1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
standard ODE geometry primitives: public API and pairwise collision functions.
the rule is that only the low level primitive collision functions should set
dContactGeom::g1 and dContactGeom::g2.
*/
#include <ode/common.h>
#include <ode/collision.h>
#include <ode/matrix.h>
#include <ode/rotation.h>
#include <ode/odemath.h>
#include "collision_kernel.h"
#include "collision_std.h"
#include "collision_util.h"
#ifdef _MSC_VER
#pragma warning(disable:4291) // for VC++, no complaints about "no matching operator delete found"
#endif
//****************************************************************************
// sphere public API
dxSphere::dxSphere (dSpaceID space, dReal _radius) : dxGeom (space,1)
{
dAASSERT (_radius > 0);
type = dSphereClass;
radius = _radius;
}
void dxSphere::computeAABB()
{
aabb[0] = final_posr->pos[0] - radius;
aabb[1] = final_posr->pos[0] + radius;
aabb[2] = final_posr->pos[1] - radius;
aabb[3] = final_posr->pos[1] + radius;
aabb[4] = final_posr->pos[2] - radius;
aabb[5] = final_posr->pos[2] + radius;
}
dGeomID dCreateSphere (dSpaceID space, dReal radius)
{
return new dxSphere (space,radius);
}
void dGeomSphereSetRadius (dGeomID g, dReal radius)
{
dUASSERT (g && g->type == dSphereClass,"argument not a sphere");
dAASSERT (radius > 0);
dxSphere *s = (dxSphere*) g;
s->radius = radius;
dGeomMoved (g);
}
dReal dGeomSphereGetRadius (dGeomID g)
{
dUASSERT (g && g->type == dSphereClass,"argument not a sphere");
dxSphere *s = (dxSphere*) g;
return s->radius;
}
dReal dGeomSpherePointDepth (dGeomID g, dReal x, dReal y, dReal z)
{
dUASSERT (g && g->type == dSphereClass,"argument not a sphere");
g->recomputePosr();
dxSphere *s = (dxSphere*) g;
dReal * pos = s->final_posr->pos;
return s->radius - dSqrt ((x-pos[0])*(x-pos[0]) +
(y-pos[1])*(y-pos[1]) +
(z-pos[2])*(z-pos[2]));
}
//****************************************************************************
// pairwise collision functions for standard geom types
int dCollideSphereSphere (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dSphereClass);
dIASSERT (o2->type == dSphereClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
dxSphere *sphere1 = (dxSphere*) o1;
dxSphere *sphere2 = (dxSphere*) o2;
contact->g1 = o1;
contact->g2 = o2;
return dCollideSpheres (o1->final_posr->pos,sphere1->radius,
o2->final_posr->pos,sphere2->radius,contact);
}
int dCollideSphereBox (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dSphereClass);
dIASSERT (o2->type == dBoxClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
// this is easy. get the sphere center `p' relative to the box, and then clip
// that to the boundary of the box (call that point `q'). if q is on the
// boundary of the box and |p-q| is <= sphere radius, they touch.
// if q is inside the box, the sphere is inside the box, so set a contact
// normal to push the sphere to the closest box face.
dVector3 l,t,p,q,r;
dReal depth;
int onborder = 0;
dxSphere *sphere = (dxSphere*) o1;
dxBox *box = (dxBox*) o2;
contact->g1 = o1;
contact->g2 = o2;
p[0] = o1->final_posr->pos[0] - o2->final_posr->pos[0];
p[1] = o1->final_posr->pos[1] - o2->final_posr->pos[1];
p[2] = o1->final_posr->pos[2] - o2->final_posr->pos[2];
l[0] = box->side[0]*REAL(0.5);
t[0] = dDOT14(p,o2->final_posr->R);
if (t[0] < -l[0]) { t[0] = -l[0]; onborder = 1; }
if (t[0] > l[0]) { t[0] = l[0]; onborder = 1; }
l[1] = box->side[1]*REAL(0.5);
t[1] = dDOT14(p,o2->final_posr->R+1);
if (t[1] < -l[1]) { t[1] = -l[1]; onborder = 1; }
if (t[1] > l[1]) { t[1] = l[1]; onborder = 1; }
t[2] = dDOT14(p,o2->final_posr->R+2);
l[2] = box->side[2]*REAL(0.5);
if (t[2] < -l[2]) { t[2] = -l[2]; onborder = 1; }
if (t[2] > l[2]) { t[2] = l[2]; onborder = 1; }
if (!onborder) {
// sphere center inside box. find closest face to `t'
dReal min_distance = l[0] - dFabs(t[0]);
int mini = 0;
for (int i=1; i<3; i++) {
dReal face_distance = l[i] - dFabs(t[i]);
if (face_distance < min_distance) {
min_distance = face_distance;
mini = i;
}
}
// contact position = sphere center
contact->pos[0] = o1->final_posr->pos[0];
contact->pos[1] = o1->final_posr->pos[1];
contact->pos[2] = o1->final_posr->pos[2];
// contact normal points to closest face
dVector3 tmp;
tmp[0] = 0;
tmp[1] = 0;
tmp[2] = 0;
tmp[mini] = (t[mini] > 0) ? REAL(1.0) : REAL(-1.0);
dMULTIPLY0_331 (contact->normal,o2->final_posr->R,tmp);
// contact depth = distance to wall along normal plus radius
contact->depth = min_distance + sphere->radius;
return 1;
}
t[3] = 0; //@@@ hmmm
dMULTIPLY0_331 (q,o2->final_posr->R,t);
r[0] = p[0] - q[0];
r[1] = p[1] - q[1];
r[2] = p[2] - q[2];
depth = sphere->radius - dSqrt(dDOT(r,r));
if (depth < 0) return 0;
contact->pos[0] = q[0] + o2->final_posr->pos[0];
contact->pos[1] = q[1] + o2->final_posr->pos[1];
contact->pos[2] = q[2] + o2->final_posr->pos[2];
contact->normal[0] = r[0];
contact->normal[1] = r[1];
contact->normal[2] = r[2];
dNormalize3 (contact->normal);
contact->depth = depth;
return 1;
}
int dCollideSpherePlane (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dSphereClass);
dIASSERT (o2->type == dPlaneClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
dxSphere *sphere = (dxSphere*) o1;
dxPlane *plane = (dxPlane*) o2;
contact->g1 = o1;
contact->g2 = o2;
dReal k = dDOT (o1->final_posr->pos,plane->p);
dReal depth = plane->p[3] - k + sphere->radius;
if (depth >= 0) {
contact->normal[0] = plane->p[0];
contact->normal[1] = plane->p[1];
contact->normal[2] = plane->p[2];
contact->pos[0] = o1->final_posr->pos[0] - plane->p[0] * sphere->radius;
contact->pos[1] = o1->final_posr->pos[1] - plane->p[1] * sphere->radius;
contact->pos[2] = o1->final_posr->pos[2] - plane->p[2] * sphere->radius;
contact->depth = depth;
return 1;
}
else return 0;
}
|