aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/sqlite/win32/btree.c
blob: de8821a9002a19309e99b50002406e19aebdb36a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.428 2007/10/03 08:46:44 danielk1977 Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

/*
** The header string that appears at the beginning of every
** SQLite database.
*/
static const char zMagicHeader[] = SQLITE_FILE_HEADER;

/*
** Set this global variable to 1 to enable tracing using the TRACE
** macro.
*/
#if SQLITE_TEST
int sqlite3_btree_trace=0;  /* True to enable tracing */
#endif



#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** A flag to indicate whether or not shared cache is enabled.  Also,
** a list of BtShared objects that are eligible for participation
** in shared cache.  The variables have file scope during normal builds,
** but the test harness needs to access these variables so we make them
** global for test builds.
*/
#ifdef SQLITE_TEST
BtShared *sqlite3SharedCacheList = 0;
int sqlite3SharedCacheEnabled = 0;
#else
static BtShared *sqlite3SharedCacheList = 0;
static int sqlite3SharedCacheEnabled = 0;
#endif
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Enable or disable the shared pager and schema features.
**
** This routine has no effect on existing database connections.
** The shared cache setting effects only future calls to
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
*/
int sqlite3_enable_shared_cache(int enable){
  sqlite3SharedCacheEnabled = enable;
  return SQLITE_OK;
}
#endif


/*
** Forward declaration
*/
static int checkReadLocks(Btree*,Pgno,BtCursor*);


#ifdef SQLITE_OMIT_SHARED_CACHE
  /*
  ** The functions queryTableLock(), lockTable() and unlockAllTables()
  ** manipulate entries in the BtShared.pLock linked list used to store
  ** shared-cache table level locks. If the library is compiled with the
  ** shared-cache feature disabled, then there is only ever one user
  ** of each BtShared structure and so this locking is not necessary. 
  ** So define the lock related functions as no-ops.
  */
  #define queryTableLock(a,b,c) SQLITE_OK
  #define lockTable(a,b,c) SQLITE_OK
  #define unlockAllTables(a)
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Query to see if btree handle p may obtain a lock of type eLock 
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
** SQLITE_LOCKED if not.
*/
static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pIter;

  assert( sqlite3BtreeHoldsMutex(p) );
  
  /* This is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }

  /* This (along with lockTable()) is where the ReadUncommitted flag is
  ** dealt with. If the caller is querying for a read-lock and the flag is
  ** set, it is unconditionally granted - even if there are write-locks
  ** on the table. If a write-lock is requested, the ReadUncommitted flag
  ** is not considered.
  **
  ** In function lockTable(), if a read-lock is demanded and the 
  ** ReadUncommitted flag is set, no entry is added to the locks list 
  ** (BtShared.pLock).
  **
  ** To summarize: If the ReadUncommitted flag is set, then read cursors do
  ** not create or respect table locks. The locking procedure for a 
  ** write-cursor does not change.
  */
  if( 
    !p->pSqlite || 
    0==(p->pSqlite->flags&SQLITE_ReadUncommitted) || 
    eLock==WRITE_LOCK ||
    iTab==MASTER_ROOT
  ){
    for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
      if( pIter->pBtree!=p && pIter->iTable==iTab && 
          (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
        return SQLITE_LOCKED;
      }
    }
  }
  return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or 
** WRITE_LOCK.
**
** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
** SQLITE_NOMEM may also be returned.
*/
static int lockTable(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;

  assert( sqlite3BtreeHoldsMutex(p) );

  /* This is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }

  assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );

  /* If the read-uncommitted flag is set and a read-lock is requested,
  ** return early without adding an entry to the BtShared.pLock list. See
  ** comment in function queryTableLock() for more info on handling 
  ** the ReadUncommitted flag.
  */
  if( 
    (p->pSqlite) && 
    (p->pSqlite->flags&SQLITE_ReadUncommitted) && 
    (eLock==READ_LOCK) &&
    iTable!=MASTER_ROOT
  ){
    return SQLITE_OK;
  }

  /* First search the list for an existing lock on this table. */
  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    if( pIter->iTable==iTable && pIter->pBtree==p ){
      pLock = pIter;
      break;
    }
  }

  /* If the above search did not find a BtLock struct associating Btree p
  ** with table iTable, allocate one and link it into the list.
  */
  if( !pLock ){
    pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
    if( !pLock ){
      return SQLITE_NOMEM;
    }
    pLock->iTable = iTable;
    pLock->pBtree = p;
    pLock->pNext = pBt->pLock;
    pBt->pLock = pLock;
  }

  /* Set the BtLock.eLock variable to the maximum of the current lock
  ** and the requested lock. This means if a write-lock was already held
  ** and a read-lock requested, we don't incorrectly downgrade the lock.
  */
  assert( WRITE_LOCK>READ_LOCK );
  if( eLock>pLock->eLock ){
    pLock->eLock = eLock;
  }

  return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Release all the table locks (locks obtained via calls to the lockTable()
** procedure) held by Btree handle p.
*/
static void unlockAllTables(Btree *p){
  BtLock **ppIter = &p->pBt->pLock;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->sharable || 0==*ppIter );

  while( *ppIter ){
    BtLock *pLock = *ppIter;
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
      sqlite3_free(pLock);
    }else{
      ppIter = &pLock->pNext;
    }
  }
}
#endif /* SQLITE_OMIT_SHARED_CACHE */

static void releasePage(MemPage *pPage);  /* Forward reference */

/*
** Verify that the cursor holds a mutex on the BtShared
*/
#ifndef NDEBUG
static int cursorHoldsMutex(BtCursor *p){
  return sqlite3_mutex_held(p->pBt->mutex);
}
#endif


#ifndef SQLITE_OMIT_INCRBLOB
/*
** Invalidate the overflow page-list cache for cursor pCur, if any.
*/
static void invalidateOverflowCache(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  sqlite3_free(pCur->aOverflow);
  pCur->aOverflow = 0;
}

/*
** Invalidate the overflow page-list cache for all cursors opened
** on the shared btree structure pBt.
*/
static void invalidateAllOverflowCache(BtShared *pBt){
  BtCursor *p;
  assert( sqlite3_mutex_held(pBt->mutex) );
  for(p=pBt->pCursor; p; p=p->pNext){
    invalidateOverflowCache(p);
  }
}
#else
  #define invalidateOverflowCache(x)
  #define invalidateAllOverflowCache(x)
#endif

/*
** Save the current cursor position in the variables BtCursor.nKey 
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
  ** data.
  */
  if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
    void *pKey = sqlite3_malloc(pCur->nKey);
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  assert( !pCur->pPage->intKey || !pCur->pKey );

  if( rc==SQLITE_OK ){
    releasePage(pCur->pPage);
    pCur->pPage = 0;
    pCur->eState = CURSOR_REQUIRESEEK;
  }

  invalidateOverflowCache(pCur);
  return rc;
}

/*
** Save the positions of all cursors except pExcept open on the table 
** with root-page iRoot. Usually, this is called just before cursor
** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pExcept==0 || pExcept->pBt==pBt );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 
        p->eState==CURSOR_VALID ){
      int rc = saveCursorPosition(p);
      if( SQLITE_OK!=rc ){
        return rc;
      }
    }
  }
  return SQLITE_OK;
}

/*
** Clear the current cursor position.
*/
static void clearCursorPosition(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  sqlite3_free(pCur->pKey);
  pCur->pKey = 0;
  pCur->eState = CURSOR_INVALID;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreOrClearCursorPosition() call after each 
** saveCursorPosition().
**
** If the second argument argument - doSeek - is false, then instead of 
** returning the cursor to it's saved position, any saved position is deleted
** and the cursor state set to CURSOR_INVALID.
*/
int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
  int rc;
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skip;
  }
#ifndef SQLITE_OMIT_INCRBLOB
  if( pCur->isIncrblobHandle ){
    return SQLITE_ABORT;
  }
#endif
  pCur->eState = CURSOR_INVALID;
  rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
  if( rc==SQLITE_OK ){
    sqlite3_free(pCur->pKey);
    pCur->pKey = 0;
    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
  }
  return rc;
}

#define restoreOrClearCursorPosition(p) \
  (p->eState>=CURSOR_REQUIRESEEK ? \
         sqlite3BtreeRestoreOrClearCursorPosition(p) : \
         SQLITE_OK)

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
*/
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
  int nPagesPerMapPage, iPtrMap, ret;
  assert( sqlite3_mutex_held(pBt->mutex) );
  nPagesPerMapPage = (pBt->usableSize/5)+1;
  iPtrMap = (pgno-2)/nPagesPerMapPage;
  ret = (iPtrMap*nPagesPerMapPage) + 2; 
  if( ret==PENDING_BYTE_PAGE(pBt) ){
    ret++;
  }
  return ret;
}

/*
** Write an entry into the pointer map.
**
** This routine updates the pointer map entry for page number 'key'
** so that it maps to type 'eType' and parent page number 'pgno'.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
  DbPage *pDbPage;  /* The pointer map page */
  u8 *pPtrmap;      /* The pointer map data */
  Pgno iPtrmap;     /* The pointer map page number */
  int offset;       /* Offset in pointer map page */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  /* The master-journal page number must never be used as a pointer map page */
  assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );

  assert( pBt->autoVacuum );
  if( key==0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  offset = PTRMAP_PTROFFSET(pBt, key);
  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);

  if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
    TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
    rc = sqlite3PagerWrite(pDbPage);
    if( rc==SQLITE_OK ){
      pPtrmap[offset] = eType;
      put4byte(&pPtrmap[offset+1], parent);
    }
  }

  sqlite3PagerUnref(pDbPage);
  return rc;
}

/*
** Read an entry from the pointer map.
**
** This routine retrieves the pointer map entry for page 'key', writing
** the type and parent page number to *pEType and *pPgno respectively.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
  DbPage *pDbPage;   /* The pointer map page */
  int iPtrmap;       /* Pointer map page index */
  u8 *pPtrmap;       /* Pointer map page data */
  int offset;        /* Offset of entry in pointer map */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );

  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
  if( rc!=0 ){
    return rc;
  }
  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);

  offset = PTRMAP_PTROFFSET(pBt, key);
  assert( pEType!=0 );
  *pEType = pPtrmap[offset];
  if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);

  sqlite3PagerUnref(pDbPage);
  if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
  return SQLITE_OK;
}

#endif /* SQLITE_OMIT_AUTOVACUUM */

/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(pPage, iCell) \
  ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
#ifdef SQLITE_TEST
u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
  assert( iCell>=0 );
  assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) );
  return findCell(pPage, iCell);
}
#endif

/*
** This a more complex version of sqlite3BtreeFindCell() that works for
** pages that do contain overflow cells.  See insert
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
  int i;
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  for(i=pPage->nOverflow-1; i>=0; i--){
    int k;
    struct _OvflCell *pOvfl;
    pOvfl = &pPage->aOvfl[i];
    k = pOvfl->idx;
    if( k<=iCell ){
      if( k==iCell ){
        return pOvfl->pCell;
      }
      iCell--;
    }
  }
  return findCell(pPage, iCell);
}

/*
** Parse a cell content block and fill in the CellInfo structure.  There
** are two versions of this function.  sqlite3BtreeParseCell() takes a 
** cell index as the second argument and sqlite3BtreeParseCellPtr() 
** takes a pointer to the body of the cell as its second argument.
**
** Within this file, the parseCell() macro can be called instead of
** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
*/
void sqlite3BtreeParseCellPtr(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  int n;                  /* Number bytes in cell content header */
  u32 nPayload;           /* Number of bytes of cell payload */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  pInfo->pCell = pCell;
  assert( pPage->leaf==0 || pPage->leaf==1 );
  n = pPage->childPtrSize;
  assert( n==4-4*pPage->leaf );
  if( pPage->hasData ){
    n += getVarint32(&pCell[n], &nPayload);
  }else{
    nPayload = 0;
  }
  pInfo->nData = nPayload;
  if( pPage->intKey ){
    n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
  }else{
    u32 x;
    n += getVarint32(&pCell[n], &x);
    pInfo->nKey = x;
    nPayload += x;
  }
  pInfo->nPayload = nPayload;
  pInfo->nHeader = n;
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    int nSize;          /* Total size of cell content in bytes */
    pInfo->nLocal = nPayload;
    pInfo->iOverflow = 0;
    nSize = nPayload + n;
    if( nSize<4 ){
      nSize = 4;        /* Minimum cell size is 4 */
    }
    pInfo->nSize = nSize;
  }else{
    /* If the payload will not fit completely on the local page, we have
    ** to decide how much to store locally and how much to spill onto
    ** overflow pages.  The strategy is to minimize the amount of unused
    ** space on overflow pages while keeping the amount of local storage
    ** in between minLocal and maxLocal.
    **
    ** Warning:  changing the way overflow payload is distributed in any
    ** way will result in an incompatible file format.
    */
    int minLocal;  /* Minimum amount of payload held locally */
    int maxLocal;  /* Maximum amount of payload held locally */
    int surplus;   /* Overflow payload available for local storage */

    minLocal = pPage->minLocal;
    maxLocal = pPage->maxLocal;
    surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
    if( surplus <= maxLocal ){
      pInfo->nLocal = surplus;
    }else{
      pInfo->nLocal = minLocal;
    }
    pInfo->iOverflow = pInfo->nLocal + n;
    pInfo->nSize = pInfo->iOverflow + 4;
  }
}
#define parseCell(pPage, iCell, pInfo) \
  sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
void sqlite3BtreeParseCell(
  MemPage *pPage,         /* Page containing the cell */
  int iCell,              /* The cell index.  First cell is 0 */
  CellInfo *pInfo         /* Fill in this structure */
){
  parseCell(pPage, iCell, pInfo);
}

/*
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page.  The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
*/
#ifndef NDEBUG
static int cellSize(MemPage *pPage, int iCell){
  CellInfo info;
  sqlite3BtreeParseCell(pPage, iCell, &info);
  return info.nSize;
}
#endif
static int cellSizePtr(MemPage *pPage, u8 *pCell){
  CellInfo info;
  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  return info.nSize;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** If the cell pCell, part of page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
  if( pCell ){
    CellInfo info;
    sqlite3BtreeParseCellPtr(pPage, pCell, &info);
    assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
    if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
      Pgno ovfl = get4byte(&pCell[info.iOverflow]);
      return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
    }
  }
  return SQLITE_OK;
}
/*
** If the cell with index iCell on page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static int ptrmapPutOvfl(MemPage *pPage, int iCell){
  u8 *pCell;
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pCell = findOverflowCell(pPage, iCell);
  return ptrmapPutOvflPtr(pPage, pCell);
}
#endif


/*
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of a i-th cell */
  int addr;                  /* Offset of first byte after cell pointer array */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
  int cellOffset;            /* Offset to the cell pointer array */
  int brk;                   /* Offset to the cell content area */
  int nCell;                 /* Number of cells on the page */
  unsigned char *data;       /* The page data */
  unsigned char *temp;       /* Temp area for cell content */

  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt!=0 );
  assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
  assert( pPage->nOverflow==0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  temp = sqlite3_malloc( pPage->pBt->pageSize );
  if( temp==0 ) return SQLITE_NOMEM;
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  cellOffset = pPage->cellOffset;
  nCell = pPage->nCell;
  assert( nCell==get2byte(&data[hdr+3]) );
  usableSize = pPage->pBt->usableSize;
  brk = get2byte(&data[hdr+5]);
  memcpy(&temp[brk], &data[brk], usableSize - brk);
  brk = usableSize;
  for(i=0; i<nCell; i++){
    u8 *pAddr;     /* The i-th cell pointer */
    pAddr = &data[cellOffset + i*2];
    pc = get2byte(pAddr);
    assert( pc<pPage->pBt->usableSize );
    size = cellSizePtr(pPage, &temp[pc]);
    brk -= size;
    memcpy(&data[brk], &temp[pc], size);
    put2byte(pAddr, brk);
  }
  assert( brk>=cellOffset+2*nCell );
  put2byte(&data[hdr+5], brk);
  data[hdr+1] = 0;
  data[hdr+2] = 0;
  data[hdr+7] = 0;
  addr = cellOffset+2*nCell;
  memset(&data[addr], 0, brk-addr);
  sqlite3_free(temp);
  return SQLITE_OK;
}

/*
** Allocate nByte bytes of space on a page.
**
** Return the index into pPage->aData[] of the first byte of
** the new allocation. Or return 0 if there is not enough free
** space on the page to satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then this routine automatically
** calls defragementPage() to consolidate all free space before 
** allocating the new chunk.
*/
static int allocateSpace(MemPage *pPage, int nByte){
  int addr, pc, hdr;
  int size;
  int nFrag;
  int top;
  int nCell;
  int cellOffset;
  unsigned char *data;
  
  data = pPage->aData;
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  if( nByte<4 ) nByte = 4;
  if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
  pPage->nFree -= nByte;
  hdr = pPage->hdrOffset;

  nFrag = data[hdr+7];
  if( nFrag<60 ){
    /* Search the freelist looking for a slot big enough to satisfy the
    ** space request. */
    addr = hdr+1;
    while( (pc = get2byte(&data[addr]))>0 ){
      size = get2byte(&data[pc+2]);
      if( size>=nByte ){
        if( size<nByte+4 ){
          memcpy(&data[addr], &data[pc], 2);
          data[hdr+7] = nFrag + size - nByte;
          return pc;
        }else{
          put2byte(&data[pc+2], size-nByte);
          return pc + size - nByte;
        }
      }
      addr = pc;
    }
  }

  /* Allocate memory from the gap in between the cell pointer array
  ** and the cell content area.
  */
  top = get2byte(&data[hdr+5]);
  nCell = get2byte(&data[hdr+3]);
  cellOffset = pPage->cellOffset;
  if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
    if( defragmentPage(pPage) ) return 0;
    top = get2byte(&data[hdr+5]);
  }
  top -= nByte;
  assert( cellOffset + 2*nCell <= top );
  put2byte(&data[hdr+5], top);
  return top;
}

/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aDisk[start]
** and the size of the block is "size" bytes.
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void freeSpace(MemPage *pPage, int start, int size){
  int addr, pbegin, hdr;
  unsigned char *data = pPage->aData;

  assert( pPage->pBt!=0 );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
  assert( (start + size)<=pPage->pBt->usableSize );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  if( size<4 ) size = 4;

#ifdef SQLITE_SECURE_DELETE
  /* Overwrite deleted information with zeros when the SECURE_DELETE 
  ** option is enabled at compile-time */
  memset(&data[start], 0, size);
#endif

  /* Add the space back into the linked list of freeblocks */
  hdr = pPage->hdrOffset;
  addr = hdr + 1;
  while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
    assert( pbegin<=pPage->pBt->usableSize-4 );
    assert( pbegin>addr );
    addr = pbegin;
  }
  assert( pbegin<=pPage->pBt->usableSize-4 );
  assert( pbegin>addr || pbegin==0 );
  put2byte(&data[addr], start);
  put2byte(&data[start], pbegin);
  put2byte(&data[start+2], size);
  pPage->nFree += size;

  /* Coalesce adjacent free blocks */
  addr = pPage->hdrOffset + 1;
  while( (pbegin = get2byte(&data[addr]))>0 ){
    int pnext, psize;
    assert( pbegin>addr );
    assert( pbegin<=pPage->pBt->usableSize-4 );
    pnext = get2byte(&data[pbegin]);
    psize = get2byte(&data[pbegin+2]);
    if( pbegin + psize + 3 >= pnext && pnext>0 ){
      int frag = pnext - (pbegin+psize);
      assert( frag<=data[pPage->hdrOffset+7] );
      data[pPage->hdrOffset+7] -= frag;
      put2byte(&data[pbegin], get2byte(&data[pnext]));
      put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
    }else{
      addr = pbegin;
    }
  }

  /* If the cell content area begins with a freeblock, remove it. */
  if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
    int top;
    pbegin = get2byte(&data[hdr+1]);
    memcpy(&data[hdr+1], &data[pbegin], 2);
    top = get2byte(&data[hdr+5]);
    put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
  }
}

/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
*/
static void decodeFlags(MemPage *pPage, int flagByte){
  BtShared *pBt;     /* A copy of pPage->pBt */

  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
  pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
  pPage->leaf = (flagByte & PTF_LEAF)!=0;
  pPage->childPtrSize = 4*(pPage->leaf==0);
  pBt = pPage->pBt;
  if( flagByte & PTF_LEAFDATA ){
    pPage->leafData = 1;
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else{
    pPage->leafData = 0;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }
  pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
}

/*
** Initialize the auxiliary information for a disk block.
**
** The pParent parameter must be a pointer to the MemPage which
** is the parent of the page being initialized.  The root of a
** BTree has no parent and so for that page, pParent==NULL.
**
** Return SQLITE_OK on success.  If we see that the page does
** not contain a well-formed database page, then return 
** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed.  It only shows that
** we failed to detect any corruption.
*/
int sqlite3BtreeInitPage(
  MemPage *pPage,        /* The page to be initialized */
  MemPage *pParent       /* The parent.  Might be NULL */
){
  int pc;            /* Address of a freeblock within pPage->aData[] */
  int hdr;           /* Offset to beginning of page header */
  u8 *data;          /* Equal to pPage->aData */
  BtShared *pBt;        /* The main btree structure */
  int usableSize;    /* Amount of usable space on each page */
  int cellOffset;    /* Offset from start of page to first cell pointer */
  int nFree;         /* Number of unused bytes on the page */
  int top;           /* First byte of the cell content area */

  pBt = pPage->pBt;
  assert( pBt!=0 );
  assert( pParent==0 || pParent->pBt==pBt );
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
  assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
  assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
  if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
    /* The parent page should never change unless the file is corrupt */
    return SQLITE_CORRUPT_BKPT;
  }
  if( pPage->isInit ) return SQLITE_OK;
  if( pPage->pParent==0 && pParent!=0 ){
    pPage->pParent = pParent;
    sqlite3PagerRef(pParent->pDbPage);
  }
  hdr = pPage->hdrOffset;
  data = pPage->aData;
  decodeFlags(pPage, data[hdr]);
  pPage->nOverflow = 0;
  pPage->idxShift = 0;
  usableSize = pBt->usableSize;
  pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
  top = get2byte(&data[hdr+5]);
  pPage->nCell = get2byte(&data[hdr+3]);
  if( pPage->nCell>MX_CELL(pBt) ){
    /* To many cells for a single page.  The page must be corrupt */
    return SQLITE_CORRUPT_BKPT;
  }
  if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
    /* All pages must have at least one cell, except for root pages */
    return SQLITE_CORRUPT_BKPT;
  }

  /* Compute the total free space on the page */
  pc = get2byte(&data[hdr+1]);
  nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
  while( pc>0 ){
    int next, size;
    if( pc>usableSize-4 ){
      /* Free block is off the page */
      return SQLITE_CORRUPT_BKPT; 
    }
    next = get2byte(&data[pc]);
    size = get2byte(&data[pc+2]);
    if( next>0 && next<=pc+size+3 ){
      /* Free blocks must be in accending order */
      return SQLITE_CORRUPT_BKPT; 
    }
    nFree += size;
    pc = next;
  }
  pPage->nFree = nFree;
  if( nFree>=usableSize ){
    /* Free space cannot exceed total page size */
    return SQLITE_CORRUPT_BKPT; 
  }

  pPage->isInit = 1;
  return SQLITE_OK;
}

/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(MemPage *pPage, int flags){
  unsigned char *data = pPage->aData;
  BtShared *pBt = pPage->pBt;
  int hdr = pPage->hdrOffset;
  int first;

  assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  assert( sqlite3PagerGetData(pPage->pDbPage) == data );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pBt->mutex) );
  memset(&data[hdr], 0, pBt->usableSize - hdr);
  data[hdr] = flags;
  first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
  memset(&data[hdr+1], 0, 4);
  data[hdr+7] = 0;
  put2byte(&data[hdr+5], pBt->usableSize);
  pPage->nFree = pBt->usableSize - first;
  decodeFlags(pPage, flags);
  pPage->hdrOffset = hdr;
  pPage->cellOffset = first;
  pPage->nOverflow = 0;
  pPage->idxShift = 0;
  pPage->nCell = 0;
  pPage->isInit = 1;
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
**
** If the noContent flag is set, it means that we do not care about
** the content of the page at this time.  So do not go to the disk
** to fetch the content.  Just fill in the content with zeros for now.
** If in the future we call sqlite3PagerWrite() on this page, that
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
int sqlite3BtreeGetPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int noContent        /* Do not load page content if true */
){
  int rc;
  MemPage *pPage;
  DbPage *pDbPage;

  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
  if( rc ) return rc;
  pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
  pPage->aData = sqlite3PagerGetData(pDbPage);
  pPage->pDbPage = pDbPage;
  pPage->pBt = pBt;
  pPage->pgno = pgno;
  pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
  *ppPage = pPage;
  return SQLITE_OK;
}

/*
** Get a page from the pager and initialize it.  This routine
** is just a convenience wrapper around separate calls to
** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
*/
static int getAndInitPage(
  BtShared *pBt,          /* The database file */
  Pgno pgno,           /* Number of the page to get */
  MemPage **ppPage,    /* Write the page pointer here */
  MemPage *pParent     /* Parent of the page */
){
  int rc;
  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno==0 ){
    return SQLITE_CORRUPT_BKPT; 
  }
  rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
  if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
    rc = sqlite3BtreeInitPage(*ppPage, pParent);
  }
  return rc;
}

/*
** Release a MemPage.  This should be called once for each prior
** call to sqlite3BtreeGetPage.
*/
static void releasePage(MemPage *pPage){
  if( pPage ){
    assert( pPage->aData );
    assert( pPage->pBt );
    assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
    assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
    sqlite3PagerUnref(pPage->pDbPage);
  }
}

/*
** This routine is called when the reference count for a page
** reaches zero.  We need to unref the pParent pointer when that
** happens.
*/
static void pageDestructor(DbPage *pData, int pageSize){
  MemPage *pPage;
  assert( (pageSize & 7)==0 );
  pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
  if( pPage->pParent ){
    MemPage *pParent = pPage->pParent;
    assert( pParent->pBt==pPage->pBt );
    pPage->pParent = 0;
    releasePage(pParent);
  }
  pPage->isInit = 0;
}

/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
**
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
static void pageReinit(DbPage *pData, int pageSize){
  MemPage *pPage;
  assert( (pageSize & 7)==0 );
  pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  if( pPage->isInit ){
    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
    pPage->isInit = 0;
    sqlite3BtreeInitPage(pPage, pPage->pParent);
  }
}

/*
** Open a database file.
** 
** zFilename is the name of the database file.  If zFilename is NULL
** a new database with a random name is created.  This randomly named
** database file will be deleted when sqlite3BtreeClose() is called.
** If zFilename is ":memory:" then an in-memory database is created
** that is automatically destroyed when it is closed.
*/
int sqlite3BtreeOpen(
  const char *zFilename,  /* Name of the file containing the BTree database */
  sqlite3 *pSqlite,       /* Associated database handle */
  Btree **ppBtree,        /* Pointer to new Btree object written here */
  int flags,              /* Options */
  int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
){
  sqlite3_vfs *pVfs;      /* The VFS to use for this btree */
  BtShared *pBt = 0;      /* Shared part of btree structure */
  Btree *p;               /* Handle to return */
  int rc = SQLITE_OK;
  int nReserve;
  unsigned char zDbHeader[100];

  /* Set the variable isMemdb to true for an in-memory database, or 
  ** false for a file-based database. This symbol is only required if
  ** either of the shared-data or autovacuum features are compiled 
  ** into the library.
  */
#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
  #ifdef SQLITE_OMIT_MEMORYDB
    const int isMemdb = 0;
  #else
    const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
  #endif
#endif

  assert( pSqlite!=0 );
  assert( sqlite3_mutex_held(pSqlite->mutex) );

  pVfs = pSqlite->pVfs;
  p = sqlite3MallocZero(sizeof(Btree));
  if( !p ){
    return SQLITE_NOMEM;
  }
  p->inTrans = TRANS_NONE;
  p->pSqlite = pSqlite;

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( (flags & BTREE_PRIVATE)==0
   && isMemdb==0
   && (pSqlite->flags & SQLITE_Vtab)==0
   && zFilename && zFilename[0]
  ){
    if( sqlite3SharedCacheEnabled ){
      int nFullPathname = pVfs->mxPathname+1;
      char *zFullPathname = (char *)sqlite3_malloc(nFullPathname);
      sqlite3_mutex *mutexShared;
      p->sharable = 1;
      if( pSqlite ){
        pSqlite->flags |= SQLITE_SharedCache;
      }
      if( !zFullPathname ){
        sqlite3_free(p);
        return SQLITE_NOMEM;
      }
      sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
      mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
      sqlite3_mutex_enter(mutexShared);
      for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
        assert( pBt->nRef>0 );
        if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
                 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
          p->pBt = pBt;
          pBt->nRef++;
          break;
        }
      }
      sqlite3_mutex_leave(mutexShared);
      sqlite3_free(zFullPathname);
    }
#ifdef SQLITE_DEBUG
    else{
      /* In debug mode, we mark all persistent databases as sharable
      ** even when they are not.  This exercises the locking code and
      ** gives more opportunity for asserts(sqlite3_mutex_held())
      ** statements to find locking problems.
      */
      p->sharable = 1;
    }
#endif
  }
#endif
  if( pBt==0 ){
    /*
    ** The following asserts make sure that structures used by the btree are
    ** the right size.  This is to guard against size changes that result
    ** when compiling on a different architecture.
    */
    assert( sizeof(i64)==8 || sizeof(i64)==4 );
    assert( sizeof(u64)==8 || sizeof(u64)==4 );
    assert( sizeof(u32)==4 );
    assert( sizeof(u16)==2 );
    assert( sizeof(Pgno)==4 );
  
    pBt = sqlite3MallocZero( sizeof(*pBt) );
    if( pBt==0 ){
      rc = SQLITE_NOMEM;
      goto btree_open_out;
    }
    rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
                          EXTRA_SIZE, flags, vfsFlags);
    if( rc==SQLITE_OK ){
      rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
    }
    if( rc!=SQLITE_OK ){
      goto btree_open_out;
    }
    p->pBt = pBt;
  
    sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
    sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
    pBt->pCursor = 0;
    pBt->pPage1 = 0;
    pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
    pBt->pageSize = get2byte(&zDbHeader[16]);
    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
      pBt->pageSize = 0;
      sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
      pBt->maxEmbedFrac = 64;   /* 25% */
      pBt->minEmbedFrac = 32;   /* 12.5% */
      pBt->minLeafFrac = 32;    /* 12.5% */
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the magic name ":memory:" will create an in-memory database, then
      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
      ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
      ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
      ** regular file-name. In this case the auto-vacuum applies as per normal.
      */
      if( zFilename && !isMemdb ){
        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
      }
#endif
      nReserve = 0;
    }else{
      nReserve = zDbHeader[20];
      pBt->maxEmbedFrac = zDbHeader[21];
      pBt->minEmbedFrac = zDbHeader[22];
      pBt->minLeafFrac = zDbHeader[23];
      pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
    }
    pBt->usableSize = pBt->pageSize - nReserve;
    assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
    sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
   
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
    /* Add the new BtShared object to the linked list sharable BtShareds.
    */
    if( p->sharable ){
      sqlite3_mutex *mutexShared;
      pBt->nRef = 1;
      mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
      if( SQLITE_THREADSAFE ){
        pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
        if( pBt->mutex==0 ){
          rc = SQLITE_NOMEM;
          pSqlite->mallocFailed = 0;
          goto btree_open_out;
        }
      }
      sqlite3_mutex_enter(mutexShared);
      pBt->pNext = sqlite3SharedCacheList;
      sqlite3SharedCacheList = pBt;
      sqlite3_mutex_leave(mutexShared);
    }
#endif
  }

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /* If the new Btree uses a sharable pBtShared, then link the new
  ** Btree into the list of all sharable Btrees for the same connection.
  ** The list is kept in ascending order by pBt address.
  */
  if( p->sharable ){
    int i;
    Btree *pSib;
    for(i=0; i<pSqlite->nDb; i++){
      if( (pSib = pSqlite->aDb[i].pBt)!=0 && pSib->sharable ){
        while( pSib->pPrev ){ pSib = pSib->pPrev; }
        if( p->pBt<pSib->pBt ){
          p->pNext = pSib;
          p->pPrev = 0;
          pSib->pPrev = p;
        }else{
          while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
            pSib = pSib->pNext;
          }
          p->pNext = pSib->pNext;
          p->pPrev = pSib;
          if( p->pNext ){
            p->pNext->pPrev = p;
          }
          pSib->pNext = p;
        }
        break;
      }
    }
  }
#endif
  *ppBtree = p;

btree_open_out:
  if( rc!=SQLITE_OK ){
    if( pBt && pBt->pPager ){
      sqlite3PagerClose(pBt->pPager);
    }
    sqlite3_free(pBt);
    sqlite3_free(p);
    *ppBtree = 0;
  }
  return rc;
}

/*
** Decrement the BtShared.nRef counter.  When it reaches zero,
** remove the BtShared structure from the sharing list.  Return
** true if the BtShared.nRef counter reaches zero and return
** false if it is still positive.
*/
static int removeFromSharingList(BtShared *pBt){
#ifndef SQLITE_OMIT_SHARED_CACHE
  sqlite3_mutex *pMaster;
  BtShared *pList;
  int removed = 0;

  assert( sqlite3_mutex_notheld(pBt->mutex) );
  pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
  sqlite3_mutex_enter(pMaster);
  pBt->nRef--;
  if( pBt->nRef<=0 ){
    if( sqlite3SharedCacheList==pBt ){
      sqlite3SharedCacheList = pBt->pNext;
    }else{
      pList = sqlite3SharedCacheList;
      while( pList && pList->pNext!=pBt ){
        pList=pList->pNext;
      }
      if( pList ){
        pList->pNext = pBt->pNext;
      }
    }
    if( SQLITE_THREADSAFE ){
      sqlite3_mutex_free(pBt->mutex);
    }
    removed = 1;
  }
  sqlite3_mutex_leave(pMaster);
  return removed;
#else
  return 1;
#endif
}

/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
  BtShared *pBt = p->pBt;
  BtCursor *pCur;

  /* Close all cursors opened via this handle.  */
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  pCur = pBt->pCursor;
  while( pCur ){
    BtCursor *pTmp = pCur;
    pCur = pCur->pNext;
    if( pTmp->pBtree==p ){
      sqlite3BtreeCloseCursor(pTmp);
    }
  }

  /* Rollback any active transaction and free the handle structure.
  ** The call to sqlite3BtreeRollback() drops any table-locks held by
  ** this handle.
  */
  sqlite3BtreeRollback(p);
  sqlite3BtreeLeave(p);

  /* If there are still other outstanding references to the shared-btree
  ** structure, return now. The remainder of this procedure cleans 
  ** up the shared-btree.
  */
  assert( p->wantToLock==0 && p->locked==0 );
  if( !p->sharable || removeFromSharingList(pBt) ){
    /* The pBt is no longer on the sharing list, so we can access
    ** it without having to hold the mutex.
    **
    ** Clean out and delete the BtShared object.
    */
    assert( !pBt->pCursor );
    sqlite3PagerClose(pBt->pPager);
    if( pBt->xFreeSchema && pBt->pSchema ){
      pBt->xFreeSchema(pBt->pSchema);
    }
    sqlite3_free(pBt->pSchema);
    sqlite3_free(pBt);
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  assert( p->wantToLock==0 );
  assert( p->locked==0 );
  if( p->pPrev ) p->pPrev->pNext = p->pNext;
  if( p->pNext ) p->pNext->pPrev = p->pPrev;
#endif

  sqlite3_free(p);
  return SQLITE_OK;
}

/*
** Change the busy handler callback function.
*/
int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  pBt->pBusyHandler = pHandler;
  sqlite3PagerSetBusyhandler(pBt->pPager, pHandler);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Change the limit on the number of pages allowed in the cache.
**
** The maximum number of cache pages is set to the absolute
** value of mxPage.  If mxPage is negative, the pager will
** operate asynchronously - it will not stop to do fsync()s
** to insure data is written to the disk surface before
** continuing.  Transactions still work if synchronous is off,
** and the database cannot be corrupted if this program
** crashes.  But if the operating system crashes or there is
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif

/*
** Return TRUE if the given btree is set to safety level 1.  In other
** words, return TRUE if no sync() occurs on the disk files.
*/
int sqlite3BtreeSyncDisabled(Btree *p){
  BtShared *pBt = p->pBt;
  int rc;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );  
  sqlite3BtreeEnter(p);
  assert( pBt && pBt->pPager );
  rc = sqlite3PagerNosync(pBt->pPager);
  sqlite3BtreeLeave(p);
  return rc;
}

#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
/*
** Change the default pages size and the number of reserved bytes per page.
**
** The page size must be a power of 2 between 512 and 65536.  If the page
** size supplied does not meet this constraint then the page size is not
** changed.
**
** Page sizes are constrained to be a power of two so that the region
** of the database file used for locking (beginning at PENDING_BYTE,
** the first byte past the 1GB boundary, 0x40000000) needs to occur
** at the beginning of a page.
**
** If parameter nReserve is less than zero, then the number of reserved
** bytes per page is left unchanged.
*/
int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
  int rc = SQLITE_OK;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  if( pBt->pageSizeFixed ){
    sqlite3BtreeLeave(p);
    return SQLITE_READONLY;
  }
  if( nReserve<0 ){
    nReserve = pBt->pageSize - pBt->usableSize;
  }
  if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
        ((pageSize-1)&pageSize)==0 ){
    assert( (pageSize & 7)==0 );
    assert( !pBt->pPage1 && !pBt->pCursor );
    pBt->pageSize = pageSize;
    rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  }
  pBt->usableSize = pBt->pageSize - nReserve;
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Return the currently defined page size
*/
int sqlite3BtreeGetPageSize(Btree *p){
  return p->pBt->pageSize;
}
int sqlite3BtreeGetReserve(Btree *p){
  int n;
  sqlite3BtreeEnter(p);
  n = p->pBt->pageSize - p->pBt->usableSize;
  sqlite3BtreeLeave(p);
  return n;
}

/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
  int n;
  sqlite3BtreeEnter(p);
  n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return n;
}
#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */

/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is 
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
#ifdef SQLITE_OMIT_AUTOVACUUM
  return SQLITE_READONLY;
#else
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;
  int av = (autoVacuum?1:0);

  sqlite3BtreeEnter(p);
  if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
    rc = SQLITE_READONLY;
  }else{
    pBt->autoVacuum = av;
  }
  sqlite3BtreeLeave(p);
  return rc;
#endif
}

/*
** Return the value of the 'auto-vacuum' property. If auto-vacuum is 
** enabled 1 is returned. Otherwise 0.
*/
int sqlite3BtreeGetAutoVacuum(Btree *p){
#ifdef SQLITE_OMIT_AUTOVACUUM
  return BTREE_AUTOVACUUM_NONE;
#else
  int rc;
  sqlite3BtreeEnter(p);
  rc = (
    (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
    (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
    BTREE_AUTOVACUUM_INCR
  );
  sqlite3BtreeLeave(p);
  return rc;
#endif
}


/*
** Get a reference to pPage1 of the database file.  This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success.  If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
** is returned if we run out of memory. 
*/
static int lockBtree(BtShared *pBt){
  int rc, pageSize;
  MemPage *pPage1;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pBt->pPage1 ) return SQLITE_OK;
  rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
  if( rc!=SQLITE_OK ) return rc;
  

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  rc = SQLITE_NOTADB;
  if( sqlite3PagerPagecount(pBt->pPager)>0 ){
    u8 *page1 = pPage1->aData;
    if( memcmp(page1, zMagicHeader, 16)!=0 ){
      goto page1_init_failed;
    }
    if( page1[18]>1 ){
      pBt->readOnly = 1;
    }
    if( page1[19]>1 ){
      goto page1_init_failed;
    }
    pageSize = get2byte(&page1[16]);
    if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
        (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
    ){
      goto page1_init_failed;
    }
    assert( (pageSize & 7)==0 );
    pBt->pageSize = pageSize;
    pBt->usableSize = pageSize - page1[20];
    if( pBt->usableSize<500 ){
      goto page1_init_failed;
    }
    pBt->maxEmbedFrac = page1[21];
    pBt->minEmbedFrac = page1[22];
    pBt->minLeafFrac = page1[23];
#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
    pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
#endif
  }

  /* maxLocal is the maximum amount of payload to store locally for
  ** a cell.  Make sure it is small enough so that at least minFanout
  ** cells can will fit on one page.  We assume a 10-byte page header.
  ** Besides the payload, the cell must store:
  **     2-byte pointer to the cell
  **     4-byte child pointer
  **     9-byte nKey value
  **     4-byte nData value
  **     4-byte overflow page pointer
  ** So a cell consists of a 2-byte poiner, a header which is as much as
  ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
  ** page pointer.
  */
  pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
  pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
  pBt->maxLeaf = pBt->usableSize - 35;
  pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
  if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
    goto page1_init_failed;
  }
  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  pBt->pPage1 = pPage1;
  return SQLITE_OK;

page1_init_failed:
  releasePage(pPage1);
  pBt->pPage1 = 0;
  return rc;
}

/*
** This routine works like lockBtree() except that it also invokes the
** busy callback if there is lock contention.
*/
static int lockBtreeWithRetry(Btree *pRef){
  int rc = SQLITE_OK;

  assert( sqlite3BtreeHoldsMutex(pRef) );
  if( pRef->inTrans==TRANS_NONE ){
    u8 inTransaction = pRef->pBt->inTransaction;
    btreeIntegrity(pRef);
    rc = sqlite3BtreeBeginTrans(pRef, 0);
    pRef->pBt->inTransaction = inTransaction;
    pRef->inTrans = TRANS_NONE;
    if( rc==SQLITE_OK ){
      pRef->pBt->nTransaction--;
    }
    btreeIntegrity(pRef);
  }
  return rc;
}
       

/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which 
** has the effect of releasing the read lock.
**
** If there are any outstanding cursors, this routine is a no-op.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(BtShared *pBt){
  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
    if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
      if( pBt->pPage1->aData==0 ){
        MemPage *pPage = pBt->pPage1;
        pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
        pPage->pBt = pBt;
        pPage->pgno = 1;
      }
      releasePage(pBt->pPage1);
    }
    pBt->pPage1 = 0;
    pBt->inStmt = 0;
  }
}

/*
** Create a new database by initializing the first page of the
** file.
*/
static int newDatabase(BtShared *pBt){
  MemPage *pP1;
  unsigned char *data;
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
  pP1 = pBt->pPage1;
  assert( pP1!=0 );
  data = pP1->aData;
  rc = sqlite3PagerWrite(pP1->pDbPage);
  if( rc ) return rc;
  memcpy(data, zMagicHeader, sizeof(zMagicHeader));
  assert( sizeof(zMagicHeader)==16 );
  put2byte(&data[16], pBt->pageSize);
  data[18] = 1;
  data[19] = 1;
  data[20] = pBt->pageSize - pBt->usableSize;
  data[21] = pBt->maxEmbedFrac;
  data[22] = pBt->minEmbedFrac;
  data[23] = pBt->minLeafFrac;
  memset(&data[24], 0, 100-24);
  zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
  pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
  assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
  assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
  put4byte(&data[36 + 4*4], pBt->autoVacuum);
  put4byte(&data[36 + 7*4], pBt->incrVacuum);
#endif
  return SQLITE_OK;
}

/*
** Attempt to start a new transaction. A write-transaction
** is started if the second argument is nonzero, otherwise a read-
** transaction.  If the second argument is 2 or more and exclusive
** transaction is started, meaning that no other process is allowed
** to access the database.  A preexisting transaction may not be
** upgraded to exclusive by calling this routine a second time - the
** exclusivity flag only works for a new transaction.
**
** A write-transaction must be started before attempting any 
** changes to the database.  None of the following routines 
** will work unless a transaction is started first:
**
**      sqlite3BtreeCreateTable()
**      sqlite3BtreeCreateIndex()
**      sqlite3BtreeClearTable()
**      sqlite3BtreeDropTable()
**      sqlite3BtreeInsert()
**      sqlite3BtreeDelete()
**      sqlite3BtreeUpdateMeta()
**
** If an initial attempt to acquire the lock fails because of lock contention
** and the database was previously unlocked, then invoke the busy handler
** if there is one.  But if there was previously a read-lock, do not
** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is 
** returned when there is already a read-lock in order to avoid a deadlock.
**
** Suppose there are two processes A and B.  A has a read lock and B has
** a reserved lock.  B tries to promote to exclusive but is blocked because
** of A's read lock.  A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;

  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the btree is already in a write-transaction, or it
  ** is already in a read-transaction and a read-transaction
  ** is requested, this is a no-op.
  */
  if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
    goto trans_begun;
  }

  /* Write transactions are not possible on a read-only database */
  if( pBt->readOnly && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

  /* If another database handle has already opened a write transaction 
  ** on this shared-btree structure and a second write transaction is
  ** requested, return SQLITE_BUSY.
  */
  if( pBt->inTransaction==TRANS_WRITE && wrflag ){
    rc = SQLITE_BUSY;
    goto trans_begun;
  }

  do {
    if( pBt->pPage1==0 ){
      rc = lockBtree(pBt);
    }

    if( rc==SQLITE_OK && wrflag ){
      if( pBt->readOnly ){
        rc = SQLITE_READONLY;
      }else{
        rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
        if( rc==SQLITE_OK ){
          rc = newDatabase(pBt);
        }
      }
    }
  
    if( rc==SQLITE_OK ){
      if( wrflag ) pBt->inStmt = 0;
    }else{
      unlockBtreeIfUnused(pBt);
    }
  }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
          sqlite3InvokeBusyHandler(pBt->pBusyHandler) );

  if( rc==SQLITE_OK ){
    if( p->inTrans==TRANS_NONE ){
      pBt->nTransaction++;
    }
    p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
    if( p->inTrans>pBt->inTransaction ){
      pBt->inTransaction = p->inTrans;
    }
  }


trans_begun:
  btreeIntegrity(p);
  sqlite3BtreeLeave(p);
  return rc;
}

#ifndef SQLITE_OMIT_AUTOVACUUM

/*
** Set the pointer-map entries for all children of page pPage. Also, if
** pPage contains cells that point to overflow pages, set the pointer
** map entries for the overflow pages as well.
*/
static int setChildPtrmaps(MemPage *pPage){
  int i;                             /* Counter variable */
  int nCell;                         /* Number of cells in page pPage */
  int rc;                            /* Return code */
  BtShared *pBt = pPage->pBt;
  int isInitOrig = pPage->isInit;
  Pgno pgno = pPage->pgno;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
  if( rc!=SQLITE_OK ){
    goto set_child_ptrmaps_out;
  }
  nCell = pPage->nCell;

  for(i=0; i<nCell; i++){
    u8 *pCell = findCell(pPage, i);

    rc = ptrmapPutOvflPtr(pPage, pCell);
    if( rc!=SQLITE_OK ){
      goto set_child_ptrmaps_out;
    }

    if( !pPage->leaf ){
      Pgno childPgno = get4byte(pCell);
      rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
      if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
    }
  }

  if( !pPage->leaf ){
    Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
  }

set_child_ptrmaps_out:
  pPage->isInit = isInitOrig;
  return rc;
}

/*
** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
** page, is a pointer to page iFrom. Modify this pointer so that it points to
** iTo. Parameter eType describes the type of pointer to be modified, as 
** follows:
**
** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child 
**                   page of pPage.
**
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
**                   page pointed to by one of the cells on pPage.
**
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
**                   overflow page in the list.
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  if( eType==PTRMAP_OVERFLOW2 ){
    /* The pointer is always the first 4 bytes of the page in this case.  */
    if( get4byte(pPage->aData)!=iFrom ){
      return SQLITE_CORRUPT_BKPT;
    }
    put4byte(pPage->aData, iTo);
  }else{
    int isInitOrig = pPage->isInit;
    int i;
    int nCell;

    sqlite3BtreeInitPage(pPage, 0);
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        sqlite3BtreeParseCellPtr(pPage, pCell, &info);
        if( info.iOverflow ){
          if( iFrom==get4byte(&pCell[info.iOverflow]) ){
            put4byte(&pCell[info.iOverflow], iTo);
            break;
          }
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
    }
  
    if( i==nCell ){
      if( eType!=PTRMAP_BTREE || 
          get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
        return SQLITE_CORRUPT_BKPT;
      }
      put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
    }

    pPage->isInit = isInitOrig;
  }
  return SQLITE_OK;
}


/*
** Move the open database page pDbPage to location iFreePage in the 
** database. The pDbPage reference remains valid.
*/
static int relocatePage(
  BtShared *pBt,           /* Btree */
  MemPage *pDbPage,        /* Open page to move */
  u8 eType,                /* Pointer map 'type' entry for pDbPage */
  Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
  Pgno iFreePage           /* The location to move pDbPage to */
){
  MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
  Pgno iDbPage = pDbPage->pgno;
  Pager *pPager = pBt->pPager;
  int rc;

  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pDbPage->pBt==pBt );

  /* Move page iDbPage from it's current location to page number iFreePage */
  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
      iDbPage, iFreePage, iPtrPage, eType));
  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  pDbPage->pgno = iFreePage;

  /* If pDbPage was a btree-page, then it may have child pages and/or cells
  ** that point to overflow pages. The pointer map entries for all these
  ** pages need to be changed.
  **
  ** If pDbPage is an overflow page, then the first 4 bytes may store a
  ** pointer to a subsequent overflow page. If this is the case, then
  ** the pointer map needs to be updated for the subsequent overflow page.
  */
  if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
    rc = setChildPtrmaps(pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }else{
    Pgno nextOvfl = get4byte(pDbPage->aData);
    if( nextOvfl!=0 ){
      rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  ** that it points at iFreePage. Also fix the pointer map entry for
  ** iPtrPage.
  */
  if( eType!=PTRMAP_ROOTPAGE ){
    rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(pPtrPage);
      return rc;
    }
    rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
    releasePage(pPtrPage);
    if( rc==SQLITE_OK ){
      rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
    }
  }
  return rc;
}

/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);

/*
** Perform a single step of an incremental-vacuum. If successful,
** return SQLITE_OK. If there is no work to do (and therefore no
** point in calling this function again), return SQLITE_DONE.
**
** More specificly, this function attempts to re-organize the 
** database so that the last page of the file currently in use
** is no longer in use.
**
** If the nFin parameter is non-zero, the implementation assumes
** that the caller will keep calling incrVacuumStep() until
** it returns SQLITE_DONE or an error, and that nFin is the
** number of pages the database file will contain after this 
** process is complete.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin){
  Pgno iLastPg;             /* Last page in the database */
  Pgno nFreeList;           /* Number of pages still on the free-list */

  assert( sqlite3_mutex_held(pBt->mutex) );
  iLastPg = pBt->nTrunc;
  if( iLastPg==0 ){
    iLastPg = sqlite3PagerPagecount(pBt->pPager);
  }

  if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
    int rc;
    u8 eType;
    Pgno iPtrPage;

    nFreeList = get4byte(&pBt->pPage1->aData[36]);
    if( nFreeList==0 || nFin==iLastPg ){
      return SQLITE_DONE;
    }

    rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( eType==PTRMAP_ROOTPAGE ){
      return SQLITE_CORRUPT_BKPT;
    }

    if( eType==PTRMAP_FREEPAGE ){
      if( nFin==0 ){
        /* Remove the page from the files free-list. This is not required
        ** if nFin is non-zero. In that case, the free-list will be
        ** truncated to zero after this function returns, so it doesn't 
        ** matter if it still contains some garbage entries.
        */
        Pgno iFreePg;
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        assert( iFreePg==iLastPg );
        releasePage(pFreePg);
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;

      rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If nFin is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
      ** On the other hand, if nFin is greater than zero, then keep
      ** looping until a free-page located within the first nFin pages
      ** of the file is found.
      */
      do {
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
        if( rc!=SQLITE_OK ){
          releasePage(pLastPg);
          return rc;
        }
        releasePage(pFreePg);
      }while( nFin!=0 && iFreePg>nFin );
      assert( iFreePg<iLastPg );
      
      rc = sqlite3PagerWrite(pLastPg->pDbPage);
      if( rc!=SQLITE_OK ){
        return rc;
      } 
      rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
      releasePage(pLastPg);
      if( rc!=SQLITE_OK ){
        return rc;
      } 
    }
  }

  pBt->nTrunc = iLastPg - 1;
  while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
    pBt->nTrunc--;
  }
  return SQLITE_OK;
}

/*
** A write-transaction must be opened before calling this function.
** It performs a single unit of work towards an incremental vacuum.
**
** If the incremental vacuum is finished after this function has run,
** SQLITE_DONE is returned. If it is not finished, but no error occured,
** SQLITE_OK is returned. Otherwise an SQLite error code. 
*/
int sqlite3BtreeIncrVacuum(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  if( !pBt->autoVacuum ){
    rc = SQLITE_DONE;
  }else{
    invalidateAllOverflowCache(pBt);
    rc = incrVacuumStep(pBt, 0);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** This routine is called prior to sqlite3PagerCommit when a transaction
** is commited for an auto-vacuum database.
**
** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
** the database file should be truncated to during the commit process. 
** i.e. the database has been reorganized so that only the first *pnTrunc
** pages are in use.
*/
static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
  int rc = SQLITE_OK;
  Pager *pPager = pBt->pPager;
#ifndef NDEBUG
  int nRef = sqlite3PagerRefcount(pPager);
#endif

  assert( sqlite3_mutex_held(pBt->mutex) );
  invalidateAllOverflowCache(pBt);
  assert(pBt->autoVacuum);
  if( !pBt->incrVacuum ){
    Pgno nFin = 0;

    if( pBt->nTrunc==0 ){
      Pgno nFree;
      Pgno nPtrmap;
      const int pgsz = pBt->pageSize;
      Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);

      if( PTRMAP_ISPAGE(pBt, nOrig) ){
        return SQLITE_CORRUPT_BKPT;
      }
      if( nOrig==PENDING_BYTE_PAGE(pBt) ){
        nOrig--;
      }
      nFree = get4byte(&pBt->pPage1->aData[36]);
      nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
      nFin = nOrig - nFree - nPtrmap;
      if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
        nFin--;
      }
      while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
        nFin--;
      }
    }

    while( rc==SQLITE_OK ){
      rc = incrVacuumStep(pBt, nFin);
    }
    if( rc==SQLITE_DONE ){
      assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
      rc = SQLITE_OK;
      if( pBt->nTrunc ){
        rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
        put4byte(&pBt->pPage1->aData[32], 0);
        put4byte(&pBt->pPage1->aData[36], 0);
        pBt->nTrunc = nFin;
      }
    }
    if( rc!=SQLITE_OK ){
      sqlite3PagerRollback(pPager);
    }
  }

  if( rc==SQLITE_OK ){
    *pnTrunc = pBt->nTrunc;
    pBt->nTrunc = 0;
  }
  assert( nRef==sqlite3PagerRefcount(pPager) );
  return rc;
}

#endif

/*
** This routine does the first phase of a two-phase commit.  This routine
** causes a rollback journal to be created (if it does not already exist)
** and populated with enough information so that if a power loss occurs
** the database can be restored to its original state by playing back
** the journal.  Then the contents of the journal are flushed out to
** the disk.  After the journal is safely on oxide, the changes to the
** database are written into the database file and flushed to oxide.
** At the end of this call, the rollback journal still exists on the
** disk and we are still holding all locks, so the transaction has not
** committed.  See sqlite3BtreeCommit() for the second phase of the
** commit process.
**
** This call is a no-op if no write-transaction is currently active on pBt.
**
** Otherwise, sync the database file for the btree pBt. zMaster points to
** the name of a master journal file that should be written into the
** individual journal file, or is NULL, indicating no master journal file 
** (single database transaction).
**
** When this is called, the master journal should already have been
** created, populated with this journal pointer and synced to disk.
**
** Once this is routine has returned, the only thing required to commit
** the write-transaction for this database file is to delete the journal.
*/
int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
  int rc = SQLITE_OK;
  if( p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    Pgno nTrunc = 0;
    sqlite3BtreeEnter(p);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      rc = autoVacuumCommit(pBt, &nTrunc); 
      if( rc!=SQLITE_OK ){
        sqlite3BtreeLeave(p);
        return rc;
      }
    }
#endif
    rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc);
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** Commit the transaction currently in progress.
**
** This routine implements the second phase of a 2-phase commit.  The
** sqlite3BtreeSync() routine does the first phase and should be invoked
** prior to calling this routine.  The sqlite3BtreeSync() routine did
** all the work of writing information out to disk and flushing the
** contents so that they are written onto the disk platter.  All this
** routine has to do is delete or truncate the rollback journal
** (which causes the transaction to commit) and drop locks.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeCommitPhaseTwo(Btree *p){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the handle has a write-transaction open, commit the shared-btrees 
  ** transaction and set the shared state to TRANS_READ.
  */
  if( p->inTrans==TRANS_WRITE ){
    int rc;
    assert( pBt->inTransaction==TRANS_WRITE );
    assert( pBt->nTransaction>0 );
    rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
    if( rc!=SQLITE_OK ){
      sqlite3BtreeLeave(p);
      return rc;
    }
    pBt->inTransaction = TRANS_READ;
    pBt->inStmt = 0;
  }
  unlockAllTables(p);

  /* If the handle has any kind of transaction open, decrement the transaction
  ** count of the shared btree. If the transaction count reaches 0, set
  ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
  ** will unlock the pager.
  */
  if( p->inTrans!=TRANS_NONE ){
    pBt->nTransaction--;
    if( 0==pBt->nTransaction ){
      pBt->inTransaction = TRANS_NONE;
    }
  }

  /* Set the handles current transaction state to TRANS_NONE and unlock
  ** the pager if this call closed the only read or write transaction.
  */
  p->inTrans = TRANS_NONE;
  unlockBtreeIfUnused(pBt);

  btreeIntegrity(p);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Do both phases of a commit.
*/
int sqlite3BtreeCommit(Btree *p){
  int rc;
  sqlite3BtreeEnter(p);
  rc = sqlite3BtreeCommitPhaseOne(p, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeCommitPhaseTwo(p);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

#ifndef NDEBUG
/*
** Return the number of write-cursors open on this handle. This is for use
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
**
** For the purposes of this routine, a write-cursor is any cursor that
** is capable of writing to the databse.  That means the cursor was
** originally opened for writing and the cursor has not be disabled
** by having its state changed to CURSOR_FAULT.
*/
static int countWriteCursors(BtShared *pBt){
  BtCursor *pCur;
  int r = 0;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; 
  }
  return r;
}
#endif

/*
** This routine sets the state to CURSOR_FAULT and the error
** code to errCode for every cursor on BtShared that pBtree
** references.
**
** Every cursor is tripped, including cursors that belong
** to other database connections that happen to be sharing
** the cache with pBtree.
**
** This routine gets called when a rollback occurs.
** All cursors using the same cache must be tripped
** to prevent them from trying to use the btree after
** the rollback.  The rollback may have deleted tables
** or moved root pages, so it is not sufficient to
** save the state of the cursor.  The cursor must be
** invalidated.
*/
void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
  BtCursor *p;
  sqlite3BtreeEnter(pBtree);
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    clearCursorPosition(p);
    p->eState = CURSOR_FAULT;
    p->skip = errCode;
  }
  sqlite3BtreeLeave(pBtree);
}

/*
** Rollback the transaction in progress.  All cursors will be
** invalided by this operation.  Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeRollback(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;
  MemPage *pPage1;

  sqlite3BtreeEnter(p);
  rc = saveAllCursors(pBt, 0, 0);
#ifndef SQLITE_OMIT_SHARED_CACHE
  if( rc!=SQLITE_OK ){
    /* This is a horrible situation. An IO or malloc() error occured whilst
    ** trying to save cursor positions. If this is an automatic rollback (as
    ** the result of a constraint, malloc() failure or IO error) then 
    ** the cache may be internally inconsistent (not contain valid trees) so
    ** we cannot simply return the error to the caller. Instead, abort 
    ** all queries that may be using any of the cursors that failed to save.
    */
    sqlite3BtreeTripAllCursors(p, rc);
  }
#endif
  btreeIntegrity(p);
  unlockAllTables(p);

  if( p->inTrans==TRANS_WRITE ){
    int rc2;

#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->nTrunc = 0;
#endif

    assert( TRANS_WRITE==pBt->inTransaction );
    rc2 = sqlite3PagerRollback(pBt->pPager);
    if( rc2!=SQLITE_OK ){
      rc = rc2;
    }

    /* The rollback may have destroyed the pPage1->aData value.  So
    ** call sqlite3BtreeGetPage() on page 1 again to make
    ** sure pPage1->aData is set correctly. */
    if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
      releasePage(pPage1);
    }
    assert( countWriteCursors(pBt)==0 );
    pBt->inTransaction = TRANS_READ;
  }

  if( p->inTrans!=TRANS_NONE ){
    assert( pBt->nTransaction>0 );
    pBt->nTransaction--;
    if( 0==pBt->nTransaction ){
      pBt->inTransaction = TRANS_NONE;
    }
  }

  p->inTrans = TRANS_NONE;
  pBt->inStmt = 0;
  unlockBtreeIfUnused(pBt);

  btreeIntegrity(p);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Start a statement subtransaction.  The subtransaction can
** can be rolled back independently of the main transaction.
** You must start a transaction before starting a subtransaction.
** The subtransaction is ended automatically if the main transaction
** commits or rolls back.
**
** Only one subtransaction may be active at a time.  It is an error to try
** to start a new subtransaction if another subtransaction is already active.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block.  If a constraint
** error occurs within the statement, the effect of that one statement
** can be rolled back without having to rollback the entire transaction.
*/
int sqlite3BtreeBeginStmt(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }else{
    assert( pBt->inTransaction==TRANS_WRITE );
    rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
    pBt->inStmt = 1;
  }
  sqlite3BtreeLeave(p);
  return rc;
}


/*
** Commit the statment subtransaction currently in progress.  If no
** subtransaction is active, this is a no-op.
*/
int sqlite3BtreeCommitStmt(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  if( pBt->inStmt && !pBt->readOnly ){
    rc = sqlite3PagerStmtCommit(pBt->pPager);
  }else{
    rc = SQLITE_OK;
  }
  pBt->inStmt = 0;
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Rollback the active statement subtransaction.  If no subtransaction
** is active this routine is a no-op.
**
** All cursors will be invalidated by this operation.  Any attempt
** to use a cursor that was open at the beginning of this operation
** will result in an error.
*/
int sqlite3BtreeRollbackStmt(Btree *p){
  int rc = SQLITE_OK;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  if( pBt->inStmt && !pBt->readOnly ){
    rc = sqlite3PagerStmtRollback(pBt->pPager);
    assert( countWriteCursors(pBt)==0 );
    pBt->inStmt = 0;
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Default key comparison function to be used if no comparison function
** is specified on the sqlite3BtreeCursor() call.
*/
static int dfltCompare(
  void *NotUsed,             /* User data is not used */
  int n1, const void *p1,    /* First key to compare */
  int n2, const void *p2     /* Second key to compare */
){
  int c;
  c = memcmp(p1, p2, n1<n2 ? n1 : n2);
  if( c==0 ){
    c = n1 - n2;
  }
  return c;
}

/*
** Create a new cursor for the BTree whose root is on the page
** iTable.  The act of acquiring a cursor gets a read lock on 
** the database file.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
** writing if other conditions for writing are also met.  These
** are the conditions that must be met in order for writing to
** be allowed:
**
** 1:  The cursor must have been opened with wrFlag==1
**
** 2:  Other database connections that share the same pager cache
**     but which are not in the READ_UNCOMMITTED state may not have
**     cursors open with wrFlag==0 on the same table.  Otherwise
**     the changes made by this write cursor would be visible to
**     the read cursors in the other database connection.
**
** 3:  The database must be writable (not on read-only media)
**
** 4:  There must be an active transaction.
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree.  If it is not, then the cursor acquired
** will not work correctly.
**
** The comparison function must be logically the same for every cursor
** on a particular table.  Changing the comparison function will result
** in incorrect operations.  If the comparison function is NULL, a
** default comparison function is used.  The comparison function is
** always ignored for INTKEY tables.
*/
static int btreeCursor(
  Btree *p,                                   /* The btree */
  int iTable,                                 /* Root page of table to open */
  int wrFlag,                                 /* 1 to write. 0 read-only */
  int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
  void *pArg,                                 /* First arg to xCompare() */
  BtCursor **ppCur                            /* Write new cursor here */
){
  int rc;
  BtCursor *pCur;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeHoldsMutex(p) );
  *ppCur = 0;
  if( wrFlag ){
    if( pBt->readOnly ){
      return SQLITE_READONLY;
    }
    if( checkReadLocks(p, iTable, 0) ){
      return SQLITE_LOCKED;
    }
  }

  if( pBt->pPage1==0 ){
    rc = lockBtreeWithRetry(p);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( pBt->readOnly && wrFlag ){
      return SQLITE_READONLY;
    }
  }
  pCur = sqlite3MallocZero( sizeof(*pCur) );
  if( pCur==0 ){
    rc = SQLITE_NOMEM;
    goto create_cursor_exception;
  }
  pCur->pgnoRoot = (Pgno)iTable;
  if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
    rc = SQLITE_EMPTY;
    goto create_cursor_exception;
  }
  rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables, link the cursor into the BtShared list and set *ppCur (the
  ** output argument to this function).
  */
  pCur->xCompare = xCmp ? xCmp : dfltCompare;
  pCur->pArg = pArg;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  pCur->wrFlag = wrFlag;
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
  }
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  *ppCur = pCur;

  return SQLITE_OK;

create_cursor_exception:
  if( pCur ){
    releasePage(pCur->pPage);
    sqlite3_free(pCur);
  }
  unlockBtreeIfUnused(pBt);
  return rc;
}
int sqlite3BtreeCursor(
  Btree *p,                                   /* The btree */
  int iTable,                                 /* Root page of table to open */
  int wrFlag,                                 /* 1 to write. 0 read-only */
  int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
  void *pArg,                                 /* First arg to xCompare() */
  BtCursor **ppCur                            /* Write new cursor here */
){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeCursor(p, iTable, wrFlag, xCmp, pArg, ppCur);
  sqlite3BtreeLeave(p);
  return rc;
}


/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
  BtShared *pBt = pCur->pBt;
  Btree *pBtree = pCur->pBtree;

  sqlite3BtreeEnter(pBtree);
  clearCursorPosition(pCur);
  if( pCur->pPrev ){
    pCur->pPrev->pNext = pCur->pNext;
  }else{
    pBt->pCursor = pCur->pNext;
  }
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur->pPrev;
  }
  releasePage(pCur->pPage);
  unlockBtreeIfUnused(pBt);
  invalidateOverflowCache(pCur);
  sqlite3_free(pCur);
  sqlite3BtreeLeave(pBtree);
  return SQLITE_OK;
}

/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
  assert( cursorHoldsMutex(pCur) );
  memcpy(pTempCur, pCur, sizeof(*pCur));
  pTempCur->pNext = 0;
  pTempCur->pPrev = 0;
  if( pTempCur->pPage ){
    sqlite3PagerRef(pTempCur->pPage->pDbPage);
  }
}

/*
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
** function above.
*/
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  if( pCur->pPage ){
    sqlite3PagerUnref(pCur->pPage->pDbPage);
  }
}

/*
** Make sure the BtCursor* given in the argument has a valid
** BtCursor.info structure.  If it is not already valid, call
** sqlite3BtreeParseCell() to fill it in.
**
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
**
** 2007-06-25:  There is a bug in some versions of MSVC that cause the
** compiler to crash when getCellInfo() is implemented as a macro.
** But there is a measureable speed advantage to using the macro on gcc
** (when less compiler optimizations like -Os or -O0 are used and the
** compiler is not doing agressive inlining.)  So we use a real function
** for MSVC and a macro for everything else.  Ticket #2457.
*/
#ifndef NDEBUG
  static void assertCellInfo(BtCursor *pCur){
    CellInfo info;
    memset(&info, 0, sizeof(info));
    sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
    assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
  }
#else
  #define assertCellInfo(x)
#endif
#ifdef _MSC_VER
  /* Use a real function in MSVC to work around bugs in that compiler. */
  static void getCellInfo(BtCursor *pCur){
    if( pCur->info.nSize==0 ){
      sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
    }else{
      assertCellInfo(pCur);
    }
  }
#else /* if not _MSC_VER */
  /* Use a macro in all other compilers so that the function is inlined */
#define getCellInfo(pCur)                                               \
  if( pCur->info.nSize==0 ){                                            \
    sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);         \
  }else{                                                                \
    assertCellInfo(pCur);                                               \
  }
#endif /* _MSC_VER */

/*
** Set *pSize to the size of the buffer needed to hold the value of
** the key for the current entry.  If the cursor is not pointing
** to a valid entry, *pSize is set to 0. 
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
*/
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
    if( pCur->eState==CURSOR_INVALID ){
      *pSize = 0;
    }else{
      getCellInfo(pCur);
      *pSize = pCur->info.nKey;
    }
  }
  return rc;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.  Always return SQLITE_OK.
** Failure is not possible.  If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
    if( pCur->eState==CURSOR_INVALID ){
      /* Not pointing at a valid entry - set *pSize to 0. */
      *pSize = 0;
    }else{
      getCellInfo(pCur);
      *pSize = pCur->info.nData;
    }
  }
  return rc;
}

/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the 
** linked list of overflow pages. If possible, it uses the auto-vacuum
** pointer-map data instead of reading the content of page ovfl to do so. 
**
** If an error occurs an SQLite error code is returned. Otherwise:
**
** Unless pPgnoNext is NULL, the page number of the next overflow 
** page in the linked list is written to *pPgnoNext. If page ovfl
** is the last page in it's linked list, *pPgnoNext is set to zero. 
**
** If ppPage is not NULL, *ppPage is set to the MemPage* handle
** for page ovfl. The underlying pager page may have been requested
** with the noContent flag set, so the page data accessable via
** this handle may not be trusted.
*/
static int getOverflowPage(
  BtShared *pBt, 
  Pgno ovfl,                   /* Overflow page */
  MemPage **ppPage,            /* OUT: MemPage handle */
  Pgno *pPgnoNext              /* OUT: Next overflow page number */
){
  Pgno next = 0;
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  /* One of these must not be NULL. Otherwise, why call this function? */
  assert(ppPage || pPgnoNext);

  /* If pPgnoNext is NULL, then this function is being called to obtain
  ** a MemPage* reference only. No page-data is required in this case.
  */
  if( !pPgnoNext ){
    return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
  }

#ifndef SQLITE_OMIT_AUTOVACUUM
  /* Try to find the next page in the overflow list using the
  ** autovacuum pointer-map pages. Guess that the next page in 
  ** the overflow list is page number (ovfl+1). If that guess turns 
  ** out to be wrong, fall back to loading the data of page 
  ** number ovfl to determine the next page number.
  */
  if( pBt->autoVacuum ){
    Pgno pgno;
    Pgno iGuess = ovfl+1;
    u8 eType;

    while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
      iGuess++;
    }

    if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
      rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
        next = iGuess;
      }
    }
  }
#endif

  if( next==0 || ppPage ){
    MemPage *pPage = 0;

    rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
    assert(rc==SQLITE_OK || pPage==0);
    if( next==0 && rc==SQLITE_OK ){
      next = get4byte(pPage->aData);
    }

    if( ppPage ){
      *ppPage = pPage;
    }else{
      releasePage(pPage);
    }
  }
  *pPgnoNext = next;

  return rc;
}

/*
** Copy data from a buffer to a page, or from a page to a buffer.
**
** pPayload is a pointer to data stored on database page pDbPage.
** If argument eOp is false, then nByte bytes of data are copied
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
** of data are copied from the buffer pBuf to pPayload.
**
** SQLITE_OK is returned on success, otherwise an error code.
*/
static int copyPayload(
  void *pPayload,           /* Pointer to page data */
  void *pBuf,               /* Pointer to buffer */
  int nByte,                /* Number of bytes to copy */
  int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
  DbPage *pDbPage           /* Page containing pPayload */
){
  if( eOp ){
    /* Copy data from buffer to page (a write operation) */
    int rc = sqlite3PagerWrite(pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    memcpy(pPayload, pBuf, nByte);
  }else{
    /* Copy data from page to buffer (a read operation) */
    memcpy(pBuf, pPayload, nByte);
  }
  return SQLITE_OK;
}

/*
** This function is used to read or overwrite payload information
** for the entry that the pCur cursor is pointing to. If the eOp
** parameter is 0, this is a read operation (data copied into
** buffer pBuf). If it is non-zero, a write (data copied from
** buffer pBuf).
**
** A total of "amt" bytes are read or written beginning at "offset".
** Data is read to or from the buffer pBuf.
**
** This routine does not make a distinction between key and data.
** It just reads or writes bytes from the payload area.  Data might 
** appear on the main page or be scattered out on multiple overflow 
** pages.
**
** If the BtCursor.isIncrblobHandle flag is set, and the current
** cursor entry uses one or more overflow pages, this function
** allocates space for and lazily popluates the overflow page-list 
** cache array (BtCursor.aOverflow). Subsequent calls use this
** cache to make seeking to the supplied offset more efficient.
**
** Once an overflow page-list cache has been allocated, it may be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
**
**   * An incremental vacuum,
**   * A commit in auto_vacuum="full" mode,
**   * Creating a table (may require moving an overflow page).
*/
static int accessPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  int offset,          /* Begin reading this far into payload */
  int amt,             /* Read this many bytes */
  unsigned char *pBuf, /* Write the bytes into this buffer */ 
  int skipKey,         /* offset begins at data if this is true */
  int eOp              /* zero to read. non-zero to write. */
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  u32 nKey;
  int iIdx = 0;
  MemPage *pPage = pCur->pPage;     /* Btree page of current cursor entry */
  BtShared *pBt = pCur->pBt;        /* Btree this cursor belongs to */

  assert( pPage );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  assert( offset>=0 );
  assert( cursorHoldsMutex(pCur) );

  getCellInfo(pCur);
  aPayload = pCur->info.pCell + pCur->info.nHeader;
  nKey = (pPage->intKey ? 0 : pCur->info.nKey);

  if( skipKey ){
    offset += nKey;
  }
  if( offset+amt > nKey+pCur->info.nData ){
    /* Trying to read or write past the end of the data is an error */
    return SQLITE_ERROR;
  }

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
    if( a+offset>pCur->info.nLocal ){
      a = pCur->info.nLocal - offset;
    }
    rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
    offset = 0;
    pBuf += a;
    amt -= a;
  }else{
    offset -= pCur->info.nLocal;
  }

  if( rc==SQLITE_OK && amt>0 ){
    const int ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

#ifndef SQLITE_OMIT_INCRBLOB
    /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
    ** has not been allocated, allocate it now. The array is sized at
    ** one entry for each overflow page in the overflow chain. The
    ** page number of the first overflow page is stored in aOverflow[0],
    ** etc. A value of 0 in the aOverflow[] array means "not yet known"
    ** (the cache is lazily populated).
    */
    if( pCur->isIncrblobHandle && !pCur->aOverflow ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
      if( nOvfl && !pCur->aOverflow ){
        rc = SQLITE_NOMEM;
      }
    }

    /* If the overflow page-list cache has been allocated and the
    ** entry for the first required overflow page is valid, skip
    ** directly to it.
    */
    if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
      iIdx = (offset/ovflSize);
      nextPage = pCur->aOverflow[iIdx];
      offset = (offset%ovflSize);
    }
#endif

    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){

#ifndef SQLITE_OMIT_INCRBLOB
      /* If required, populate the overflow page-list cache. */
      if( pCur->aOverflow ){
        assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
        pCur->aOverflow[iIdx] = nextPage;
      }
#endif

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
        ** number for the next page in the overflow chain. The page
        ** data is not required. So first try to lookup the overflow
        ** page-list cache, if any, then fall back to the getOverflowPage()
        ** function.
        */
#ifndef SQLITE_OMIT_INCRBLOB
        if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
          nextPage = pCur->aOverflow[iIdx+1];
        } else 
#endif
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        offset -= ovflSize;
      }else{
        /* Need to read this page properly. It contains some of the
        ** range of data that is being read (eOp==0) or written (eOp!=0).
        */
        DbPage *pDbPage;
        int a = amt;
        rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
        if( rc==SQLITE_OK ){
          aPayload = sqlite3PagerGetData(pDbPage);
          nextPage = get4byte(aPayload);
          if( a + offset > ovflSize ){
            a = ovflSize - offset;
          }
          rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
          sqlite3PagerUnref(pDbPage);
          offset = 0;
          amt -= a;
          pBuf += a;
        }
      }
    }
  }

  if( rc==SQLITE_OK && amt>0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  return rc;
}

/*
** Read part of the key associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->pPage!=0 );
    if( pCur->pPage->intKey ){
      return SQLITE_CORRUPT_BKPT;
    }
    assert( pCur->pPage->intKey==0 );
    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
    rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
  }
  return rc;
}

/*
** Read part of the data associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->pPage!=0 );
    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
  }
  return rc;
}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if
** skipKey==1.  The number of bytes of available key/data is written
** into *pAmt.  If *pAmt==0, then the value returned will not be
** a valid pointer.
**
** This routine is an optimization.  It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages.  When that is so, this routine can be used to access the
** key and data without making a copy.  If the key and/or data spills
** onto overflow pages, then accessPayload() must be used to reassembly
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database.  The data might change or move the next time
** any btree routine is called.
*/
static const unsigned char *fetchPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  int *pAmt,           /* Write the number of available bytes here */
  int skipKey          /* read beginning at data if this is true */
){
  unsigned char *aPayload;
  MemPage *pPage;
  u32 nKey;
  int nLocal;

  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->eState==CURSOR_VALID );
  assert( cursorHoldsMutex(pCur) );
  pPage = pCur->pPage;
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  getCellInfo(pCur);
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;
  if( pPage->intKey ){
    nKey = 0;
  }else{
    nKey = pCur->info.nKey;
  }
  if( skipKey ){
    aPayload += nKey;
    nLocal = pCur->info.nLocal - nKey;
  }else{
    nLocal = pCur->info.nLocal;
    if( nLocal>nKey ){
      nLocal = nKey;
    }
  }
  *pAmt = nLocal;
  return aPayload;
}


/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page.  Write the number of available bytes into *pAmt.
**
** The pointer returned is ephemeral.  The key/data may move
** or be destroyed on the next call to any Btree routine,
** including calls from other threads against the same cache.
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
  assert( cursorHoldsMutex(pCur) );
  if( pCur->eState==CURSOR_VALID ){
    return (const void*)fetchPayload(pCur, pAmt, 0);
  }
  return 0;
}
const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
  assert( cursorHoldsMutex(pCur) );
  if( pCur->eState==CURSOR_VALID ){
    return (const void*)fetchPayload(pCur, pAmt, 1);
  }
  return 0;
}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  int rc;
  MemPage *pNewPage;
  MemPage *pOldPage;
  BtShared *pBt = pCur->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
  if( rc ) return rc;
  pNewPage->idxParent = pCur->idx;
  pOldPage = pCur->pPage;
  pOldPage->idxShift = 0;
  releasePage(pOldPage);
  pCur->pPage = pNewPage;
  pCur->idx = 0;
  pCur->info.nSize = 0;
  if( pNewPage->nCell<1 ){
    return SQLITE_CORRUPT_BKPT;
  }
  return SQLITE_OK;
}

/*
** Return true if the page is the virtual root of its table.
**
** The virtual root page is the root page for most tables.  But
** for the table rooted on page 1, sometime the real root page
** is empty except for the right-pointer.  In such cases the
** virtual root page is the page that the right-pointer of page
** 1 is pointing to.
*/
int sqlite3BtreeIsRootPage(MemPage *pPage){
  MemPage *pParent;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pParent = pPage->pParent;
  if( pParent==0 ) return 1;
  if( pParent->pgno>1 ) return 0;
  if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
  return 0;
}

/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
void sqlite3BtreeMoveToParent(BtCursor *pCur){
  MemPage *pParent;
  MemPage *pPage;
  int idxParent;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  pPage = pCur->pPage;
  assert( pPage!=0 );
  assert( !sqlite3BtreeIsRootPage(pPage) );
  pParent = pPage->pParent;
  assert( pParent!=0 );
  idxParent = pPage->idxParent;
  sqlite3PagerRef(pParent->pDbPage);
  releasePage(pPage);
  pCur->pPage = pParent;
  pCur->info.nSize = 0;
  assert( pParent->idxShift==0 );
  pCur->idx = idxParent;
}

/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  if( pCur->eState>=CURSOR_REQUIRESEEK ){
    if( pCur->eState==CURSOR_FAULT ){
      return pCur->skip;
    }
    clearCursorPosition(pCur);
  }
  pRoot = pCur->pPage;
  if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
    assert( pRoot->isInit );
  }else{
    if( 
      SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
    ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    releasePage(pCur->pPage);
    pCur->pPage = pRoot;
  }
  pCur->idx = 0;
  pCur->info.nSize = 0;
  if( pRoot->nCell==0 && !pRoot->leaf ){
    Pgno subpage;
    assert( pRoot->pgno==1 );
    subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
    assert( subpage>0 );
    pCur->eState = CURSOR_VALID;
    rc = moveToChild(pCur, subpage);
  }
  pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
  return rc;
}

/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
**
** The left-most leaf is the one with the smallest key - the first
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->idx));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
}

/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing.  Notice the difference
** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
**
** The right-most entry is the one with the largest key - the last
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->idx = pPage->nCell;
    rc = moveToChild(pCur, pgno);
  }
  if( rc==SQLITE_OK ){
    pCur->idx = pPage->nCell - 1;
    pCur->info.nSize = 0;
  }
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pPage->nCell==0 );
      *pRes = 1;
      rc = SQLITE_OK;
    }else{
      assert( pCur->pPage->nCell>0 );
      *pRes = 0;
      rc = moveToLeftmost(pCur);
    }
  }
  return rc;
}

/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->pPage->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->eState==CURSOR_VALID );
      *pRes = 0;
      rc = moveToRightmost(pCur);
    }
  }
  return rc;
}

/* Move the cursor so that it points to an entry near pKey/nKey.
** Return a success code.
**
** For INTKEY tables, only the nKey parameter is used.  pKey is
** ignored.  For other tables, nKey is the number of bytes of data
** in pKey.  The comparison function specified when the cursor was
** created is used to compare keys.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present.  The cursor might point to an entry that comes
** before or after the key.
**
** The result of comparing the key with the entry to which the
** cursor is written to *pRes if pRes!=NULL.  The meaning of
** this value is as follows:
**
**     *pRes<0      The cursor is left pointing at an entry that
**                  is smaller than pKey or if the table is empty
**                  and the cursor is therefore left point to nothing.
**
**     *pRes==0     The cursor is left pointing at an entry that
**                  exactly matches pKey.
**
**     *pRes>0      The cursor is left pointing at an entry that
**                  is larger than pKey.
**
*/
int sqlite3BtreeMoveto(
  BtCursor *pCur,        /* The cursor to be moved */
  const void *pKey,      /* The key content for indices.  Not used by tables */
  i64 nKey,              /* Size of pKey.  Or the key for tables */
  int biasRight,         /* If true, bias the search to the high end */
  int *pRes              /* Search result flag */
){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pPage );
  assert( pCur->pPage->isInit );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->pPage->nCell==0 );
    return SQLITE_OK;
  }
  for(;;){
    int lwr, upr;
    Pgno chldPg;
    MemPage *pPage = pCur->pPage;
    int c = -1;  /* pRes return if table is empty must be -1 */
    lwr = 0;
    upr = pPage->nCell-1;
    if( !pPage->intKey && pKey==0 ){
      return SQLITE_CORRUPT_BKPT;
    }
    if( biasRight ){
      pCur->idx = upr;
    }else{
      pCur->idx = (upr+lwr)/2;
    }
    if( lwr<=upr ) for(;;){
      void *pCellKey;
      i64 nCellKey;
      pCur->info.nSize = 0;
      if( pPage->intKey ){
        u8 *pCell;
        pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
        if( pPage->hasData ){
          u32 dummy;
          pCell += getVarint32(pCell, &dummy);
        }
        getVarint(pCell, (u64 *)&nCellKey);
        if( nCellKey<nKey ){
          c = -1;
        }else if( nCellKey>nKey ){
          c = +1;
        }else{
          c = 0;
        }
      }else{
        int available;
        pCellKey = (void *)fetchPayload(pCur, &available, 0);
        nCellKey = pCur->info.nKey;
        if( available>=nCellKey ){
          c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
        }else{
          pCellKey = sqlite3_malloc( nCellKey );
          if( pCellKey==0 ) return SQLITE_NOMEM;
          rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
          c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
          sqlite3_free(pCellKey);
          if( rc ){
            return rc;
          }
        }
      }
      if( c==0 ){
        if( pPage->leafData && !pPage->leaf ){
          lwr = pCur->idx;
          upr = lwr - 1;
          break;
        }else{
          if( pRes ) *pRes = 0;
          return SQLITE_OK;
        }
      }
      if( c<0 ){
        lwr = pCur->idx+1;
      }else{
        upr = pCur->idx-1;
      }
      if( lwr>upr ){
        break;
      }
      pCur->idx = (lwr+upr)/2;
    }
    assert( lwr==upr+1 );
    assert( pPage->isInit );
    if( pPage->leaf ){
      chldPg = 0;
    }else if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    }else{
      chldPg = get4byte(findCell(pPage, lwr));
    }
    if( chldPg==0 ){
      assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
      if( pRes ) *pRes = c;
      return SQLITE_OK;
    }
    pCur->idx = lwr;
    pCur->info.nSize = 0;
    rc = moveToChild(pCur, chldPg);
    if( rc ){
      return rc;
    }
  }
  /* NOT REACHED */
}


/*
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite3BtreeNext() moves
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry.  TRUE is also returned if the table is empty.
*/
int sqlite3BtreeEof(BtCursor *pCur){
  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  ** have been deleted? This API will need to change to return an error code
  ** as well as the boolean result value.
  */
  return (CURSOR_VALID!=pCur->eState);
}

/*
** Return the database connection handle for a cursor.
*/
sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
  assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
  return pCur->pBtree->pSqlite;
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
static int btreeNext(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pRes!=0 );
  pPage = pCur->pPage;
  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
  }
  if( pCur->skip>0 ){
    pCur->skip = 0;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->skip = 0;

  assert( pPage->isInit );
  assert( pCur->idx<pPage->nCell );

  pCur->idx++;
  pCur->info.nSize = 0;
  if( pCur->idx>=pPage->nCell ){
    if( !pPage->leaf ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
      if( rc ) return rc;
      rc = moveToLeftmost(pCur);
      *pRes = 0;
      return rc;
    }
    do{
      if( sqlite3BtreeIsRootPage(pPage) ){
        *pRes = 1;
        pCur->eState = CURSOR_INVALID;
        return SQLITE_OK;
      }
      sqlite3BtreeMoveToParent(pCur);
      pPage = pCur->pPage;
    }while( pCur->idx>=pPage->nCell );
    *pRes = 0;
    if( pPage->leafData ){
      rc = sqlite3BtreeNext(pCur, pRes);
    }else{
      rc = SQLITE_OK;
    }
    return rc;
  }
  *pRes = 0;
  if( pPage->leaf ){
    return SQLITE_OK;
  }
  rc = moveToLeftmost(pCur);
  return rc;
}
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  int rc;
  assert( cursorHoldsMutex(pCur) );
  rc = btreeNext(pCur, pRes);
  return rc;
}


/*
** Step the cursor to the back to the previous entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
static int btreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  Pgno pgno;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
  }
  if( pCur->skip<0 ){
    pCur->skip = 0;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->skip = 0;

  pPage = pCur->pPage;
  assert( pPage->isInit );
  assert( pCur->idx>=0 );
  if( !pPage->leaf ){
    pgno = get4byte( findCell(pPage, pCur->idx) );
    rc = moveToChild(pCur, pgno);
    if( rc ){
      return rc;
    }
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->idx==0 ){
      if( sqlite3BtreeIsRootPage(pPage) ){
        pCur->eState = CURSOR_INVALID;
        *pRes = 1;
        return SQLITE_OK;
      }
      sqlite3BtreeMoveToParent(pCur);
      pPage = pCur->pPage;
    }
    pCur->idx--;
    pCur->info.nSize = 0;
    if( pPage->leafData && !pPage->leaf ){
      rc = sqlite3BtreePrevious(pCur, pRes);
    }else{
      rc = SQLITE_OK;
    }
  }
  *pRes = 0;
  return rc;
}
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  assert( cursorHoldsMutex(pCur) );
  rc = btreePrevious(pCur, pRes);
  return rc;
}

/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
** has already been called on the new page.)  The new page has also
** been referenced and the calling routine is responsible for calling
** sqlite3PagerUnref() on the new page when it is done.
**
** SQLITE_OK is returned on success.  Any other return value indicates
** an error.  *ppPage and *pPgno are undefined in the event of an error.
** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
**
** If the "nearby" parameter is not 0, then a (feeble) effort is made to 
** locate a page close to the page number "nearby".  This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the "exact" parameter is not 0, and the page-number nearby exists 
** anywhere on the free-list, then it is guarenteed to be returned. This
** is only used by auto-vacuum databases when allocating a new table.
*/
static int allocateBtreePage(
  BtShared *pBt, 
  MemPage **ppPage, 
  Pgno *pPgno, 
  Pgno nearby,
  u8 exact
){
  MemPage *pPage1;
  int rc;
  int n;     /* Number of pages on the freelist */
  int k;     /* Number of leaves on the trunk of the freelist */
  MemPage *pTrunk = 0;
  MemPage *pPrevTrunk = 0;

  assert( sqlite3_mutex_held(pBt->mutex) );
  pPage1 = pBt->pPage1;
  n = get4byte(&pPage1->aData[36]);
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
    Pgno iTrunk;
    u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
    
    /* If the 'exact' parameter was true and a query of the pointer-map
    ** shows that the page 'nearby' is somewhere on the free-list, then
    ** the entire-list will be searched for that page.
    */
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
      u8 eType;
      assert( nearby>0 );
      assert( pBt->autoVacuum );
      rc = ptrmapGet(pBt, nearby, &eType, 0);
      if( rc ) return rc;
      if( eType==PTRMAP_FREEPAGE ){
        searchList = 1;
      }
      *pPgno = nearby;
    }
#endif

    /* Decrement the free-list count by 1. Set iTrunk to the index of the
    ** first free-list trunk page. iPrevTrunk is initially 1.
    */
    rc = sqlite3PagerWrite(pPage1->pDbPage);
    if( rc ) return rc;
    put4byte(&pPage1->aData[36], n-1);

    /* The code within this loop is run only once if the 'searchList' variable
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located.
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){
        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }

      k = get4byte(&pTrunk->aData[4]);
      if( k==0 && !searchList ){
        /* The trunk has no leaves and the list is not being searched. 
        ** So extract the trunk page itself and use it as the newly 
        ** allocated page */
        assert( pPrevTrunk==0 );
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        *pPgno = iTrunk;
        memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
        *ppPage = pTrunk;
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
      }else if( k>pBt->usableSize/4 - 8 ){
        /* Value of k is out of range.  Database corruption */
        rc = SQLITE_CORRUPT_BKPT;
        goto end_allocate_page;
#ifndef SQLITE_OMIT_AUTOVACUUM
      }else if( searchList && nearby==iTrunk ){
        /* The list is being searched and this trunk page is the page
        ** to allocate, regardless of whether it has leaves.
        */
        assert( *pPgno==iTrunk );
        *ppPage = pTrunk;
        searchList = 0;
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        if( k==0 ){
          if( !pPrevTrunk ){
            memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
          }else{
            memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
          }
        }else{
          /* The trunk page is required by the caller but it contains 
          ** pointers to free-list leaves. The first leaf becomes a trunk
          ** page in this case.
          */
          MemPage *pNewTrunk;
          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
          rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
          if( rc!=SQLITE_OK ){
            goto end_allocate_page;
          }
          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
          if( rc!=SQLITE_OK ){
            releasePage(pNewTrunk);
            goto end_allocate_page;
          }
          memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
          put4byte(&pNewTrunk->aData[4], k-1);
          memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
          releasePage(pNewTrunk);
          if( !pPrevTrunk ){
            put4byte(&pPage1->aData[32], iNewTrunk);
          }else{
            rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
            if( rc ){
              goto end_allocate_page;
            }
            put4byte(&pPrevTrunk->aData[0], iNewTrunk);
          }
        }
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
#endif
      }else{
        /* Extract a leaf from the trunk */
        int closest;
        Pgno iPage;
        unsigned char *aData = pTrunk->aData;
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        if( nearby>0 ){
          int i, dist;
          closest = 0;
          dist = get4byte(&aData[8]) - nearby;
          if( dist<0 ) dist = -dist;
          for(i=1; i<k; i++){
            int d2 = get4byte(&aData[8+i*4]) - nearby;
            if( d2<0 ) d2 = -d2;
            if( d2<dist ){
              closest = i;
              dist = d2;
            }
          }
        }else{
          closest = 0;
        }

        iPage = get4byte(&aData[8+closest*4]);
        if( !searchList || iPage==nearby ){
          *pPgno = iPage;
          if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
            /* Free page off the end of the file */
            return SQLITE_CORRUPT_BKPT;
          }
          TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
                 ": %d more free pages\n",
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
          if( rc==SQLITE_OK ){
            sqlite3PagerDontRollback((*ppPage)->pDbPage);
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
            }
          }
          searchList = 0;
        }
      }
      releasePage(pPrevTrunk);
      pPrevTrunk = 0;
    }while( searchList );
  }else{
    /* There are no pages on the freelist, so create a new page at the
    ** end of the file */
    *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->nTrunc ){
      /* An incr-vacuum has already run within this transaction. So the
      ** page to allocate is not from the physical end of the file, but
      ** at pBt->nTrunc. 
      */
      *pPgno = pBt->nTrunc+1;
      if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
        (*pPgno)++;
      }
    }
    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
      assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
      (*pPgno)++;
    }
    if( pBt->nTrunc ){
      pBt->nTrunc = *pPgno;
    }
#endif

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }

  assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );

end_allocate_page:
  releasePage(pTrunk);
  releasePage(pPrevTrunk);
  return rc;
}

/*
** Add a page of the database file to the freelist.
**
** sqlite3PagerUnref() is NOT called for pPage.
*/
static int freePage(MemPage *pPage){
  BtShared *pBt = pPage->pBt;
  MemPage *pPage1 = pBt->pPage1;
  int rc, n, k;

  /* Prepare the page for freeing */
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->pgno>1 );
  pPage->isInit = 0;
  releasePage(pPage->pParent);
  pPage->pParent = 0;

  /* Increment the free page count on pPage1 */
  rc = sqlite3PagerWrite(pPage1->pDbPage);
  if( rc ) return rc;
  n = get4byte(&pPage1->aData[36]);
  put4byte(&pPage1->aData[36], n+1);

#ifdef SQLITE_SECURE_DELETE
  /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
  ** always fully overwrite deleted information with zeros.
  */
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  memset(pPage->aData, 0, pPage->pBt->pageSize);
#endif

#ifndef SQLITE_OMIT_AUTOVACUUM
  /* If the database supports auto-vacuum, write an entry in the pointer-map
  ** to indicate that the page is free.
  */
  if( pBt->autoVacuum ){
    rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
    if( rc ) return rc;
  }
#endif

  if( n==0 ){
    /* This is the first free page */
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc ) return rc;
    memset(pPage->aData, 0, 8);
    put4byte(&pPage1->aData[32], pPage->pgno);
    TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
  }else{
    /* Other free pages already exist.  Retrive the first trunk page
    ** of the freelist and find out how many leaves it has. */
    MemPage *pTrunk;
    rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
    if( rc ) return rc;
    k = get4byte(&pTrunk->aData[4]);
    if( k>=pBt->usableSize/4 - 8 ){
      /* The trunk is full.  Turn the page being freed into a new
      ** trunk page with no leaves. */
      rc = sqlite3PagerWrite(pPage->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(pPage->aData, pTrunk->pgno);
        put4byte(&pPage->aData[4], 0);
        put4byte(&pPage1->aData[32], pPage->pgno);
        TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
                pPage->pgno, pTrunk->pgno));
      }
    }else if( k<0 ){
      rc = SQLITE_CORRUPT;
    }else{
      /* Add the newly freed page as a leaf on the current trunk */
      rc = sqlite3PagerWrite(pTrunk->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(&pTrunk->aData[4], k+1);
        put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
#ifndef SQLITE_SECURE_DELETE
        sqlite3PagerDontWrite(pPage->pDbPage);
#endif
      }
      TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
    }
    releasePage(pTrunk);
  }
  return rc;
}

/*
** Free any overflow pages associated with the given Cell.
*/
static int clearCell(MemPage *pPage, unsigned char *pCell){
  BtShared *pBt = pPage->pBt;
  CellInfo info;
  Pgno ovflPgno;
  int rc;
  int nOvfl;
  int ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  if( info.iOverflow==0 ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  ovflPgno = get4byte(&pCell[info.iOverflow]);
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( ovflPgno==0 || nOvfl>0 );
  while( nOvfl-- ){
    MemPage *pOvfl;
    if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
      return SQLITE_CORRUPT_BKPT;
    }

    rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
    if( rc ) return rc;
    rc = freePage(pOvfl);
    sqlite3PagerUnref(pOvfl->pDbPage);
    if( rc ) return rc;
  }
  return SQLITE_OK;
}

/*
** Create the byte sequence used to represent a cell on page pPage
** and write that byte sequence into pCell[].  Overflow pages are
** allocated and filled in as necessary.  The calling procedure
** is responsible for making sure sufficient space has been allocated
** for pCell[].
**
** Note that pCell does not necessary need to point to the pPage->aData
** area.  pCell might point to some temporary storage.  The cell will
** be constructed in this temporary area then copied into pPage->aData
** later.
*/
static int fillInCell(
  MemPage *pPage,                /* The page that contains the cell */
  unsigned char *pCell,          /* Complete text of the cell */
  const void *pKey, i64 nKey,    /* The key */
  const void *pData,int nData,   /* The data */
  int nZero,                     /* Extra zero bytes to append to pData */
  int *pnSize                    /* Write cell size here */
){
  int nPayload;
  const u8 *pSrc;
  int nSrc, n, rc;
  int spaceLeft;
  MemPage *pOvfl = 0;
  MemPage *pToRelease = 0;
  unsigned char *pPrior;
  unsigned char *pPayload;
  BtShared *pBt = pPage->pBt;
  Pgno pgnoOvfl = 0;
  int nHeader;
  CellInfo info;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  /* Fill in the header. */
  nHeader = 0;
  if( !pPage->leaf ){
    nHeader += 4;
  }
  if( pPage->hasData ){
    nHeader += putVarint(&pCell[nHeader], nData+nZero);
  }else{
    nData = nZero = 0;
  }
  nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  assert( info.nHeader==nHeader );
  assert( info.nKey==nKey );
  assert( info.nData==nData+nZero );
  
  /* Fill in the payload */
  nPayload = nData + nZero;
  if( pPage->intKey ){
    pSrc = pData;
    nSrc = nData;
    nData = 0;
  }else{
    nPayload += nKey;
    pSrc = pKey;
    nSrc = nKey;
  }
  *pnSize = info.nSize;
  spaceLeft = info.nLocal;
  pPayload = &pCell[nHeader];
  pPrior = &pCell[info.iOverflow];

  while( nPayload>0 ){
    if( spaceLeft==0 ){
      int isExact = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
      if( pBt->autoVacuum ){
        do{
          pgnoOvfl++;
        } while( 
          PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 
        );
        if( pgnoOvfl>1 ){
          /* isExact = 1; */
        }
      }
#endif
      rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the database supports auto-vacuum, and the second or subsequent
      ** overflow page is being allocated, add an entry to the pointer-map
      ** for that page now. 
      **
      ** If this is the first overflow page, then write a partial entry 
      ** to the pointer-map. If we write nothing to this pointer-map slot,
      ** then the optimistic overflow chain processing in clearCell()
      ** may misinterpret the uninitialised values and delete the
      ** wrong pages from the database.
      */
      if( pBt->autoVacuum && rc==SQLITE_OK ){
        u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
        rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
        if( rc ){
          releasePage(pOvfl);
        }
      }
#endif
      if( rc ){
        releasePage(pToRelease);
        return rc;
      }
      put4byte(pPrior, pgnoOvfl);
      releasePage(pToRelease);
      pToRelease = pOvfl;
      pPrior = pOvfl->aData;
      put4byte(pPrior, 0);
      pPayload = &pOvfl->aData[4];
      spaceLeft = pBt->usableSize - 4;
    }
    n = nPayload;
    if( n>spaceLeft ) n = spaceLeft;
    if( nSrc>0 ){
      if( n>nSrc ) n = nSrc;
      assert( pSrc );
      memcpy(pPayload, pSrc, n);
    }else{
      memset(pPayload, 0, n);
    }
    nPayload -= n;
    pPayload += n;
    pSrc += n;
    nSrc -= n;
    spaceLeft -= n;
    if( nSrc==0 ){
      nSrc = nData;
      pSrc = pData;
    }
  }
  releasePage(pToRelease);
  return SQLITE_OK;
}

/*
** Change the MemPage.pParent pointer on the page whose number is
** given in the second argument so that MemPage.pParent holds the
** pointer in the third argument.
*/
static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
  MemPage *pThis;
  DbPage *pDbPage;

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pNewParent!=0 );
  if( pgno==0 ) return SQLITE_OK;
  assert( pBt->pPager!=0 );
  pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
  if( pDbPage ){
    pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
    if( pThis->isInit ){
      assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
      if( pThis->pParent!=pNewParent ){
        if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
        pThis->pParent = pNewParent;
        sqlite3PagerRef(pNewParent->pDbPage);
      }
      pThis->idxParent = idx;
    }
    sqlite3PagerUnref(pDbPage);
  }

#ifndef SQLITE_OMIT_AUTOVACUUM
  if( pBt->autoVacuum ){
    return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
  }
#endif
  return SQLITE_OK;
}



/*
** Change the pParent pointer of all children of pPage to point back
** to pPage.
**
** In other words, for every child of pPage, invoke reparentPage()
** to make sure that each child knows that pPage is its parent.
**
** This routine gets called after you memcpy() one page into
** another.
*/
static int reparentChildPages(MemPage *pPage){
  int i;
  BtShared *pBt = pPage->pBt;
  int rc = SQLITE_OK;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  if( pPage->leaf ) return SQLITE_OK;

  for(i=0; i<pPage->nCell; i++){
    u8 *pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = reparentPage(pBt, get4byte(pCell), pPage, i);
      if( rc!=SQLITE_OK ) return rc;
    }
  }
  if( !pPage->leaf ){
    rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), 
       pPage, i);
    pPage->idxShift = 0;
  }
  return rc;
}

/*
** Remove the i-th cell from pPage.  This routine effects pPage only.
** The cell content is not freed or deallocated.  It is assumed that
** the cell content has been copied someplace else.  This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz){
  int i;          /* Loop counter */
  int pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */

  assert( idx>=0 && idx<pPage->nCell );
  assert( sz==cellSize(pPage, idx) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  data = pPage->aData;
  ptr = &data[pPage->cellOffset + 2*idx];
  pc = get2byte(ptr);
  assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
  freeSpace(pPage, pc, sz);
  for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
    ptr[0] = ptr[2];
    ptr[1] = ptr[3];
  }
  pPage->nCell--;
  put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
  pPage->nFree += 2;
  pPage->idxShift = 1;
}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null.  Regardless of pTemp, allocate a new entry
** in pPage->aOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index. 
** Allocating a new entry in pPage->aCell[] implies that 
** pPage->nOverflow is incremented.
**
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
** cell. The caller will overwrite them after this function returns. If
** nSkip is non-zero, then pCell may not point to an invalid memory location 
** (but pCell+nSkip is always valid).
*/
static int insertCell(
  MemPage *pPage,   /* Page into which we are copying */
  int i,            /* New cell becomes the i-th cell of the page */
  u8 *pCell,        /* Content of the new cell */
  int sz,           /* Bytes of content in pCell */
  u8 *pTemp,        /* Temp storage space for pCell, if needed */
  u8 nSkip          /* Do not write the first nSkip bytes of the cell */
){
  int idx;          /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  int top;          /* First byte of content for any cell in data[] */
  int end;          /* First byte past the last cell pointer in data[] */
  int ins;          /* Index in data[] where new cell pointer is inserted */
  int hdr;          /* Offset into data[] of the page header */
  int cellOffset;   /* Address of first cell pointer in data[] */
  u8 *data;         /* The content of the whole page */
  u8 *ptr;          /* Used for moving information around in data[] */

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( sz==cellSizePtr(pPage, pCell) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  if( pPage->nOverflow || sz+2>pPage->nFree ){
    if( pTemp ){
      memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
      pCell = pTemp;
    }
    j = pPage->nOverflow++;
    assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
    pPage->aOvfl[j].pCell = pCell;
    pPage->aOvfl[j].idx = i;
    pPage->nFree = 0;
  }else{
    int rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
    data = pPage->aData;
    hdr = pPage->hdrOffset;
    top = get2byte(&data[hdr+5]);
    cellOffset = pPage->cellOffset;
    end = cellOffset + 2*pPage->nCell + 2;
    ins = cellOffset + 2*i;
    if( end > top - sz ){
      rc = defragmentPage(pPage);
      if( rc!=SQLITE_OK ) return rc;
      top = get2byte(&data[hdr+5]);
      assert( end + sz <= top );
    }
    idx = allocateSpace(pPage, sz);
    assert( idx>0 );
    assert( end <= get2byte(&data[hdr+5]) );
    pPage->nCell++;
    pPage->nFree -= 2;
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
      ptr[0] = ptr[-2];
      ptr[1] = ptr[-1];
    }
    put2byte(&data[ins], idx);
    put2byte(&data[hdr+3], pPage->nCell);
    pPage->idxShift = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.
      */
      CellInfo info;
      sqlite3BtreeParseCellPtr(pPage, pCell, &info);
      assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
      if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
        Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
        rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
        if( rc!=SQLITE_OK ) return rc;
      }
    }
#endif
  }

  return SQLITE_OK;
}

/*
** Add a list of cells to a page.  The page should be initially empty.
** The cells are guaranteed to fit on the page.
*/
static void assemblePage(
  MemPage *pPage,   /* The page to be assemblied */
  int nCell,        /* The number of cells to add to this page */
  u8 **apCell,      /* Pointers to cell bodies */
  int *aSize        /* Sizes of the cells */
){
  int i;            /* Loop counter */
  int totalSize;    /* Total size of all cells */
  int hdr;          /* Index of page header */
  int cellptr;      /* Address of next cell pointer */
  int cellbody;     /* Address of next cell body */
  u8 *data;         /* Data for the page */

  assert( pPage->nOverflow==0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  totalSize = 0;
  for(i=0; i<nCell; i++){
    totalSize += aSize[i];
  }
  assert( totalSize+2*nCell<=pPage->nFree );
  assert( pPage->nCell==0 );
  cellptr = pPage->cellOffset;
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  put2byte(&data[hdr+3], nCell);
  if( nCell ){
    cellbody = allocateSpace(pPage, totalSize);
    assert( cellbody>0 );
    assert( pPage->nFree >= 2*nCell );
    pPage->nFree -= 2*nCell;
    for(i=0; i<nCell; i++){
      put2byte(&data[cellptr], cellbody);
      memcpy(&data[cellbody], apCell[i], aSize[i]);
      cellptr += 2;
      cellbody += aSize[i];
    }
    assert( cellbody==pPage->pBt->usableSize );
  }
  pPage->nCell = nCell;
}

/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation.  NN is the number of neighbors on either side
** of the page that participate in the balancing operation.  NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course).  Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
*/
#define NN 1             /* Number of neighbors on either side of pPage */
#define NB (NN*2+1)      /* Total pages involved in the balance */

/* Forward reference */
static int balance(MemPage*, int);

#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page.  This leaves the right side of the tree somewhat
** unbalanced.  But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up.  On average.
**
** pPage is the leaf page which is the right-most page in the tree.
** pParent is its parent.  pPage must have a single overflow entry
** which is also the right-most entry on the page.
*/
static int balance_quick(MemPage *pPage, MemPage *pParent){
  int rc;
  MemPage *pNew;
  Pgno pgnoNew;
  u8 *pCell;
  int szCell;
  CellInfo info;
  BtShared *pBt = pPage->pBt;
  int parentIdx = pParent->nCell;   /* pParent new divider cell index */
  int parentSize;                   /* Size of new divider cell */
  u8 parentCell[64];                /* Space for the new divider cell */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  /* Allocate a new page. Insert the overflow cell from pPage
  ** into it. Then remove the overflow cell from pPage.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  pCell = pPage->aOvfl[0].pCell;
  szCell = cellSizePtr(pPage, pCell);
  zeroPage(pNew, pPage->aData[0]);
  assemblePage(pNew, 1, &pCell, &szCell);
  pPage->nOverflow = 0;

  /* Set the parent of the newly allocated page to pParent. */
  pNew->pParent = pParent;
  sqlite3PagerRef(pParent->pDbPage);

  /* pPage is currently the right-child of pParent. Change this
  ** so that the right-child is the new page allocated above and
  ** pPage is the next-to-right child. 
  */
  assert( pPage->nCell>0 );
  pCell = findCell(pPage, pPage->nCell-1);
  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( parentSize<64 );
  rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
  put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);

#ifndef SQLITE_OMIT_AUTOVACUUM
  /* If this is an auto-vacuum database, update the pointer map
  ** with entries for the new page, and any pointer from the 
  ** cell on the page to an overflow page.
  */
  if( pBt->autoVacuum ){
    rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
    if( rc==SQLITE_OK ){
      rc = ptrmapPutOvfl(pNew, 0);
    }
    if( rc!=SQLITE_OK ){
      releasePage(pNew);
      return rc;
    }
  }
#endif

  /* Release the reference to the new page and balance the parent page,
  ** in case the divider cell inserted caused it to become overfull.
  */
  releasePage(pNew);
  return balance(pParent, 0);
}
#endif /* SQLITE_OMIT_QUICKBALANCE */

/*
** This routine redistributes Cells on pPage and up to NN*2 siblings
** of pPage so that all pages have about the same amount of free space.
** Usually NN siblings on either side of pPage is used in the balancing,
** though more siblings might come from one side if pPage is the first
** or last child of its parent.  If pPage has fewer than 2*NN siblings
** (something which can only happen if pPage is the root page or a 
** child of root) then all available siblings participate in the balancing.
**
** The number of siblings of pPage might be increased or decreased by one or
** two in an effort to keep pages nearly full but not over full. The root page
** is special and is allowed to be nearly empty. If pPage is 
** the root page, then the depth of the tree might be increased
** or decreased by one, as necessary, to keep the root page from being
** overfull or completely empty.
**
** Note that when this routine is called, some of the Cells on pPage
** might not actually be stored in pPage->aData[].  This can happen
** if the page is overfull.  Part of the job of this routine is to
** make sure all Cells for pPage once again fit in pPage->aData[].
**
** In the course of balancing the siblings of pPage, the parent of pPage
** might become overfull or underfull.  If that happens, then this routine
** is called recursively on the parent.
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state.  So if this routine fails, the database should
** be rolled back.
*/
static int balance_nonroot(MemPage *pPage){
  MemPage *pParent;            /* The parent of pPage */
  BtShared *pBt;               /* The whole database */
  int nCell = 0;               /* Number of cells in apCell[] */
  int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  int nOld;                    /* Number of pages in apOld[] */
  int nNew;                    /* Number of pages in apNew[] */
  int nDiv;                    /* Number of cells in apDiv[] */
  int i, j, k;                 /* Loop counters */
  int idx;                     /* Index of pPage in pParent->aCell[] */
  int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  int rc;                      /* The return code */
  int leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
  int usableSpace;             /* Bytes in pPage beyond the header */
  int pageFlags;               /* Value of pPage->aData[0] */
  int subtotal;                /* Subtotal of bytes in cells on one page */
  int iSpace = 0;              /* First unused byte of aSpace[] */
  MemPage *apOld[NB];          /* pPage and up to two siblings */
  Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
  MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
  MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  Pgno pgnoNew[NB+2];          /* Page numbers for each page in apNew[] */
  u8 *apDiv[NB];               /* Divider cells in pParent */
  int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
  int szNew[NB+2];             /* Combined size of cells place on i-th page */
  u8 **apCell = 0;             /* All cells begin balanced */
  int *szCell;                 /* Local size of all cells in apCell[] */
  u8 *aCopy[NB];               /* Space for holding data of apCopy[] */
  u8 *aSpace;                  /* Space to hold copies of dividers cells */
#ifndef SQLITE_OMIT_AUTOVACUUM
  u8 *aFrom = 0;
#endif

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  /* 
  ** Find the parent page.
  */
  assert( pPage->isInit );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
  pBt = pPage->pBt;
  pParent = pPage->pParent;
  assert( pParent );
  if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
    return rc;
  }
  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));

#ifndef SQLITE_OMIT_QUICKBALANCE
  /*
  ** A special case:  If a new entry has just been inserted into a
  ** table (that is, a btree with integer keys and all data at the leaves)
  ** and the new entry is the right-most entry in the tree (it has the
  ** largest key) then use the special balance_quick() routine for
  ** balancing.  balance_quick() is much faster and results in a tighter
  ** packing of data in the common case.
  */
  if( pPage->leaf &&
      pPage->intKey &&
      pPage->leafData &&
      pPage->nOverflow==1 &&
      pPage->aOvfl[0].idx==pPage->nCell &&
      pPage->pParent->pgno!=1 &&
      get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
  ){
    /*
    ** TODO: Check the siblings to the left of pPage. It may be that
    ** they are not full and no new page is required.
    */
    return balance_quick(pPage, pParent);
  }
#endif

  if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
    return rc;
  }

  /*
  ** Find the cell in the parent page whose left child points back
  ** to pPage.  The "idx" variable is the index of that cell.  If pPage
  ** is the rightmost child of pParent then set idx to pParent->nCell 
  */
  if( pParent->idxShift ){
    Pgno pgno;
    pgno = pPage->pgno;
    assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
    for(idx=0; idx<pParent->nCell; idx++){
      if( get4byte(findCell(pParent, idx))==pgno ){
        break;
      }
    }
    assert( idx<pParent->nCell
             || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
  }else{
    idx = pPage->idxParent;
  }

  /*
  ** Initialize variables so that it will be safe to jump
  ** directly to balance_cleanup at any moment.
  */
  nOld = nNew = 0;
  sqlite3PagerRef(pParent->pDbPage);

  /*
  ** Find sibling pages to pPage and the cells in pParent that divide
  ** the siblings.  An attempt is made to find NN siblings on either
  ** side of pPage.  More siblings are taken from one side, however, if
  ** pPage there are fewer than NN siblings on the other side.  If pParent
  ** has NB or fewer children then all children of pParent are taken.
  */
  nxDiv = idx - NN;
  if( nxDiv + NB > pParent->nCell ){
    nxDiv = pParent->nCell - NB + 1;
  }
  if( nxDiv<0 ){
    nxDiv = 0;
  }
  nDiv = 0;
  for(i=0, k=nxDiv; i<NB; i++, k++){
    if( k<pParent->nCell ){
      apDiv[i] = findCell(pParent, k);
      nDiv++;
      assert( !pParent->leaf );
      pgnoOld[i] = get4byte(apDiv[i]);
    }else if( k==pParent->nCell ){
      pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
    }else{
      break;
    }
    rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
    if( rc ) goto balance_cleanup;
    apOld[i]->idxParent = k;
    apCopy[i] = 0;
    assert( i==nOld );
    nOld++;
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
  }

  /* Make nMaxCells a multiple of 2 in order to preserve 8-byte
  ** alignment */
  nMaxCells = (nMaxCells + 1)&~1;

  /*
  ** Allocate space for memory structures
  */
  apCell = sqlite3_malloc( 
       nMaxCells*sizeof(u8*)                           /* apCell */
     + nMaxCells*sizeof(int)                           /* szCell */
     + ROUND8(sizeof(MemPage))*NB                      /* aCopy */
     + pBt->pageSize*(5+NB)                            /* aSpace */
     + (ISAUTOVACUUM ? nMaxCells : 0)                  /* aFrom */
  );
  if( apCell==0 ){
    rc = SQLITE_NOMEM;
    goto balance_cleanup;
  }
  szCell = (int*)&apCell[nMaxCells];
  aCopy[0] = (u8*)&szCell[nMaxCells];
  assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  for(i=1; i<NB; i++){
    aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
    assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  }
  aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
  assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
#ifndef SQLITE_OMIT_AUTOVACUUM
  if( pBt->autoVacuum ){
    aFrom = &aSpace[5*pBt->pageSize];
  }
#endif
  
  /*
  ** Make copies of the content of pPage and its siblings into aOld[].
  ** The rest of this function will use data from the copies rather
  ** that the original pages since the original pages will be in the
  ** process of being overwritten.
  */
  for(i=0; i<nOld; i++){
    MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
    memcpy(p, apOld[i], sizeof(MemPage));
    p->aData = (void*)&p[1];
    memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
  }

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local apCell[] array.  Make copies of the divider cells
  ** into space obtained form aSpace[] and remove the the divider Cells
  ** from pParent.
  **
  ** If the siblings are on leaf pages, then the child pointers of the
  ** divider cells are stripped from the cells before they are copied
  ** into aSpace[].  In this way, all cells in apCell[] are without
  ** child pointers.  If siblings are not leaves, then all cell in
  ** apCell[] include child pointers.  Either way, all cells in apCell[]
  ** are alike.
  **
  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  */
  nCell = 0;
  leafCorrection = pPage->leaf*4;
  leafData = pPage->leafData && pPage->leaf;
  for(i=0; i<nOld; i++){
    MemPage *pOld = apCopy[i];
    int limit = pOld->nCell+pOld->nOverflow;
    for(j=0; j<limit; j++){
      assert( nCell<nMaxCells );
      apCell[nCell] = findOverflowCell(pOld, j);
      szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        int a;
        aFrom[nCell] = i;
        for(a=0; a<pOld->nOverflow; a++){
          if( pOld->aOvfl[a].pCell==apCell[nCell] ){
            aFrom[nCell] = 0xFF;
            break;
          }
        }
      }
#endif
      nCell++;
    }
    if( i<nOld-1 ){
      int sz = cellSizePtr(pParent, apDiv[i]);
      if( leafData ){
        /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
        ** are duplicates of keys on the child pages.  We need to remove
        ** the divider cells from pParent, but the dividers cells are not
        ** added to apCell[] because they are duplicates of child cells.
        */
        dropCell(pParent, nxDiv, sz);
      }else{
        u8 *pTemp;
        assert( nCell<nMaxCells );
        szCell[nCell] = sz;
        pTemp = &aSpace[iSpace];
        iSpace += sz;
        assert( iSpace<=pBt->pageSize*5 );
        memcpy(pTemp, apDiv[i], sz);
        apCell[nCell] = pTemp+leafCorrection;
#ifndef SQLITE_OMIT_AUTOVACUUM
        if( pBt->autoVacuum ){
          aFrom[nCell] = 0xFF;
        }
#endif
        dropCell(pParent, nxDiv, sz);
        szCell[nCell] -= leafCorrection;
        assert( get4byte(pTemp)==pgnoOld[i] );
        if( !pOld->leaf ){
          assert( leafCorrection==0 );
          /* The right pointer of the child page pOld becomes the left
          ** pointer of the divider cell */
          memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
        }else{
          assert( leafCorrection==4 );
          if( szCell[nCell]<4 ){
            /* Do not allow any cells smaller than 4 bytes. */
            szCell[nCell] = 4;
          }
        }
        nCell++;
      }
    }
  }

  /*
  ** Figure out the number of pages needed to hold all nCell cells.
  ** Store this number in "k".  Also compute szNew[] which is the total
  ** size of all cells on the i-th page and cntNew[] which is the index
  ** in apCell[] of the cell that divides page i from page i+1.  
  ** cntNew[k] should equal nCell.
  **
  ** Values computed by this block:
  **
  **           k: The total number of sibling pages
  **    szNew[i]: Spaced used on the i-th sibling page.
  **   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
  **              the right of the i-th sibling page.
  ** usableSpace: Number of bytes of space available on each sibling.
  ** 
  */
  usableSpace = pBt->usableSize - 12 + leafCorrection;
  for(subtotal=k=i=0; i<nCell; i++){
    assert( i<nMaxCells );
    subtotal += szCell[i] + 2;
    if( subtotal > usableSpace ){
      szNew[k] = subtotal - szCell[i];
      cntNew[k] = i;
      if( leafData ){ i--; }
      subtotal = 0;
      k++;
    }
  }
  szNew[k] = subtotal;
  cntNew[k] = nCell;
  k++;

  /*
  ** The packing computed by the previous block is biased toward the siblings
  ** on the left side.  The left siblings are always nearly full, while the
  ** right-most sibling might be nearly empty.  This block of code attempts
  ** to adjust the packing of siblings to get a better balance.
  **
  ** This adjustment is more than an optimization.  The packing above might
  ** be so out of balance as to be illegal.  For example, the right-most
  ** sibling might be completely empty.  This adjustment is not optional.
  */
  for(i=k-1; i>0; i--){
    int szRight = szNew[i];  /* Size of sibling on the right */
    int szLeft = szNew[i-1]; /* Size of sibling on the left */
    int r;              /* Index of right-most cell in left sibling */
    int d;              /* Index of first cell to the left of right sibling */

    r = cntNew[i-1] - 1;
    d = r + 1 - leafData;
    assert( d<nMaxCells );
    assert( r<nMaxCells );
    while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
      szRight += szCell[d] + 2;
      szLeft -= szCell[r] + 2;
      cntNew[i-1]--;
      r = cntNew[i-1] - 1;
      d = r + 1 - leafData;
    }
    szNew[i] = szRight;
    szNew[i-1] = szLeft;
  }

  /* Either we found one or more cells (cntnew[0])>0) or we are the
  ** a virtual root page.  A virtual root page is when the real root
  ** page is page 1 and we are the only child of that page.
  */
  assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  assert( pPage->pgno>1 );
  pageFlags = pPage->aData[0];
  for(i=0; i<k; i++){
    MemPage *pNew;
    if( i<nOld ){
      pNew = apNew[i] = apOld[i];
      pgnoNew[i] = pgnoOld[i];
      apOld[i] = 0;
      rc = sqlite3PagerWrite(pNew->pDbPage);
      nNew++;
      if( rc ) goto balance_cleanup;
    }else{
      assert( i>0 );
      rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
      if( rc ) goto balance_cleanup;
      apNew[i] = pNew;
      nNew++;
    }
    zeroPage(pNew, pageFlags);
  }

  /* Free any old pages that were not reused as new pages.
  */
  while( i<nOld ){
    rc = freePage(apOld[i]);
    if( rc ) goto balance_cleanup;
    releasePage(apOld[i]);
    apOld[i] = 0;
    i++;
  }

  /*
  ** Put the new pages in accending order.  This helps to
  ** keep entries in the disk file in order so that a scan
  ** of the table is a linear scan through the file.  That
  ** in turn helps the operating system to deliver pages
  ** from the disk more rapidly.
  **
  ** An O(n^2) insertion sort algorithm is used, but since
  ** n is never more than NB (a small constant), that should
  ** not be a problem.
  **
  ** When NB==3, this one optimization makes the database
  ** about 25% faster for large insertions and deletions.
  */
  for(i=0; i<k-1; i++){
    int minV = pgnoNew[i];
    int minI = i;
    for(j=i+1; j<k; j++){
      if( pgnoNew[j]<(unsigned)minV ){
        minI = j;
        minV = pgnoNew[j];
      }
    }
    if( minI>i ){
      int t;
      MemPage *pT;
      t = pgnoNew[i];
      pT = apNew[i];
      pgnoNew[i] = pgnoNew[minI];
      apNew[i] = apNew[minI];
      pgnoNew[minI] = t;
      apNew[minI] = pT;
    }
  }
  TRACE(("BALANCE: old: %d %d %d  new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
    pgnoOld[0], 
    nOld>=2 ? pgnoOld[1] : 0,
    nOld>=3 ? pgnoOld[2] : 0,
    pgnoNew[0], szNew[0],
    nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
    nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
    nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
    nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));

  /*
  ** Evenly distribute the data in apCell[] across the new pages.
  ** Insert divider cells into pParent as necessary.
  */
  j = 0;
  for(i=0; i<nNew; i++){
    /* Assemble the new sibling page. */
    MemPage *pNew = apNew[i];
    assert( j<nMaxCells );
    assert( pNew->pgno==pgnoNew[i] );
    assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
    assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
    assert( pNew->nOverflow==0 );

#ifndef SQLITE_OMIT_AUTOVACUUM
    /* If this is an auto-vacuum database, update the pointer map entries
    ** that point to the siblings that were rearranged. These can be: left
    ** children of cells, the right-child of the page, or overflow pages
    ** pointed to by cells.
    */
    if( pBt->autoVacuum ){
      for(k=j; k<cntNew[i]; k++){
        assert( k<nMaxCells );
        if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
          rc = ptrmapPutOvfl(pNew, k-j);
          if( rc!=SQLITE_OK ){
            goto balance_cleanup;
          }
        }
      }
    }
#endif

    j = cntNew[i];

    /* If the sibling page assembled above was not the right-most sibling,
    ** insert a divider cell into the parent page.
    */
    if( i<nNew-1 && j<nCell ){
      u8 *pCell;
      u8 *pTemp;
      int sz;

      assert( j<nMaxCells );
      pCell = apCell[j];
      sz = szCell[j] + leafCorrection;
      if( !pNew->leaf ){
        memcpy(&pNew->aData[8], pCell, 4);
        pTemp = 0;
      }else if( leafData ){
        /* If the tree is a leaf-data tree, and the siblings are leaves, 
        ** then there is no divider cell in apCell[]. Instead, the divider 
        ** cell consists of the integer key for the right-most cell of 
        ** the sibling-page assembled above only.
        */
        CellInfo info;
        j--;
        sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
        pCell = &aSpace[iSpace];
        fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
        iSpace += sz;
        assert( iSpace<=pBt->pageSize*5 );
        pTemp = 0;
      }else{
        pCell -= 4;
        pTemp = &aSpace[iSpace];
        iSpace += sz;
        assert( iSpace<=pBt->pageSize*5 );
        /* Obscure case for non-leaf-data trees: If the cell at pCell was
        ** previously stored on a leaf node, and it's reported size was 4
        ** bytes, then it may actually be smaller than this 
        ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
        ** any cell). But it's important to pass the correct size to 
        ** insertCell(), so reparse the cell now.
        **
        ** Note that this can never happen in an SQLite data file, as all
        ** cells are at least 4 bytes. It only happens in b-trees used
        ** to evaluate "IN (SELECT ...)" and similar clauses.
        */
        if( szCell[j]==4 ){
          assert(leafCorrection==4);
          sz = cellSizePtr(pParent, pCell);
        }
      }
      rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
      if( rc!=SQLITE_OK ) goto balance_cleanup;
      put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If this is an auto-vacuum database, and not a leaf-data tree,
      ** then update the pointer map with an entry for the overflow page
      ** that the cell just inserted points to (if any).
      */
      if( pBt->autoVacuum && !leafData ){
        rc = ptrmapPutOvfl(pParent, nxDiv);
        if( rc!=SQLITE_OK ){
          goto balance_cleanup;
        }
      }
#endif
      j++;
      nxDiv++;
    }
  }
  assert( j==nCell );
  assert( nOld>0 );
  assert( nNew>0 );
  if( (pageFlags & PTF_LEAF)==0 ){
    memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
  }
  if( nxDiv==pParent->nCell+pParent->nOverflow ){
    /* Right-most sibling is the right-most child of pParent */
    put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
  }else{
    /* Right-most sibling is the left child of the first entry in pParent
    ** past the right-most divider entry */
    put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
  }

  /*
  ** Reparent children of all cells.
  */
  for(i=0; i<nNew; i++){
    rc = reparentChildPages(apNew[i]);
    if( rc!=SQLITE_OK ) goto balance_cleanup;
  }
  rc = reparentChildPages(pParent);
  if( rc!=SQLITE_OK ) goto balance_cleanup;

  /*
  ** Balance the parent page.  Note that the current page (pPage) might
  ** have been added to the freelist so it might no longer be initialized.
  ** But the parent page will always be initialized.
  */
  assert( pParent->isInit );
  rc = balance(pParent, 0);
  
  /*
  ** Cleanup before returning.
  */
balance_cleanup:
  sqlite3_free(apCell);
  for(i=0; i<nOld; i++){
    releasePage(apOld[i]);
  }
  for(i=0; i<nNew; i++){
    releasePage(apNew[i]);
  }
  releasePage(pParent);
  TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
          pPage->pgno, nOld, nNew, nCell));
  return rc;
}

/*
** This routine is called for the root page of a btree when the root
** page contains no cells.  This is an opportunity to make the tree
** shallower by one level.
*/
static int balance_shallower(MemPage *pPage){
  MemPage *pChild;             /* The only child page of pPage */
  Pgno pgnoChild;              /* Page number for pChild */
  int rc = SQLITE_OK;          /* Return code from subprocedures */
  BtShared *pBt;                  /* The main BTree structure */
  int mxCellPerPage;           /* Maximum number of cells per page */
  u8 **apCell;                 /* All cells from pages being balanced */
  int *szCell;                 /* Local size of all cells */

  assert( pPage->pParent==0 );
  assert( pPage->nCell==0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pBt = pPage->pBt;
  mxCellPerPage = MX_CELL(pBt);
  apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
  if( apCell==0 ) return SQLITE_NOMEM;
  szCell = (int*)&apCell[mxCellPerPage];
  if( pPage->leaf ){
    /* The table is completely empty */
    TRACE(("BALANCE: empty table %d\n", pPage->pgno));
  }else{
    /* The root page is empty but has one child.  Transfer the
    ** information from that one child into the root page if it 
    ** will fit.  This reduces the depth of the tree by one.
    **
    ** If the root page is page 1, it has less space available than
    ** its child (due to the 100 byte header that occurs at the beginning
    ** of the database fle), so it might not be able to hold all of the 
    ** information currently contained in the child.  If this is the 
    ** case, then do not do the transfer.  Leave page 1 empty except
    ** for the right-pointer to the child page.  The child page becomes
    ** the virtual root of the tree.
    */
    pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    assert( pgnoChild>0 );
    assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
    rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
    if( rc ) goto end_shallow_balance;
    if( pPage->pgno==1 ){
      rc = sqlite3BtreeInitPage(pChild, pPage);
      if( rc ) goto end_shallow_balance;
      assert( pChild->nOverflow==0 );
      if( pChild->nFree>=100 ){
        /* The child information will fit on the root page, so do the
        ** copy */
        int i;
        zeroPage(pPage, pChild->aData[0]);
        for(i=0; i<pChild->nCell; i++){
          apCell[i] = findCell(pChild,i);
          szCell[i] = cellSizePtr(pChild, apCell[i]);
        }
        assemblePage(pPage, pChild->nCell, apCell, szCell);
        /* Copy the right-pointer of the child to the parent. */
        put4byte(&pPage->aData[pPage->hdrOffset+8], 
            get4byte(&pChild->aData[pChild->hdrOffset+8]));
        freePage(pChild);
        TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
      }else{
        /* The child has more information that will fit on the root.
        ** The tree is already balanced.  Do nothing. */
        TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
      }
    }else{
      memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
      pPage->isInit = 0;
      pPage->pParent = 0;
      rc = sqlite3BtreeInitPage(pPage, 0);
      assert( rc==SQLITE_OK );
      freePage(pChild);
      TRACE(("BALANCE: transfer child %d into root %d\n",
              pChild->pgno, pPage->pgno));
    }
    rc = reparentChildPages(pPage);
    assert( pPage->nOverflow==0 );
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      int i;
      for(i=0; i<pPage->nCell; i++){ 
        rc = ptrmapPutOvfl(pPage, i);
        if( rc!=SQLITE_OK ){
          goto end_shallow_balance;
        }
      }
    }
#endif
    releasePage(pChild);
  }
end_shallow_balance:
  sqlite3_free(apCell);
  return rc;
}


/*
** The root page is overfull
**
** When this happens, Create a new child page and copy the
** contents of the root into the child.  Then make the root
** page an empty page with rightChild pointing to the new
** child.   Finally, call balance_internal() on the new child
** to cause it to split.
*/
static int balance_deeper(MemPage *pPage){
  int rc;             /* Return value from subprocedures */
  MemPage *pChild;    /* Pointer to a new child page */
  Pgno pgnoChild;     /* Page number of the new child page */
  BtShared *pBt;         /* The BTree */
  int usableSize;     /* Total usable size of a page */
  u8 *data;           /* Content of the parent page */
  u8 *cdata;          /* Content of the child page */
  int hdr;            /* Offset to page header in parent */
  int brk;            /* Offset to content of first cell in parent */

  assert( pPage->pParent==0 );
  assert( pPage->nOverflow>0 );
  pBt = pPage->pBt;
  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
  if( rc ) return rc;
  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  usableSize = pBt->usableSize;
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  brk = get2byte(&data[hdr+5]);
  cdata = pChild->aData;
  memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
  memcpy(&cdata[brk], &data[brk], usableSize-brk);
  assert( pChild->isInit==0 );
  rc = sqlite3BtreeInitPage(pChild, pPage);
  if( rc ) goto balancedeeper_out;
  memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
  pChild->nOverflow = pPage->nOverflow;
  if( pChild->nOverflow ){
    pChild->nFree = 0;
  }
  assert( pChild->nCell==pPage->nCell );
  zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
  put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
  TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
#ifndef SQLITE_OMIT_AUTOVACUUM
  if( pBt->autoVacuum ){
    int i;
    rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
    if( rc ) goto balancedeeper_out;
    for(i=0; i<pChild->nCell; i++){
      rc = ptrmapPutOvfl(pChild, i);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }
#endif
  rc = balance_nonroot(pChild);

balancedeeper_out:
  releasePage(pChild);
  return rc;
}

/*
** Decide if the page pPage needs to be balanced.  If balancing is
** required, call the appropriate balancing routine.
*/
static int balance(MemPage *pPage, int insert){
  int rc = SQLITE_OK;
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  if( pPage->pParent==0 ){
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc==SQLITE_OK && pPage->nOverflow>0 ){
      rc = balance_deeper(pPage);
    }
    if( rc==SQLITE_OK && pPage->nCell==0 ){
      rc = balance_shallower(pPage);
    }
  }else{
    if( pPage->nOverflow>0 || 
        (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
      rc = balance_nonroot(pPage);
    }
  }
  return rc;
}

/*
** This routine checks all cursors that point to table pgnoRoot.
** If any of those cursors were opened with wrFlag==0 in a different
** database connection (a database connection that shares the pager
** cache with the current connection) and that other connection 
** is not in the ReadUncommmitted state, then this routine returns 
** SQLITE_LOCKED.
**
** In addition to checking for read-locks (where a read-lock 
** means a cursor opened with wrFlag==0) this routine also moves
** all write cursors so that they are pointing to the 
** first Cell on the root page.  This is necessary because an insert 
** or delete might change the number of cells on a page or delete
** a page entirely and we do not want to leave any cursors 
** pointing to non-existant pages or cells.
*/
static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
  BtCursor *p;
  BtShared *pBt = pBtree->pBt;
  sqlite3 *db = pBtree->pSqlite;
  assert( sqlite3BtreeHoldsMutex(pBtree) );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p==pExclude ) continue;
    if( p->eState!=CURSOR_VALID ) continue;
    if( p->pgnoRoot!=pgnoRoot ) continue;
    if( p->wrFlag==0 ){
      sqlite3 *dbOther = p->pBtree->pSqlite;
      if( dbOther==0 ||
         (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
        return SQLITE_LOCKED;
      }
    }else if( p->pPage->pgno!=p->pgnoRoot ){
      moveToRoot(p);
    }
  }
  return SQLITE_OK;
}

/*
** Insert a new record into the BTree.  The key is given by (pKey,nKey)
** and the data is given by (pData,nData).  The cursor is used only to
** define what table the record should be inserted into.  The cursor
** is left pointing at a random location.
**
** For an INTKEY table, only the nKey value of the key is used.  pKey is
** ignored.  For a ZERODATA table, the pData and nData are both ignored.
*/
int sqlite3BtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const void *pKey, i64 nKey,    /* The key of the new record */
  const void *pData, int nData,  /* The data of the new record */
  int nZero,                     /* Number of extra 0 bytes to append to data */
  int appendBias                 /* True if this is likely an append */
){
  int rc;
  int loc;
  int szNew;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;

  assert( cursorHoldsMutex(pCur) );
  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction before doing an insert */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    return rc;
  }
  assert( !pBt->readOnly );
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Cursor not open for writing */
  }
  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skip;
  }

  /* Save the positions of any other cursors open on this table */
  clearCursorPosition(pCur);
  if( 
    SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
    SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
  ){
    return rc;
  }

  pPage = pCur->pPage;
  assert( pPage->intKey || nKey>=0 );
  assert( pPage->leaf || !pPage->leafData );
  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
          pCur->pgnoRoot, nKey, nData, pPage->pgno,
          loc==0 ? "overwrite" : "new entry"));
  assert( pPage->isInit );
  newCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
  if( newCell==0 ) return SQLITE_NOMEM;
  rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==cellSizePtr(pPage, newCell) );
  assert( szNew<=MX_CELL_SIZE(pBt) );
  if( loc==0 && CURSOR_VALID==pCur->eState ){
    int szOld;
    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc ){
      goto end_insert;
    }
    oldCell = findCell(pPage, pCur->idx);
    if( !pPage->leaf ){
      memcpy(newCell, oldCell, 4);
    }
    szOld = cellSizePtr(pPage, oldCell);
    rc = clearCell(pPage, oldCell);
    if( rc ) goto end_insert;
    dropCell(pPage, pCur->idx, szOld);
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    pCur->idx++;
    pCur->info.nSize = 0;
  }else{
    assert( pPage->leaf );
  }
  rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
  if( rc!=SQLITE_OK ) goto end_insert;
  rc = balance(pPage, 1);
  /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
  /* fflush(stdout); */
  if( rc==SQLITE_OK ){
    moveToRoot(pCur);
  }
end_insert:
  sqlite3_free(newCell);
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.  The cursor
** is left pointing at a random location.
*/
int sqlite3BtreeDelete(BtCursor *pCur){
  MemPage *pPage = pCur->pPage;
  unsigned char *pCell;
  int rc;
  Pgno pgnoChild = 0;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( pPage->isInit );
  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction before doing a delete */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    return rc;
  }
  assert( !pBt->readOnly );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skip;
  }
  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  }
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Did not open this cursor for writing */
  }
  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Restore the current cursor position (a no-op if the cursor is not in 
  ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors 
  ** open on the same table. Then call sqlite3PagerWrite() on the page
  ** that the entry will be deleted from.
  */
  if( 
    (rc = restoreOrClearCursorPosition(pCur))!=0 ||
    (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
    (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
  ){
    return rc;
  }

  /* Locate the cell within it's page and leave pCell pointing to the
  ** data. The clearCell() call frees any overflow pages associated with the
  ** cell. The cell itself is still intact.
  */
  pCell = findCell(pPage, pCur->idx);
  if( !pPage->leaf ){
    pgnoChild = get4byte(pCell);
  }
  rc = clearCell(pPage, pCell);
  if( rc ){
    return rc;
  }

  if( !pPage->leaf ){
    /*
    ** The entry we are about to delete is not a leaf so if we do not
    ** do something we will leave a hole on an internal page.
    ** We have to fill the hole by moving in a cell from a leaf.  The
    ** next Cell after the one to be deleted is guaranteed to exist and
    ** to be a leaf so we can use it.
    */
    BtCursor leafCur;
    unsigned char *pNext;
    int szNext;  /* The compiler warning is wrong: szNext is always 
                 ** initialized before use.  Adding an extra initialization
                 ** to silence the compiler slows down the code. */
    int notUsed;
    unsigned char *tempCell = 0;
    assert( !pPage->leafData );
    sqlite3BtreeGetTempCursor(pCur, &leafCur);
    rc = sqlite3BtreeNext(&leafCur, &notUsed);
    if( rc==SQLITE_OK ){
      rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
    }
    if( rc==SQLITE_OK ){
      TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
         pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
      dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
      pNext = findCell(leafCur.pPage, leafCur.idx);
      szNext = cellSizePtr(leafCur.pPage, pNext);
      assert( MX_CELL_SIZE(pBt)>=szNext+4 );
      tempCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
      if( tempCell==0 ){
        rc = SQLITE_NOMEM;
      }
    }
    if( rc==SQLITE_OK ){
      rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
    }
    if( rc==SQLITE_OK ){
      put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
      rc = balance(pPage, 0);
    }
    if( rc==SQLITE_OK ){
      dropCell(leafCur.pPage, leafCur.idx, szNext);
      rc = balance(leafCur.pPage, 0);
    }
    sqlite3_free(tempCell);
    sqlite3BtreeReleaseTempCursor(&leafCur);
  }else{
    TRACE(("DELETE: table=%d delete from leaf %d\n",
       pCur->pgnoRoot, pPage->pgno));
    dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
    rc = balance(pPage, 0);
  }
  if( rc==SQLITE_OK ){
    moveToRoot(pCur);
  }
  return rc;
}

/*
** Create a new BTree table.  Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter.  Only the
** following values of flags are currently in use.  Other values for
** flags might not work:
**
**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
**     BTREE_ZERODATA                  Used for SQL indices
*/
static int btreeCreateTable(Btree *p, int *piTable, int flags){
  BtShared *pBt = p->pBt;
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;

  assert( sqlite3BtreeHoldsMutex(p) );
  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction first */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    return rc;
  }
  assert( !pBt->readOnly );

#ifdef SQLITE_OMIT_AUTOVACUUM
  rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  if( rc ){
    return rc;
  }
#else
  if( pBt->autoVacuum ){
    Pgno pgnoMove;      /* Move a page here to make room for the root-page */
    MemPage *pPageMove; /* The page to move to. */

    /* Creating a new table may probably require moving an existing database
    ** to make room for the new tables root page. In case this page turns
    ** out to be an overflow page, delete all overflow page-map caches
    ** held by open cursors.
    */
    invalidateAllOverflowCache(pBt);

    /* Read the value of meta[3] from the database to determine where the
    ** root page of the new table should go. meta[3] is the largest root-page
    ** created so far, so the new root-page is (meta[3]+1).
    */
    rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    pgnoRoot++;

    /* The new root-page may not be allocated on a pointer-map page, or the
    ** PENDING_BYTE page.
    */
    if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
        pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
      pgnoRoot++;
    }
    assert( pgnoRoot>=3 );

    /* Allocate a page. The page that currently resides at pgnoRoot will
    ** be moved to the allocated page (unless the allocated page happens
    ** to reside at pgnoRoot).
    */
    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    if( pgnoMove!=pgnoRoot ){
      /* pgnoRoot is the page that will be used for the root-page of
      ** the new table (assuming an error did not occur). But we were
      ** allocated pgnoMove. If required (i.e. if it was not allocated
      ** by extending the file), the current page at position pgnoMove
      ** is already journaled.
      */
      u8 eType;
      Pgno iPtrPage;

      releasePage(pPageMove);

      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        releasePage(pRoot);
        return rc;
      }
      assert( eType!=PTRMAP_ROOTPAGE );
      assert( eType!=PTRMAP_FREEPAGE );
      rc = sqlite3PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
      releasePage(pRoot);

      /* Obtain the page at pgnoRoot */
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite3PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
    }else{
      pRoot = pPageMove;
    } 

    /* Update the pointer-map and meta-data with the new root-page number. */
    rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
    if( rc ){
      releasePage(pRoot);
      return rc;
    }
    rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
    if( rc ){
      releasePage(pRoot);
      return rc;
    }

  }else{
    rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
    if( rc ) return rc;
  }
#endif
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  zeroPage(pRoot, flags | PTF_LEAF);
  sqlite3PagerUnref(pRoot->pDbPage);
  *piTable = (int)pgnoRoot;
  return SQLITE_OK;
}
int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeCreateTable(p, piTable, flags);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Erase the given database page and all its children.  Return
** the page to the freelist.
*/
static int clearDatabasePage(
  BtShared *pBt,           /* The BTree that contains the table */
  Pgno pgno,            /* Page number to clear */
  MemPage *pParent,     /* Parent page.  NULL for the root */
  int freePageFlag      /* Deallocate page if true */
){
  MemPage *pPage = 0;
  int rc;
  unsigned char *pCell;
  int i;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = getAndInitPage(pBt, pgno, &pPage, pParent);
  if( rc ) goto cleardatabasepage_out;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
      if( rc ) goto cleardatabasepage_out;
    }
    rc = clearCell(pPage, pCell);
    if( rc ) goto cleardatabasepage_out;
  }
  if( !pPage->leaf ){
    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
    if( rc ) goto cleardatabasepage_out;
  }
  if( freePageFlag ){
    rc = freePage(pPage);
  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
    zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
  }

cleardatabasepage_out:
  releasePage(pPage);
  return rc;
}

/*
** Delete all information from a single table in the database.  iTable is
** the page number of the root of the table.  After this routine returns,
** the root page is empty, but still exists.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** read cursors on the table.  Open write cursors are moved to the
** root of the table.
*/
int sqlite3BtreeClearTable(Btree *p, int iTable){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  if( p->inTrans!=TRANS_WRITE ){
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
    /* nothing to do */
  }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
    /* nothing to do */
  }else{
    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Erase all information in a table and add the root of the table to
** the freelist.  Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** cursors on the table.
**
** If AUTOVACUUM is enabled and the page at iTable is not the last
** root page in the database file, then the last root page 
** in the database file is moved into the slot formerly occupied by
** iTable and that last slot formerly occupied by the last root page
** is added to the freelist instead of iTable.  In this say, all
** root pages are kept at the beginning of the database file, which
** is necessary for AUTOVACUUM to work right.  *piMoved is set to the 
** page number that used to be the last root page in the file before
** the move.  If no page gets moved, *piMoved is set to 0.
** The last root page is recorded in meta[3] and the value of
** meta[3] is updated by this procedure.
*/
static int btreeDropTable(Btree *p, int iTable, int *piMoved){
  int rc;
  MemPage *pPage = 0;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeHoldsMutex(p) );
  if( p->inTrans!=TRANS_WRITE ){
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }

  /* It is illegal to drop a table if any cursors are open on the
  ** database. This is because in auto-vacuum mode the backend may
  ** need to move another root-page to fill a gap left by the deleted
  ** root page. If an open cursor was using this page a problem would 
  ** occur.
  */
  if( pBt->pCursor ){
    return SQLITE_LOCKED;
  }

  rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

  *piMoved = 0;

  if( iTable>1 ){
#ifdef SQLITE_OMIT_AUTOVACUUM
    rc = freePage(pPage);
    releasePage(pPage);
#else
    if( pBt->autoVacuum ){
      Pgno maxRootPgno;
      rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
      if( rc!=SQLITE_OK ){
        releasePage(pPage);
        return rc;
      }

      if( iTable==maxRootPgno ){
        /* If the table being dropped is the table with the largest root-page
        ** number in the database, put the root page on the free list. 
        */
        rc = freePage(pPage);
        releasePage(pPage);
        if( rc!=SQLITE_OK ){
          return rc;
        }
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 
        ** gap left by the deleted root-page.
        */
        MemPage *pMove;
        releasePage(pPage);
        rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = freePage(pMove);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }

      /* Set the new 'max-root-page' value in the database header. This
      ** is the old value less one, less one more if that happens to
      ** be a root-page number, less one again if that is the
      ** PENDING_BYTE_PAGE.
      */
      maxRootPgno--;
      if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
        maxRootPgno--;
      }
      if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
        maxRootPgno--;
      }
      assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );

      rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
    }else{
      rc = freePage(pPage);
      releasePage(pPage);
    }
#endif
  }else{
    /* If sqlite3BtreeDropTable was called on page 1. */
    zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
    releasePage(pPage);
  }
  return rc;  
}
int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeDropTable(p, iTable, piMoved);
  sqlite3BtreeLeave(p);
  return rc;
}


/*
** Read the meta-information out of a database file.  Meta[0]
** is the number of free pages currently in the database.  Meta[1]
** through meta[15] are available for use by higher layers.  Meta[0]
** is read-only, the others are read/write.
** 
** The schema layer numbers meta values differently.  At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible.  So Cookie[0] is the same as Meta[1].
*/
int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  DbPage *pDbPage;
  int rc;
  unsigned char *pP1;
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);

  /* Reading a meta-data value requires a read-lock on page 1 (and hence
  ** the sqlite_master table. We grab this lock regardless of whether or
  ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
  ** 1 is treated as a special case by queryTableLock() and lockTable()).
  */
  rc = queryTableLock(p, 1, READ_LOCK);
  if( rc!=SQLITE_OK ){
    sqlite3BtreeLeave(p);
    return rc;
  }

  assert( idx>=0 && idx<=15 );
  rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
  if( rc ){
    sqlite3BtreeLeave(p);
    return rc;
  }
  pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
  *pMeta = get4byte(&pP1[36 + idx*4]);
  sqlite3PagerUnref(pDbPage);

  /* If autovacuumed is disabled in this build but we are trying to 
  ** access an autovacuumed database, then make the database readonly. 
  */
#ifdef SQLITE_OMIT_AUTOVACUUM
  if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
#endif

  /* Grab the read-lock on page 1. */
  rc = lockTable(p, 1, READ_LOCK);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Write meta-information back into the database.  Meta[0] is
** read-only and may not be written.
*/
int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
  BtShared *pBt = p->pBt;
  unsigned char *pP1;
  int rc;
  assert( idx>=1 && idx<=15 );
  sqlite3BtreeEnter(p);
  if( p->inTrans!=TRANS_WRITE ){
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }else{
    assert( pBt->pPage1!=0 );
    pP1 = pBt->pPage1->aData;
    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc==SQLITE_OK ){
      put4byte(&pP1[36 + idx*4], iMeta);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( idx==7 ){
        assert( pBt->autoVacuum || iMeta==0 );
        assert( iMeta==0 || iMeta==1 );
        pBt->incrVacuum = iMeta;
      }
#endif
    }
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Return the flag byte at the beginning of the page that the cursor
** is currently pointing to.
*/
int sqlite3BtreeFlags(BtCursor *pCur){
  /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
  ** restoreOrClearCursorPosition() here.
  */
  MemPage *pPage = pCur->pPage;
  assert( cursorHoldsMutex(pCur) );
  assert( pPage->pBt==pCur->pBt );
  return pPage ? pPage->aData[pPage->hdrOffset] : 0;
}


/*
** Return the pager associated with a BTree.  This routine is used for
** testing and debugging only.
*/
Pager *sqlite3BtreePager(Btree *p){
  return p->pBt->pPager;
}

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(
  IntegrityCk *pCheck,
  char *zMsg1,
  const char *zFormat,
  ...
){
  va_list ap;
  char *zMsg2;
  if( !pCheck->mxErr ) return;
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
  va_end(ap);
  if( zMsg1==0 ) zMsg1 = "";
  if( pCheck->zErrMsg ){
    char *zOld = pCheck->zErrMsg;
    pCheck->zErrMsg = 0;
    sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
    sqlite3_free(zOld);
  }else{
    sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
  }
  sqlite3_free(zMsg2);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage || iPage<0 ){
    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
    return 1;
  }
  if( pCheck->anRef[iPage]==1 ){
    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
    return 1;
  }
  return  (pCheck->anRef[iPage]++)>1;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to 
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void checkPtrmap(
  IntegrityCk *pCheck,   /* Integrity check context */
  Pgno iChild,           /* Child page number */
  u8 eType,              /* Expected pointer map type */
  Pgno iParent,          /* Expected pointer map parent page number */
  char *zContext         /* Context description (used for error msg) */
){
  int rc;
  u8 ePtrmapType;
  Pgno iPtrmapParent;

  rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  if( rc!=SQLITE_OK ){
    checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
    return;
  }

  if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
    checkAppendMsg(pCheck, zContext, 
      "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
      iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  }
}
#endif

/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  int iPage,            /* Page number for first page in the list */
  int N,                /* Expected number of pages in the list */
  char *zContext        /* Context for error messages */
){
  int i;
  int expected = N;
  int iFirst = iPage;
  while( N-- > 0 && pCheck->mxErr ){
    DbPage *pOvflPage;
    unsigned char *pOvflData;
    if( iPage<1 ){
      checkAppendMsg(pCheck, zContext,
         "%d of %d pages missing from overflow list starting at %d",
          N+1, expected, iFirst);
      break;
    }
    if( checkRef(pCheck, iPage, zContext) ) break;
    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
      checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
      break;
    }
    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
    if( isFreeList ){
      int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pCheck->pBt->autoVacuum ){
        checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
      }
#endif
      if( n>pCheck->pBt->usableSize/4-8 ){
        checkAppendMsg(pCheck, zContext,
           "freelist leaf count too big on page %d", iPage);
        N--;
      }else{
        for(i=0; i<n; i++){
          Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
          if( pCheck->pBt->autoVacuum ){
            checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
          }
#endif
          checkRef(pCheck, iFreePage, zContext);
        }
        N -= n;
      }
    }
#ifndef SQLITE_OMIT_AUTOVACUUM
    else{
      /* If this database supports auto-vacuum and iPage is not the last
      ** page in this overflow list, check that the pointer-map entry for
      ** the following page matches iPage.
      */
      if( pCheck->pBt->autoVacuum && N>0 ){
        i = get4byte(pOvflData);
        checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
      }
    }
#endif
    iPage = get4byte(pOvflData);
    sqlite3PagerUnref(pOvflPage);
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Do various sanity checks on a single page of a tree.  Return
** the tree depth.  Root pages return 0.  Parents of root pages
** return 1, and so forth.
** 
** These checks are done:
**
**      1.  Make sure that cells and freeblocks do not overlap
**          but combine to completely cover the page.
**  NO  2.  Make sure cell keys are in order.
**  NO  3.  Make sure no key is less than or equal to zLowerBound.
**  NO  4.  Make sure no key is greater than or equal to zUpperBound.
**      5.  Check the integrity of overflow pages.
**      6.  Recursively call checkTreePage on all children.
**      7.  Verify that the depth of all children is the same.
**      8.  Make sure this page is at least 33% full or else it is
**          the root of the tree.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  MemPage *pParent,     /* Parent page */
  char *zParentContext  /* Parent context */
){
  MemPage *pPage;
  int i, rc, depth, d2, pgno, cnt;
  int hdr, cellStart;
  int nCell;
  u8 *data;
  BtShared *pBt;
  int usableSize;
  char zContext[100];
  char *hit;

  sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck, zContext,
       "unable to get the page. error code=%d", rc);
    return 0;
  }
  if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
    checkAppendMsg(pCheck, zContext, 
                   "sqlite3BtreeInitPage() returns error code %d", rc);
    releasePage(pPage);
    return 0;
  }

  /* Check out all the cells.
  */
  depth = 0;
  for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
    u8 *pCell;
    int sz;
    CellInfo info;

    /* Check payload overflow pages
    */
    sqlite3_snprintf(sizeof(zContext), zContext,
             "On tree page %d cell %d: ", iPage, i);
    pCell = findCell(pPage,i);
    sqlite3BtreeParseCellPtr(pPage, pCell, &info);
    sz = info.nData;
    if( !pPage->intKey ) sz += info.nKey;
    assert( sz==info.nPayload );
    if( sz>info.nLocal ){
      int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
      Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
      }
#endif
      checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
    }

    /* Check sanity of left child page.
    */
    if( !pPage->leaf ){
      pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
      }
#endif
      d2 = checkTreePage(pCheck,pgno,pPage,zContext);
      if( i>0 && d2!=depth ){
        checkAppendMsg(pCheck, zContext, "Child page depth differs");
      }
      depth = d2;
    }
  }
  if( !pPage->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    sqlite3_snprintf(sizeof(zContext), zContext, 
                     "On page %d at right child: ", iPage);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
    }
#endif
    checkTreePage(pCheck, pgno, pPage, zContext);
  }
 
  /* Check for complete coverage of the page
  */
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  hit = sqlite3MallocZero( usableSize );
  if( hit ){
    memset(hit, 1, get2byte(&data[hdr+5]));
    nCell = get2byte(&data[hdr+3]);
    cellStart = hdr + 12 - 4*pPage->leaf;
    for(i=0; i<nCell; i++){
      int pc = get2byte(&data[cellStart+i*2]);
      int size = cellSizePtr(pPage, &data[pc]);
      int j;
      if( (pc+size-1)>=usableSize || pc<0 ){
        checkAppendMsg(pCheck, 0, 
            "Corruption detected in cell %d on page %d",i,iPage,0);
      }else{
        for(j=pc+size-1; j>=pc; j--) hit[j]++;
      }
    }
    for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; 
           cnt++){
      int size = get2byte(&data[i+2]);
      int j;
      if( (i+size-1)>=usableSize || i<0 ){
        checkAppendMsg(pCheck, 0,  
            "Corruption detected in cell %d on page %d",i,iPage,0);
      }else{
        for(j=i+size-1; j>=i; j--) hit[j]++;
      }
      i = get2byte(&data[i]);
    }
    for(i=cnt=0; i<usableSize; i++){
      if( hit[i]==0 ){
        cnt++;
      }else if( hit[i]>1 ){
        checkAppendMsg(pCheck, 0,
          "Multiple uses for byte %d of page %d", i, iPage);
        break;
      }
    }
    if( cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck, 0, 
          "Fragmented space is %d byte reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite3_free(hit);

  releasePage(pPage);
  return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file.  aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table.  nRoot is the number of entries in aRoot.
**
** If everything checks out, this routine returns NULL.  If something is
** amiss, an error message is written into memory obtained from malloc()
** and a pointer to that error message is returned.  The calling function
** is responsible for freeing the error message when it is done.
*/
char *sqlite3BtreeIntegrityCheck(
  Btree *p,     /* The btree to be checked */
  int *aRoot,   /* An array of root pages numbers for individual trees */
  int nRoot,    /* Number of entries in aRoot[] */
  int mxErr,    /* Stop reporting errors after this many */
  int *pnErr    /* Write number of errors seen to this variable */
){
  int i;
  int nRef;
  IntegrityCk sCheck;
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  nRef = sqlite3PagerRefcount(pBt->pPager);
  if( lockBtreeWithRetry(p)!=SQLITE_OK ){
    sqlite3BtreeLeave(p);
    return sqlite3StrDup("Unable to acquire a read lock on the database");
  }
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  *pnErr = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
  if( pBt->nTrunc!=0 ){
    sCheck.nPage = pBt->nTrunc;
  }
#endif
  if( sCheck.nPage==0 ){
    unlockBtreeIfUnused(pBt);
    sqlite3BtreeLeave(p);
    return 0;
  }
  sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
  if( !sCheck.anRef ){
    unlockBtreeIfUnused(pBt);
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return sqlite3MPrintf(p->pSqlite, "Unable to malloc %d bytes", 
        (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
  }
  for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ){
    sCheck.anRef[i] = 1;
  }
  sCheck.zErrMsg = 0;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");

  /* Check all the tables.
  */
  for(i=0; i<nRoot && sCheck.mxErr; i++){
    if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && aRoot[i]>1 ){
      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
    }
#endif
    checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( sCheck.anRef[i]==0 ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( sCheck.anRef[i]==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
    if( sCheck.anRef[i]!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages
  */
  unlockBtreeIfUnused(pBt);
  if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
    checkAppendMsg(&sCheck, 0, 
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite3PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */
  sqlite3BtreeLeave(p);
  sqlite3_free(sCheck.anRef);
  *pnErr = sCheck.nErr;
  return sCheck.zErrMsg;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** Return the full pathname of the underlying database file.
**
** The pager filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetFilename(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite3PagerFilename(p->pBt->pPager);
}

/*
** Return the pathname of the directory that contains the database file.
**
** The pager directory name is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetDirname(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite3PagerDirname(p->pBt->pPager);
}

/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
**
** The pager journal filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetJournalname(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite3PagerJournalname(p->pBt->pPager);
}

#ifndef SQLITE_OMIT_VACUUM
/*
** Copy the complete content of pBtFrom into pBtTo.  A transaction
** must be active for both files.
**
** The size of file pBtFrom may be reduced by this operation.
** If anything goes wrong, the transaction on pBtFrom is rolled back.
*/
static int btreeCopyFile(Btree *pTo, Btree *pFrom){
  int rc = SQLITE_OK;
  Pgno i, nPage, nToPage, iSkip;

  BtShared *pBtTo = pTo->pBt;
  BtShared *pBtFrom = pFrom->pBt;

  if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
    return SQLITE_ERROR;
  }
  if( pBtTo->pCursor ) return SQLITE_BUSY;
  nToPage = sqlite3PagerPagecount(pBtTo->pPager);
  nPage = sqlite3PagerPagecount(pBtFrom->pPager);
  iSkip = PENDING_BYTE_PAGE(pBtTo);
  for(i=1; rc==SQLITE_OK && i<=nPage; i++){
    DbPage *pDbPage;
    if( i==iSkip ) continue;
    rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage);
    if( rc ) break;
    rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage));
    sqlite3PagerUnref(pDbPage);
  }

  /* If the file is shrinking, journal the pages that are being truncated
  ** so that they can be rolled back if the commit fails.
  */
  for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
    DbPage *pDbPage;
    if( i==iSkip ) continue;
    rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
    if( rc ) break;
    rc = sqlite3PagerWrite(pDbPage);
    sqlite3PagerDontWrite(pDbPage);
    /* Yeah.  It seems wierd to call DontWrite() right after Write().  But
    ** that is because the names of those procedures do not exactly 
    ** represent what they do.  Write() really means "put this page in the
    ** rollback journal and mark it as dirty so that it will be written
    ** to the database file later."  DontWrite() undoes the second part of
    ** that and prevents the page from being written to the database.  The
    ** page is still on the rollback journal, though.  And that is the whole
    ** point of this loop: to put pages on the rollback journal. */
    sqlite3PagerUnref(pDbPage);
  }
  if( !rc && nPage<nToPage ){
    rc = sqlite3PagerTruncate(pBtTo->pPager, nPage);
  }

  if( rc ){
    sqlite3BtreeRollback(pTo);
  }
  return rc;  
}
int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
  int rc;
  sqlite3BtreeEnter(pTo);
  sqlite3BtreeEnter(pFrom);
  rc = btreeCopyFile(pTo, pFrom);
  sqlite3BtreeLeave(pFrom);
  sqlite3BtreeLeave(pTo);
  return rc;
}

#endif /* SQLITE_OMIT_VACUUM */

/*
** Return non-zero if a transaction is active.
*/
int sqlite3BtreeIsInTrans(Btree *p){
  assert( p==0 || sqlite3_mutex_held(p->pSqlite->mutex) );
  return (p && (p->inTrans==TRANS_WRITE));
}

/*
** Return non-zero if a statement transaction is active.
*/
int sqlite3BtreeIsInStmt(Btree *p){
  assert( sqlite3BtreeHoldsMutex(p) );
  return (p->pBt && p->pBt->inStmt);
}

/*
** Return non-zero if a read (or write) transaction is active.
*/
int sqlite3BtreeIsInReadTrans(Btree *p){
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  return (p && (p->inTrans!=TRANS_NONE));
}

/*
** This function returns a pointer to a blob of memory associated with
** a single shared-btree. The memory is used by client code for it's own
** purposes (for example, to store a high-level schema associated with 
** the shared-btree). The btree layer manages reference counting issues.
**
** The first time this is called on a shared-btree, nBytes bytes of memory
** are allocated, zeroed, and returned to the caller. For each subsequent 
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned. 
**
** Just before the shared-btree is closed, the function passed as the 
** xFree argument when the memory allocation was made is invoked on the 
** blob of allocated memory. This function should not call sqlite3_free()
** on the memory, the btree layer does that.
*/
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  if( !pBt->pSchema ){
    pBt->pSchema = sqlite3MallocZero(nBytes);
    pBt->xFreeSchema = xFree;
  }
  sqlite3BtreeLeave(p);
  return pBt->pSchema;
}

/*
** Return true if another user of the same shared btree as the argument
** handle holds an exclusive lock on the sqlite_master table.
*/
int sqlite3BtreeSchemaLocked(Btree *p){
  int rc;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
  sqlite3BtreeLeave(p);
  return rc;
}


#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Obtain a lock on the table whose root page is iTab.  The
** lock is a write lock if isWritelock is true or a read lock
** if it is false.
*/
int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
  int rc = SQLITE_OK;
  u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
  sqlite3BtreeEnter(p);
  rc = queryTableLock(p, iTab, lockType);
  if( rc==SQLITE_OK ){
    rc = lockTable(p, iTab, lockType);
  }
  sqlite3BtreeLeave(p);
  return rc;
}
#endif

#ifndef SQLITE_OMIT_INCRBLOB
/*
** Argument pCsr must be a cursor opened for writing on an 
** INTKEY table currently pointing at a valid table entry. 
** This function modifies the data stored as part of that entry.
** Only the data content may only be modified, it is not possible
** to change the length of the data stored.
*/
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  assert( cursorHoldsMutex(pCsr) );
  assert( sqlite3_mutex_held(pCsr->pBtree->pSqlite->mutex) );
  assert(pCsr->isIncrblobHandle);
  if( pCsr->eState>=CURSOR_REQUIRESEEK ){
    if( pCsr->eState==CURSOR_FAULT ){
      return pCsr->skip;
    }else{
      return SQLITE_ABORT;
    }
  }

  /* Check some preconditions: 
  **   (a) the cursor is open for writing,
  **   (b) there is no read-lock on the table being modified and
  **   (c) the cursor points at a valid row of an intKey table.
  */
  if( !pCsr->wrFlag ){
    return SQLITE_READONLY;
  }
  assert( !pCsr->pBt->readOnly 
          && pCsr->pBt->inTransaction==TRANS_WRITE );
  if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }
  if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
    return SQLITE_ERROR;
  }

  return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
}

/* 
** Set a flag on this cursor to cache the locations of pages from the 
** overflow list for the current row. This is used by cursors opened
** for incremental blob IO only.
**
** This function sets a flag only. The actual page location cache
** (stored in BtCursor.aOverflow[]) is allocated and used by function
** accessPayload() (the worker function for sqlite3BtreeData() and
** sqlite3BtreePutData()).
*/
void sqlite3BtreeCacheOverflow(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
  assert(!pCur->isIncrblobHandle);
  assert(!pCur->aOverflow);
  pCur->isIncrblobHandle = 1;
}
#endif