state **array;
4898 int i,size;
4899 if( x3a==0 ) return 0;
4900 size = x3a->count;
4901 array = (struct state **)calloc(size, sizeof(struct state *));
4902 if( array ){
4903 for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
4904 }
4905 return array;
4906}
4907
4908/* Hash a configuration */
4909PRIVATE unsigned confighash(struct config *a)
4910{
4911 unsigned h=0;
4912 h = h*571 + a->rp->index*37 + a->dot;
4913 return h;
4914}
4915
4916/* There is one instance of the following structure for each
4917** associative array of type "x4".
4918*/
4919struct s_x4 {
4920 int size; /* The number of available slots. */
4921 /* Must be a power of 2 greater than or */
4922 /* equal to 1 */
4923 int count; /* Number of currently slots filled */
4924 struct s_x4node *tbl; /* The data stored here */
4925 struct s_x4node **ht; /* Hash table for lookups */
4926};
4927
4928/* There is one instance of this structure for every data element
4929** in an associative array of type "x4".
4930*/
4931typedef struct s_x4node {
4932 struct config *data; /* The data */
4933 struct s_x4node *next; /* Next entry with the same hash */
4934 struct s_x4node **from; /* Previous link */
4935} x4node;
4936
4937/* There is only one instance of the array, which is the following */
4938static struct s_x4 *x4a;
4939
4940/* Allocate a new associative array */
4941void Configtable_init(){
4942 if( x4a ) return;
4943 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
4944 if( x4a ){
4945 x4a->size = 64;
4946 x4a->count = 0;
4947 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
4948 if( x4a->tbl==0 ){
4949 free(x4a);
4950 x4a = 0;
4951 }else{
4952 int i;
4953 x4a->ht = (x4node**)&(x4a->tbl[64]);
4954 for(i=0; i<64; i++) x4a->ht[i] = 0;
4955 }
4956 }
4957}
4958/* Insert a new record into the array. Return TRUE if successful.
4959** Prior data with the same key is NOT overwritten */
4960int Configtable_insert(struct config *data)
4961{
4962 x4node *np;
4963 unsigned h;
4964 unsigned ph;
4965
4966 if( x4a==0 ) return 0;
4967 ph = confighash(data);
4968 h = ph & (x4a->size-1);
4969 np = x4a->ht[h];
4970 while( np ){
4971 if( Configcmp((const char *) np->data,(const char *) data)==0 ){
4972 /* An existing entry with the same key is found. */
4973 /* Fail because overwrite is not allows. */
4974 return 0;
4975 }
4976 np = np->next;
4977 }
4978 if( x4a->count>=x4a->size ){
4979 /* Need to make the hash table bigger */
4980 int i,size;
4981 struct s_x4 array;
4982 array.size = size = x4a->size*2;
4983 array.count = x4a->count;
4984 array.tbl = (x4node*)calloc(size, sizeof(x4node) + sizeof(x4node*));
4985 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4986 array.ht = (x4node**)&(array.tbl[size]);
4987 for(i=0; i<size; i++) array.ht[i] = 0;
4988 for(i=0; i<x4a->count; i++){
4989 x4node *oldnp, *newnp;
4990 oldnp = &(x4a->tbl[i]);
4991 h = confighash(oldnp->data) & (size-1);
4992 newnp = &(array.tbl[i]);
4993 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4994 newnp->next = array.ht[h];
4995 newnp->data = oldnp->data;
4996 newnp->from = &(array.ht[h]);
4997 array.ht[h] = newnp;
4998 }
4999 free(x4a->tbl);
5000 *x4a = array;
5001 }
5002 /* Insert the new data */
5003 h = ph & (x4a->size-1);
5004 np = &(x4a->tbl[x4a->count++]);
5005 np->data = data;
5006 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
5007 np->next = x4a->ht[h];
5008 x4a->ht[h] = np;
5009 np->from = &(x4a->ht[h]);
5010 return 1;
5011}
5012
5013/* Return a pointer to data assigned to the given key. Return NULL
5014** if no such key. */
5015struct config *Configtable_find(struct config *key)
5016{
5017 int h;
5018 x4node *np;
5019
5020 if( x4a==0 ) return 0;
5021 h = confighash(key) & (x4a->size-1);
5022 np = x4a->ht[h];
5023 while( np ){
5024 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
5025 np = np->next;
5026 }
5027 return np ? np->data : 0;
5028}
5029
5030/* Remove all data from the table. Pass each data to the function "f"
5031** as it is removed. ("f" may be null to avoid this step.) */
5032void Configtable_clear(int(*f)(struct config *))
5033{
5034 int i;
5035 if( x4a==0 || x4a->count==0 ) return;
5036 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
5037 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
5038 x4a->count = 0;
5039 return;
5040}
diff --git a/libraries/lemon/lempar.c b/libraries/lemon/lempar.c
deleted file mode 100644
index fe56d2d..0000000
--- a/libraries/lemon/lempar.c
+++ /dev/null
@@ -1,850 +0,0 @@
1/* Driver template for the LEMON parser generator.
2** The author disclaims copyright to this source code.
3*/
4/* First off, code is included that follows the "include" declaration
5** in the input grammar file. */
6#include <stdio.h>
7%%
8/* Next is all token values, in a form suitable for use by makeheaders.
9** This section will be null unless lemon is run with the -m switch.
10*/
11/*
12** These constants (all generated automatically by the parser generator)
13** specify the various kinds of tokens (terminals) that the parser
14** understands.
15**
16** Each symbol here is a terminal symbol in the grammar.
17*/
18%%
19/* Make sure the INTERFACE macro is defined.
20*/
21#ifndef INTERFACE
22# define INTERFACE 1
23#endif
24/* The next thing included is series of defines which control
25** various aspects of the generated parser.
26** YYCODETYPE is the data type used for storing terminal
27** and nonterminal numbers. "unsigned char" is
28** used if there are fewer than 250 terminals
29** and nonterminals. "int" is used otherwise.
30** YYNOCODE is a number of type YYCODETYPE which corresponds
31** to no legal terminal or nonterminal number. This
32** number is used to fill in empty slots of the hash
33** table.
34** YYFALLBACK If defined, this indicates that one or more tokens
35** have fall-back values which should be used if the
36** original value of the token will not parse.
37** YYACTIONTYPE is the data type used for storing terminal
38** and nonterminal numbers. "unsigned char" is
39** used if there are fewer than 250 rules and
40** states combined. "int" is used otherwise.
41** ParseTOKENTYPE is the data type used for minor tokens given
42** directly to the parser from the tokenizer.
43** YYMINORTYPE is the data type used for all minor tokens.
44** This is typically a union of many types, one of
45** which is ParseTOKENTYPE. The entry in the union
46** for base tokens is called "yy0".
47** YYSTACKDEPTH is the maximum depth of the parser's stack. If
48** zero the stack is dynamically sized using realloc()
49** ParseARG_SDECL A static variable declaration for the %extra_argument
50** ParseARG_PDECL A parameter declaration for the %extra_argument
51** ParseARG_STORE Code to store %extra_argument into yypParser
52** ParseARG_FETCH Code to extract %extra_argument from yypParser
53** YYNSTATE the combined number of states.
54** YYNRULE the number of rules in the grammar
55** YYERRORSYMBOL is the code number of the error symbol. If not
56** defined, then do no error processing.
57*/
58%%
59#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
60#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
61#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
62
63/* The yyzerominor constant is used to initialize instances of
64** YYMINORTYPE objects to zero. */
65static const YYMINORTYPE yyzerominor = { 0 };
66
67/* Define the yytestcase() macro to be a no-op if is not already defined
68** otherwise.
69**
70** Applications can choose to define yytestcase() in the %include section
71** to a macro that can assist in verifying code coverage. For production
72** code the yytestcase() macro should be turned off. But it is useful
73** for testing.
74*/
75#ifndef yytestcase
76# define yytestcase(X)
77#endif
78
79
80/* Next are the tables used to determine what action to take based on the
81** current state and lookahead token. These tables are used to implement
82** functions that take a state number and lookahead value and return an
83** action integer.
84**
85** Suppose the action integer is N. Then the action is determined as
86** follows
87**
88** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
89** token onto the stack and goto state N.
90**
91** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
92**
93** N == YYNSTATE+YYNRULE A syntax error has occurred.
94**
95** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
96**
97** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
98** slots in the yy_action[] table.
99**
100** The action table is constructed as a single large table named yy_action[].
101** Given state S and lookahead X, the action is computed as
102**
103** yy_action[ yy_shift_ofst[S] + X ]
104**
105** If the index value yy_shift_ofst[S]+X is out of range or if the value
106** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
107** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
108** and that yy_default[S] should be used instead.
109**
110** The formula above is for computing the action when the lookahead is
111** a terminal symbol. If the lookahead is a non-terminal (as occurs after
112** a reduce action) then the yy_reduce_ofst[] array is used in place of
113** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
114** YY_SHIFT_USE_DFLT.
115**
116** The following are the tables generated in this section:
117**
118** yy_action[] A single table containing all actions.
119** yy_lookahead[] A table containing the lookahead for each entry in
120** yy_action. Used to detect hash collisions.
121** yy_shift_ofst[] For each state, the offset into yy_action for
122** shifting terminals.
123** yy_reduce_ofst[] For each state, the offset into yy_action for
124** shifting non-terminals after a reduce.
125** yy_default[] Default action for each state.
126*/
127%%
128
129/* The next table maps tokens into fallback tokens. If a construct
130** like the following:
131**
132** %fallback ID X Y Z.
133**
134** appears in the grammar, then ID becomes a fallback token for X, Y,
135** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
136** but it does not parse, the type of the token is changed to ID and
137** the parse is retried before an error is thrown.
138*/
139#ifdef YYFALLBACK
140static const YYCODETYPE yyFallback[] = {
141%%
142};
143#endif /* YYFALLBACK */
144
145/* The following structure represents a single element of the
146** parser's stack. Information stored includes:
147**
148** + The state number for the parser at this level of the stack.
149**
150** + The value of the token stored at this level of the stack.
151** (In other words, the "major" token.)
152**
153** + The semantic value stored at this level of the stack. This is
154** the information used by the action routines in the grammar.
155** It is sometimes called the "minor" token.
156*/
157struct yyStackEntry {
158 YYACTIONTYPE stateno; /* The state-number */
159 YYCODETYPE major; /* The major token value. This is the code
160 ** number for the token at this stack level */
161 YYMINORTYPE minor; /* The user-supplied minor token value. This
162 ** is the value of the token */
163};
164typedef struct yyStackEntry yyStackEntry;
165
166/* The state of the parser is completely contained in an instance of
167** the following structure */
168struct yyParser {
169 int yyidx; /* Index of top element in stack */
170#ifdef YYTRACKMAXSTACKDEPTH
171 int yyidxMax; /* Maximum value of yyidx */
172#endif
173 int yyerrcnt; /* Shifts left before out of the error */
174 ParseARG_SDECL /* A place to hold %extra_argument */
175#if YYSTACKDEPTH<=0
176 int yystksz; /* Current side of the stack */
177 yyStackEntry *yystack; /* The parser's stack */
178#else
179 yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
180#endif
181};
182typedef struct yyParser yyParser;
183
184#ifndef NDEBUG
185#include <stdio.h>
186static FILE *yyTraceFILE = 0;
187static char *yyTracePrompt = 0;
188#endif /* NDEBUG */
189
190#ifndef NDEBUG
191/*
192** Turn parser tracing on by giving a stream to which to write the trace
193** and a prompt to preface each trace message. Tracing is turned off
194** by making either argument NULL
195**
196** Inputs:
197** <ul>
198** <li> A FILE* to which trace output should be written.
199** If NULL, then tracing is turned off.
200** <li> A prefix string written at the beginning of every
201** line of trace output. If NULL, then tracing is
202** turned off.
203** </ul>
204**
205** Outputs:
206** None.
207*/
208void ParseTrace(FILE *TraceFILE, char *zTracePrompt){
209 yyTraceFILE = TraceFILE;
210 yyTracePrompt = zTracePrompt;
211 if( yyTraceFILE==0 ) yyTracePrompt = 0;
212 else if( yyTracePrompt==0 ) yyTraceFILE = 0;
213}
214#endif /* NDEBUG */
215
216#ifndef NDEBUG
217/* For tracing shifts, the names of all terminals and nonterminals
218** are required. The following table supplies these names */
219static const char *const yyTokenName[] = {
220%%
221};
222#endif /* NDEBUG */
223
224#ifndef NDEBUG
225/* For tracing reduce actions, the names of all rules are required.
226*/
227static const char *const yyRuleName[] = {
228%%
229};
230#endif /* NDEBUG */
231
232
233#if YYSTACKDEPTH<=0
234/*
235** Try to increase the size of the parser stack.
236*/
237static void yyGrowStack(yyParser *p){
238 int newSize;
239 yyStackEntry *pNew;
240
241 newSize = p->yystksz*2 + 100;
242 pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
243 if( pNew ){
244 p->yystack = pNew;
245 p->yystksz = newSize;
246#ifndef NDEBUG
247 if( yyTraceFILE ){
248 fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
249 yyTracePrompt, p->yystksz);
250 }
251#endif
252 }
253}
254#endif
255
256/*
257** This function allocates a new parser.
258** The only argument is a pointer to a function which works like
259** malloc.
260**
261** Inputs:
262** A pointer to the function used to allocate memory.
263**
264** Outputs:
265** A pointer to a parser. This pointer is used in subsequent calls
266** to Parse and ParseFree.
267*/
268void *ParseAlloc(void *(*mallocProc)(size_t)){
269 yyParser *pParser;
270 pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
271 if( pParser ){
272 pParser->yyidx = -1;
273#ifdef YYTRACKMAXSTACKDEPTH
274 pParser->yyidxMax = 0;
275#endif
276#if YYSTACKDEPTH<=0
277 pParser->yystack = NULL;
278 pParser->yystksz = 0;
279 yyGrowStack(pParser);
280#endif
281 }
282 return pParser;
283}
284
285/* The following function deletes the value associated with a
286** symbol. The symbol can be either a terminal or nonterminal.
287** "yymajor" is the symbol code, and "yypminor" is a pointer to
288** the value.
289*/
290static void yy_destructor(
291 yyParser *yypParser, /* The parser */
292 YYCODETYPE yymajor, /* Type code for object to destroy */
293 YYMINORTYPE *yypminor /* The object to be destroyed */
294){
295 ParseARG_FETCH;
296 switch( yymajor ){
297 /* Here is inserted the actions which take place when a
298 ** terminal or non-terminal is destroyed. This can happen
299 ** when the symbol is popped from the stack during a
300 ** reduce or during error processing or when a parser is
301 ** being destroyed before it is finished parsing.
302 **
303 ** Note: during a reduce, the only symbols destroyed are those
304 ** which appear on the RHS of the rule, but which are not used
305 ** inside the C code.
306 */
307%%
308 default: break; /* If no destructor action specified: do nothing */
309 }
310}
311
312/*
313** Pop the parser's stack once.
314**
315** If there is a destructor routine associated with the token which
316** is popped from the stack, then call it.
317**
318** Return the major token number for the symbol popped.
319*/
320static int yy_pop_parser_stack(yyParser *pParser){
321 YYCODETYPE yymajor;
322 yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
323
324 if( pParser->yyidx<0 ) return 0;
325#ifndef NDEBUG
326 if( yyTraceFILE && pParser->yyidx>=0 ){
327 fprintf(yyTraceFILE,"%sPopping %s\n",
328 yyTracePrompt,
329 yyTokenName[yytos->major]);
330 }
331#endif
332 yymajor = yytos->major;
333 yy_destructor(pParser, yymajor, &yytos->minor);
334 pParser->yyidx--;
335 return yymajor;
336}
337
338/*
339** Deallocate and destroy a parser. Destructors are all called for
340** all stack elements before shutting the parser down.
341**
342** Inputs:
343** <ul>
344** <li> A pointer to the parser. This should be a pointer
345** obtained from ParseAlloc.
346** <li> A pointer to a function used to reclaim memory obtained
347** from malloc.
348** </ul>
349*/
350void ParseFree(
351 void *p, /* The parser to be deleted */
352 void (*freeProc)(void*) /* Function used to reclaim memory */
353){
354 yyParser *pParser = (yyParser*)p;
355 if( pParser==0 ) return;
356 while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
357#if YYSTACKDEPTH<=0
358 free(pParser->yystack);
359#endif
360 (*freeProc)((void*)pParser);
361}
362
363/*
364** Return the peak depth of the stack for a parser.
365*/
366#ifdef YYTRACKMAXSTACKDEPTH
367int ParseStackPeak(void *p){
368 yyParser *pParser = (yyParser*)p;
369 return pParser->yyidxMax;
370}
371#endif
372
373/*
374** Find the appropriate action for a parser given the terminal
375** look-ahead token iLookAhead.
376**
377** If the look-ahead token is YYNOCODE, then check to see if the action is
378** independent of the look-ahead. If it is, return the action, otherwise
379** return YY_NO_ACTION.
380*/
381static int yy_find_shift_action(
382 yyParser *pParser, /* The parser */
383 YYCODETYPE iLookAhead /* The look-ahead token */
384){
385 int i;
386 int stateno = pParser->yystack[pParser->yyidx].stateno;
387
388 if( stateno>YY_SHIFT_COUNT
389 || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
390 return yy_default[stateno];
391 }
392 assert( iLookAhead!=YYNOCODE );
393 i += iLookAhead;
394 if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
395 if( iLookAhead>0 ){
396#ifdef YYFALLBACK
397 YYCODETYPE iFallback; /* Fallback token */
398 if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
399 && (iFallback = yyFallback[iLookAhead])!=0 ){
400#ifndef NDEBUG
401 if( yyTraceFILE ){
402 fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
403 yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
404 }
405#endif
406 return yy_find_shift_action(pParser, iFallback);
407 }
408#endif
409#ifdef YYWILDCARD
410 {
411 int j = i - iLookAhead + YYWILDCARD;
412 if(
413#if YY_SHIFT_MIN+YYWILDCARD<0
414 j>=0 &&
415#endif
416#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
417 j<YY_ACTTAB_COUNT &&
418#endif
419 yy_lookahead[j]==YYWILDCARD
420 ){
421#ifndef NDEBUG
422 if( yyTraceFILE ){
423 fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
424 yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
425 }
426#endif /* NDEBUG */
427 return yy_action[j];
428 }
429 }
430#endif /* YYWILDCARD */
431 }
432 return yy_default[stateno];
433 }else{
434 return yy_action[i];
435 }
436}
437
438/*
439** Find the appropriate action for a parser given the non-terminal
440** look-ahead token iLookAhead.
441**
442** If the look-ahead token is YYNOCODE, then check to see if the action is
443** independent of the look-ahead. If it is, return the action, otherwise
444** return YY_NO_ACTION.
445*/
446static int yy_find_reduce_action(
447 int stateno, /* Current state number */
448 YYCODETYPE iLookAhead /* The look-ahead token */
449){
450 int i;
451#ifdef YYERRORSYMBOL
452 if( stateno>YY_REDUCE_COUNT ){
453 return yy_default[stateno];
454 }
455#else
456 assert( stateno<=YY_REDUCE_COUNT );
457#endif
458 i = yy_reduce_ofst[stateno];
459 assert( i!=YY_REDUCE_USE_DFLT );
460 assert( iLookAhead!=YYNOCODE );
461 i += iLookAhead;
462#ifdef YYERRORSYMBOL
463 if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
464 return yy_default[stateno];
465 }
466#else
467 assert( i>=0 && i<YY_ACTTAB_COUNT );
468 assert( yy_lookahead[i]==iLookAhead );
469#endif
470 return yy_action[i];
471}
472
473/*
474** The following routine is called if the stack overflows.
475*/
476static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
477 ParseARG_FETCH;
478 yypParser->yyidx--;
479#ifndef NDEBUG
480 if( yyTraceFILE ){
481 fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
482 }
483#endif
484 while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
485 /* Here code is inserted which will execute if the parser
486 ** stack every overflows */
487%%
488 ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
489}
490
491/*
492** Perform a shift action.
493*/
494static void yy_shift(
495 yyParser *yypParser, /* The parser to be shifted */
496 int yyNewState, /* The new state to shift in */
497 int yyMajor, /* The major token to shift in */
498 YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */
499){
500 yyStackEntry *yytos;
501 yypParser->yyidx++;
502#ifdef YYTRACKMAXSTACKDEPTH
503 if( yypParser->yyidx>yypParser->yyidxMax ){
504 yypParser->yyidxMax = yypParser->yyidx;
505 }
506#endif
507#if YYSTACKDEPTH>0
508 if( yypParser->yyidx>=YYSTACKDEPTH ){
509 yyStackOverflow(yypParser, yypMinor);
510 return;
511 }
512#else
513 if( yypParser->yyidx>=yypParser->yystksz ){
514 yyGrowStack(yypParser);
515 if( yypParser->yyidx>=yypParser->yystksz ){
516 yyStackOverflow(yypParser, yypMinor);
517 return;
518 }
519 }
520#endif
521 yytos = &yypParser->yystack[yypParser->yyidx];
522 yytos->stateno = (YYACTIONTYPE)yyNewState;
523 yytos->major = (YYCODETYPE)yyMajor;
524 yytos->minor = *yypMinor;
525#ifndef NDEBUG
526 if( yyTraceFILE && yypParser->yyidx>0 ){
527 int i;
528 fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
529 fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
530 for(i=1; i<=yypParser->yyidx; i++)
531 fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
532 fprintf(yyTraceFILE,"\n");
533 }
534#endif
535}
536
537/* The following table contains information about every rule that
538** is used during the reduce.
539*/
540static const struct {
541 YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
542 unsigned char nrhs; /* Number of right-hand side symbols in the rule */
543} yyRuleInfo[] = {
544%%
545};
546
547static void yy_accept(yyParser*); /* Forward Declaration */
548
549/*
550** Perform a reduce action and the shift that must immediately
551** follow the reduce.
552*/
553static void yy_reduce(
554 yyParser *yypParser, /* The parser */
555 int yyruleno /* Number of the rule by which to reduce */
556){
557 int yygoto; /* The next state */
558 int yyact; /* The next action */
559 YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
560 yyStackEntry *yymsp; /* The top of the parser's stack */
561 int yysize; /* Amount to pop the stack */
562 ParseARG_FETCH;
563 yymsp = &yypParser->yystack[yypParser->yyidx];
564#ifndef NDEBUG
565 if( yyTraceFILE && yyruleno>=0
566 && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
567 fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
568 yyRuleName[yyruleno]);
569 }
570#endif /* NDEBUG */
571
572 /* Silence complaints from purify about yygotominor being uninitialized
573 ** in some cases when it is copied into the stack after the following
574 ** switch. yygotominor is uninitialized when a rule reduces that does
575 ** not set the value of its left-hand side nonterminal. Leaving the
576 ** value of the nonterminal uninitialized is utterly harmless as long
577 ** as the value is never used. So really the only thing this code
578 ** accomplishes is to quieten purify.
579 **
580 ** 2007-01-16: The wireshark project (www.wireshark.org) reports that
581 ** without this code, their parser segfaults. I'm not sure what there
582 ** parser is doing to make this happen. This is the second bug report
583 ** from wireshark this week. Clearly they are stressing Lemon in ways
584 ** that it has not been previously stressed... (SQLite ticket #2172)
585 */
586 /*memset(&yygotominor, 0, sizeof(yygotominor));*/
587 yygotominor = yyzerominor;
588
589
590 switch( yyruleno ){
591 /* Beginning here are the reduction cases. A typical example
592 ** follows:
593 ** case 0:
594 ** #line <lineno> <grammarfile>
595 ** { ... } // User supplied code
596 ** #line <lineno> <thisfile>
597 ** break;
598 */
599%%
600 };
601 yygoto = yyRuleInfo[yyruleno].lhs;
602 yysize = yyRuleInfo[yyruleno].nrhs;
603 yypParser->yyidx -= yysize;
604 yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
605 if( yyact < YYNSTATE ){
606#ifdef NDEBUG
607 /* If we are not debugging and the reduce action popped at least
608 ** one element off the stack, then we can push the new element back
609 ** onto the stack here, and skip the stack overflow test in yy_shift().
610 ** That gives a significant speed improvement. */
611 if( yysize ){
612 yypParser->yyidx++;
613 yymsp -= yysize-1;
614 yymsp->stateno = (YYACTIONTYPE)yyact;
615 yymsp->major = (YYCODETYPE)yygoto;
616 yymsp->minor = yygotominor;
617 }else
618#endif
619 {
620 yy_shift(yypParser,yyact,yygoto,&yygotominor);
621 }
622 }else{
623 assert( yyact == YYNSTATE + YYNRULE + 1 );
624 yy_accept(yypParser);
625 }
626}
627
628/*
629** The following code executes when the parse fails
630*/
631#ifndef YYNOERRORRECOVERY
632static void yy_parse_failed(
633 yyParser *yypParser /* The parser */
634){
635 ParseARG_FETCH;
636#ifndef NDEBUG
637 if( yyTraceFILE ){
638 fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
639 }
640#endif
641 while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
642 /* Here code is inserted which will be executed whenever the
643 ** parser fails */
644%%
645 ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
646}
647#endif /* YYNOERRORRECOVERY */
648
649/*
650** The following code executes when a syntax error first occurs.
651*/
652static void yy_syntax_error(
653 yyParser *yypParser, /* The parser */
654 int yymajor, /* The major type of the error token */
655 YYMINORTYPE yyminor /* The minor type of the error token */
656){
657 ParseARG_FETCH;
658#define TOKEN (yyminor.yy0)
659%%
660 ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
661}
662
663/*
664** The following is executed when the parser accepts
665*/
666static void yy_accept(
667 yyParser *yypParser /* The parser */
668){
669 ParseARG_FETCH;
670#ifndef NDEBUG
671 if( yyTraceFILE ){
672 fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
673 }
674#endif
675 while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
676 /* Here code is inserted which will be executed whenever the
677 ** parser accepts */
678%%
679 ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
680}
681
682/* The main parser program.
683** The first argument is a pointer to a structure obtained from
684** "ParseAlloc" which describes the current state of the parser.
685** The second argument is the major token number. The third is
686** the minor token. The fourth optional argument is whatever the
687** user wants (and specified in the grammar) and is available for
688** use by the action routines.
689**
690** Inputs:
691** <ul>
692** <li> A pointer to the parser (an opaque structure.)
693** <li> The major token number.
694** <li> The minor token number.
695** <li> An option argument of a grammar-specified type.
696** </ul>
697**
698** Outputs:
699** None.
700*/
701void Parse(
702 void *yyp, /* The parser */
703 int yymajor, /* The major token code number */
704 ParseTOKENTYPE yyminor /* The value for the token */
705 ParseARG_PDECL /* Optional %extra_argument parameter */
706){
707 YYMINORTYPE yyminorunion;
708 int yyact; /* The parser action. */
709 int yyendofinput; /* True if we are at the end of input */
710#ifdef YYERRORSYMBOL
711 int yyerrorhit = 0; /* True if yymajor has invoked an error */
712#endif
713 yyParser *yypParser; /* The parser */
714
715 /* (re)initialize the parser, if necessary */
716 yypParser = (yyParser*)yyp;
717 if( yypParser->yyidx<0 ){
718#if YYSTACKDEPTH<=0
719 if( yypParser->yystksz <=0 ){
720 /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
721 yyminorunion = yyzerominor;
722 yyStackOverflow(yypParser, &yyminorunion);
723 return;
724 }
725#endif
726 yypParser->yyidx = 0;
727 yypParser->yyerrcnt = -1;
728 yypParser->yystack[0].stateno = 0;
729 yypParser->yystack[0].major = 0;
730 }
731 yyminorunion.yy0 = yyminor;
732 yyendofinput = (yymajor==0);
733 ParseARG_STORE;
734
735#ifndef NDEBUG
736 if( yyTraceFILE ){
737 fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
738 }
739#endif
740
741 do{
742 yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
743 if( yyact<YYNSTATE ){
744 assert( !yyendofinput ); /* Impossible to shift the $ token */
745 yy_shift(yypParser,yyact,yymajor,&yyminorunion);
746 yypParser->yyerrcnt--;
747 yymajor = YYNOCODE;
748 }else if( yyact < YYNSTATE + YYNRULE ){
749 yy_reduce(yypParser,yyact-YYNSTATE);
750 }else{
751 assert( yyact == YY_ERROR_ACTION );
752#ifdef YYERRORSYMBOL
753 int yymx;
754#endif
755#ifndef NDEBUG
756 if( yyTraceFILE ){
757 fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
758 }
759#endif
760#ifdef YYERRORSYMBOL
761 /* A syntax error has occurred.
762 ** The response to an error depends upon whether or not the
763 ** grammar defines an error token "ERROR".
764 **
765 ** This is what we do if the grammar does define ERROR:
766 **
767 ** * Call the %syntax_error function.
768 **
769 ** * Begin popping the stack until we enter a state where
770 ** it is legal to shift the error symbol, then shift
771 ** the error symbol.
772 **
773 ** * Set the error count to three.
774 **
775 ** * Begin accepting and shifting new tokens. No new error
776 ** processing will occur until three tokens have been
777 ** shifted successfully.
778 **
779 */
780 if( yypParser->yyerrcnt<0 ){
781 yy_syntax_error(yypParser,yymajor,yyminorunion);
782 }
783 yymx = yypParser->yystack[yypParser->yyidx].major;
784 if( yymx==YYERRORSYMBOL || yyerrorhit ){
785#ifndef NDEBUG
786 if( yyTraceFILE ){
787 fprintf(yyTraceFILE,"%sDiscard input token %s\n",
788 yyTracePrompt,yyTokenName[yymajor]);
789 }
790#endif
791 yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion);
792 yymajor = YYNOCODE;
793 }else{
794 while(
795 yypParser->yyidx >= 0 &&
796 yymx != YYERRORSYMBOL &&
797 (yyact = yy_find_reduce_action(
798 yypParser->yystack[yypParser->yyidx].stateno,
799 YYERRORSYMBOL)) >= YYNSTATE
800 ){
801 yy_pop_parser_stack(yypParser);
802 }
803 if( yypParser->yyidx < 0 || yymajor==0 ){
804 yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
805 yy_parse_failed(yypParser);
806 yymajor = YYNOCODE;
807 }else if( yymx!=YYERRORSYMBOL ){
808 YYMINORTYPE u2;
809 u2.YYERRSYMDT = 0;
810 yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
811 }
812 }
813 yypParser->yyerrcnt = 3;
814 yyerrorhit = 1;
815#elif defined(YYNOERRORRECOVERY)
816 /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
817 ** do any kind of error recovery. Instead, simply invoke the syntax
818 ** error routine and continue going as if nothing had happened.
819 **
820 ** Applications can set this macro (for example inside %include) if
821 ** they intend to abandon the parse upon the first syntax error seen.
822 */
823 yy_syntax_error(yypParser,yymajor,yyminorunion);
824 yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
825 yymajor = YYNOCODE;
826
827#else /* YYERRORSYMBOL is not defined */
828 /* This is what we do if the grammar does not define ERROR:
829 **
830 ** * Report an error message, and throw away the input token.
831 **
832 ** * If the input token is $, then fail the parse.
833 **
834 ** As before, subsequent error messages are suppressed until
835 ** three input tokens have been successfully shifted.
836 */
837 if( yypParser->yyerrcnt<=0 ){
838 yy_syntax_error(yypParser,yymajor,yyminorunion);
839 }
840 yypParser->yyerrcnt = 3;
841 yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
842 if( yyendofinput ){
843 yy_parse_failed(yypParser);
844 }
845 yymajor = YYNOCODE;
846#endif
847 }
848 }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
849 return;
850}