aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9/ode/src/scrapbook.cpp
blob: 2621814c95a8431f65f72dac23470af389359e64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

/*

this is code that was once useful but has now been obseleted.

this file should not be compiled as part of ODE!

*/

//***************************************************************************
// intersect a line segment with a plane

extern "C" int dClipLineToBox (const dVector3 p1, const dVector3 p2,
			       const dVector3 p, const dMatrix3 R,
			       const dVector3 side)
{
  // compute the start and end of the line (p1 and p2) relative to the box.
  // we will do all subsequent computations in this box-relative coordinate
  // system. we have to do a translation and rotation for each point.
  dVector3 tmp,s,e;
  tmp[0] = p1[0] - p[0];
  tmp[1] = p1[1] - p[1];
  tmp[2] = p1[2] - p[2];
  dMULTIPLY1_331 (s,R,tmp);
  tmp[0] = p2[0] - p[0];
  tmp[1] = p2[1] - p[1];
  tmp[2] = p2[2] - p[2];
  dMULTIPLY1_331 (e,R,tmp);

  // compute the vector 'v' from the start point to the end point
  dVector3 v;
  v[0] = e[0] - s[0];
  v[1] = e[1] - s[1];
  v[2] = e[2] - s[2];

  // a point on the line is defined by the parameter 't'. t=0 corresponds
  // to the start of the line, t=1 corresponds to the end of the line.
  // we will clip the line to the box by finding the range of t where a
  // point on the line is inside the box. the currently known bounds for
  // t and tlo..thi.
  dReal tlo=0,thi=1;

  // clip in the X/Y/Z direction
  for (int i=0; i<3; i++) {
    // first adjust s,e for the current t range. this is redundant for the
    // first iteration, but never mind.
    e[i] = s[i] + thi*v[i];
    s[i] = s[i] + tlo*v[i];
    // compute where t intersects the positive and negative sides.
    dReal tp = ( side[i] - s[i])/v[i];	// @@@ handle case where denom=0
    dReal tm = (-side[i] - s[i])/v[i];
    // handle 9 intersection cases
    if (s[i] <= -side[i]) {
      tlo = tm;
      if (e[i] <= -side[i]) return 0;
      else if (e[i] >= side[i]) thi = tp;
    }
    else if (s[i] <= side[i]) {
      if (e[i] <= -side[i]) thi = tm;
      else if (e[i] >= side[i]) thi = tp;
    }
    else {
      tlo = tp;
      if (e[i] <= -side[i]) thi = tm;
      else if (e[i] >= side[i]) return 0;
    }
  }

  //... @@@ AT HERE @@@

  return 1;
}


//***************************************************************************
// a nice try at C-B collision. unfortunately it doesn't work. the logic
// for testing for line-box intersection is correct, but unfortunately the
// closest-point distance estimates are often too large. as a result contact
// points are placed incorrectly.


int dCollideCB (const dxGeom *o1, const dxGeom *o2, int flags,
		dContactGeom *contact, int skip)
{
  int i;

  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->_class->num == dCCylinderClass);
  dIASSERT (o2->_class->num == dBoxClass);
  contact->g1 = const_cast<dxGeom*> (o1);
  contact->g2 = const_cast<dxGeom*> (o2);
  dxCCylinder *cyl = (dxCCylinder*) CLASSDATA(o1);
  dxBox *box = (dxBox*) CLASSDATA(o2);

  // get p1,p2 = cylinder axis endpoints, get radius
  dVector3 p1,p2;
  dReal clen = cyl->lz * REAL(0.5);
  p1[0] = o1->pos[0] + clen * o1->R[2];
  p1[1] = o1->pos[1] + clen * o1->R[6];
  p1[2] = o1->pos[2] + clen * o1->R[10];
  p2[0] = o1->pos[0] - clen * o1->R[2];
  p2[1] = o1->pos[1] - clen * o1->R[6];
  p2[2] = o1->pos[2] - clen * o1->R[10];
  dReal radius = cyl->radius;

  // copy out box center, rotation matrix, and side array
  dReal *c = o2->pos;
  dReal *R = o2->R;
  dReal *side = box->side;

  // compute the start and end of the line (p1 and p2) relative to the box.
  // we will do all subsequent computations in this box-relative coordinate
  // system. we have to do a translation and rotation for each point.
  dVector3 tmp3,s,e;
  tmp3[0] = p1[0] - c[0];
  tmp3[1] = p1[1] - c[1];
  tmp3[2] = p1[2] - c[2];
  dMULTIPLY1_331 (s,R,tmp3);
  tmp3[0] = p2[0] - c[0];
  tmp3[1] = p2[1] - c[1];
  tmp3[2] = p2[2] - c[2];
  dMULTIPLY1_331 (e,R,tmp3);

  // compute the vector 'v' from the start point to the end point
  dVector3 v;
  v[0] = e[0] - s[0];
  v[1] = e[1] - s[1];
  v[2] = e[2] - s[2];

  // compute the half-sides of the box
  dReal S0 = side[0] * REAL(0.5);
  dReal S1 = side[1] * REAL(0.5);
  dReal S2 = side[2] * REAL(0.5);

  // compute the size of the bounding box around the line segment
  dReal B0 = dFabs (v[0]);
  dReal B1 = dFabs (v[1]);
  dReal B2 = dFabs (v[2]);

  // for all 6 separation axes, measure the penetration depth. if any depth is
  // less than 0 then the objects don't penetrate at all so we can just
  // return 0. find the axis with the smallest depth, and record its normal.

  // note: normalR is set to point to a column of R if that is the smallest
  // depth normal so far. otherwise normalR is 0 and normalC is set to a
  // vector relative to the box. invert_normal is 1 if the sign of the normal
  // should be flipped.

  dReal depth,trial_depth,tmp,length;
  const dReal *normalR=0;
  dVector3 normalC;
  int invert_normal = 0;
  int code = 0;		// 0=no contact, 1-3=face contact, 4-6=edge contact

  depth = dInfinity;

  // look at face-normal axes

#undef TEST
#define TEST(center,depth_expr,norm,contact_code) \
  tmp = (center); \
  trial_depth = radius + REAL(0.5) * ((depth_expr) - dFabs(tmp)); \
  if (trial_depth < 0) return 0; \
  if (trial_depth < depth) { \
    depth = trial_depth; \
    normalR = (norm); \
    invert_normal = (tmp < 0); \
    code = contact_code; \
  }

  TEST (s[0]+e[0], side[0] + B0, R+0, 1);
  TEST (s[1]+e[1], side[1] + B1, R+1, 2);
  TEST (s[2]+e[2], side[2] + B2, R+2, 3);

  // look at v x box-edge axes

#undef TEST
#define TEST(box_radius,line_offset,nx,ny,nz,contact_code) \
  tmp = (line_offset); \
  trial_depth = (box_radius) - dFabs(tmp); \
  length = dSqrt ((nx)*(nx) + (ny)*(ny) + (nz)*(nz)); \
  if (length > 0) { \
    length = dRecip(length); \
    trial_depth = trial_depth * length + radius; \
    if (trial_depth < 0) return 0; \
    if (trial_depth < depth) { \
      depth = trial_depth; \
      normalR = 0; \
      normalC[0] = (nx)*length; \
      normalC[1] = (ny)*length; \
      normalC[2] = (nz)*length; \
      invert_normal = (tmp < 0); \
      code = contact_code; \
    } \
  }

  TEST (B2*S1+B1*S2,v[1]*s[2]-v[2]*s[1], 0,-v[2],v[1], 4);
  TEST (B2*S0+B0*S2,v[2]*s[0]-v[0]*s[2], v[2],0,-v[0], 5);
  TEST (B1*S0+B0*S1,v[0]*s[1]-v[1]*s[0], -v[1],v[0],0, 6);

#undef TEST

  // if we get to this point, the box and ccylinder interpenetrate.
  // compute the normal in global coordinates.
  dReal *normal = contact[0].normal;
  if (normalR) {
    normal[0] = normalR[0];
    normal[1] = normalR[4];
    normal[2] = normalR[8];
  }
  else {
    dMULTIPLY0_331 (normal,R,normalC);
  }
  if (invert_normal) {
    normal[0] = -normal[0];
    normal[1] = -normal[1];
    normal[2] = -normal[2];
  }

  // set the depth
  contact[0].depth = depth;

  if (code == 0) {
    return 0;		// should never get here
  }
  else if (code >= 4) {
    // handle edge contacts
    // find an endpoint q1 on the intersecting edge of the box
    dVector3 q1;
    dReal sign[3];
    for (i=0; i<3; i++) q1[i] = c[i];
    sign[0] = (dDOT14(normal,R+0) > 0) ? REAL(1.0) : REAL(-1.0);
    for (i=0; i<3; i++) q1[i] += sign[0] * S0 * R[i*4];
    sign[1] = (dDOT14(normal,R+1) > 0) ? REAL(1.0) : REAL(-1.0);
    for (i=0; i<3; i++) q1[i] += sign[1] * S1 * R[i*4+1];
    sign[2] = (dDOT14(normal,R+2) > 0) ? REAL(1.0) : REAL(-1.0);
    for (i=0; i<3; i++) q1[i] += sign[2] * S2 * R[i*4+2];

    // find the other endpoint q2 of the intersecting edge
    dVector3 q2;
    for (i=0; i<3; i++)
      q2[i] = q1[i] - R[code-4 + i*4] * (sign[code-4] * side[code-4]);

    // determine the closest point between the box edge and the line segment
    dVector3 cp1,cp2;
    dClosestLineSegmentPoints (q1,q2, p1,p2, cp1,cp2);
    for (i=0; i<3; i++) contact[0].pos[i] = cp1[i] - REAL(0.5)*normal[i]*depth;
    return 1;
  }
  else {
    // handle face contacts.
    // @@@ temporary: make deepest vertex on the line the contact point.
    // @@@ this kind of works, but we sometimes need two contact points for
    // @@@ stability.

    // compute 'v' in global coordinates
    dVector3 gv;
    for (i=0; i<3; i++) gv[i] = p2[i] - p1[i];

    if (dDOT (normal,gv) > 0) {
      for (i=0; i<3; i++)
	contact[0].pos[i] = p1[i] + (depth*REAL(0.5)-radius)*normal[i];
    }
    else {
      for (i=0; i<3; i++)
	contact[0].pos[i] = p2[i] + (depth*REAL(0.5)-radius)*normal[i];
    }
    return 1;
  }
}

//***************************************************************************
// this function works, it's just not being used for anything at the moment:

// given a box (R,side), `R' is the rotation matrix for the box, and `side'
// is a vector of x/y/z side lengths, return the size of the interval of the
// box projected along the given axis. if the axis has unit length then the
// return value will be the actual diameter, otherwise the result will be
// scaled by the axis length.

static inline dReal boxDiameter (const dMatrix3 R, const dVector3 side,
				 const dVector3 axis)
{
  dVector3 q;
  dMULTIPLY1_331 (q,R,axis);	// transform axis to body-relative
  return dFabs(q[0])*side[0] + dFabs(q[1])*side[1] + dFabs(q[2])*side[2];
}

//***************************************************************************
// the old capped cylinder to capped cylinder collision code. this fails to
// detect cap-to-cap contact points when the cylinder axis are aligned, but
// other that that it is pretty robust.

// this returns at most one contact point when the two cylinder's axes are not
// aligned, and at most two (for stability) when they are aligned.
// the algorithm minimizes the distance between two "sample spheres" that are
// positioned along the cylinder axes according to:
//    sphere1 = pos1 + alpha1 * axis1
//    sphere2 = pos2 + alpha2 * axis2
// alpha1 and alpha2 are limited to +/- half the length of the cylinders.
// the algorithm works by finding a solution that has both alphas free, or
// a solution that has one or both alphas fixed to the ends of the cylinder.

int dCollideCCylinderCCylinder (dxGeom *o1, dxGeom *o2,
				int flags, dContactGeom *contact, int skip)
{
  int i;
  const dReal tolerance = REAL(1e-5);

  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dCCylinderClass);
  dIASSERT (o2->type == dCCylinderClass);
  dxCCylinder *cyl1 = (dxCCylinder*) o1;
  dxCCylinder *cyl2 = (dxCCylinder*) o2;

  contact->g1 = o1;
  contact->g2 = o2;

  // copy out some variables, for convenience
  dReal lz1 = cyl1->lz * REAL(0.5);
  dReal lz2 = cyl2->lz * REAL(0.5);
  dReal *pos1 = o1->pos;
  dReal *pos2 = o2->pos;
  dReal axis1[3],axis2[3];
  axis1[0] = o1->R[2];
  axis1[1] = o1->R[6];
  axis1[2] = o1->R[10];
  axis2[0] = o2->R[2];
  axis2[1] = o2->R[6];
  axis2[2] = o2->R[10];

  dReal alpha1,alpha2,sphere1[3],sphere2[3];
  int fix1 = 0;		// 0 if alpha1 is free, +/-1 to fix at +/- lz1
  int fix2 = 0;		// 0 if alpha2 is free, +/-1 to fix at +/- lz2

  for (int count=0; count<9; count++) {
    // find a trial solution by fixing or not fixing the alphas
    if (fix1) {
      if (fix2) {
	// alpha1 and alpha2 are fixed, so the solution is easy
	if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1;
	if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2;
	for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
	for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
      }
      else {
	// fix alpha1 but let alpha2 be free
	if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1;
	for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
	alpha2 = (axis2[0]*(sphere1[0]-pos2[0]) +
		  axis2[1]*(sphere1[1]-pos2[1]) +
		  axis2[2]*(sphere1[2]-pos2[2]));
	for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
      }
    }
    else {
      if (fix2) {
	// fix alpha2 but let alpha1 be free
	if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2;
	for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
	alpha1 = (axis1[0]*(sphere2[0]-pos1[0]) +
		  axis1[1]*(sphere2[1]-pos1[1]) +
		  axis1[2]*(sphere2[2]-pos1[2]));
	for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
      }
      else {
	// let alpha1 and alpha2 be free
	// compute determinant of d(d^2)\d(alpha) jacobian
	dReal a1a2 = dDOT (axis1,axis2);
	dReal det = REAL(1.0)-a1a2*a1a2;
	if (det < tolerance) {
	  // the cylinder axes (almost) parallel, so we will generate up to two
	  // contacts. the solution matrix is rank deficient so alpha1 and
	  // alpha2 are related by:
	  //       alpha2 =   alpha1 + (pos1-pos2)'*axis1   (if axis1==axis2)
	  //    or alpha2 = -(alpha1 + (pos1-pos2)'*axis1)  (if axis1==-axis2)
	  // first compute where the two cylinders overlap in alpha1 space:
	  if (a1a2 < 0) {
	    axis2[0] = -axis2[0];
	    axis2[1] = -axis2[1];
	    axis2[2] = -axis2[2];
	  }
	  dReal q[3];
	  for (i=0; i<3; i++) q[i] = pos1[i]-pos2[i];
	  dReal k = dDOT (axis1,q);
	  dReal a1lo = -lz1;
	  dReal a1hi = lz1;
	  dReal a2lo = -lz2 - k;
	  dReal a2hi = lz2 - k;
	  dReal lo = (a1lo > a2lo) ? a1lo : a2lo;
	  dReal hi = (a1hi < a2hi) ? a1hi : a2hi;
	  if (lo <= hi) {
	    int num_contacts = flags & NUMC_MASK;
	    if (num_contacts >= 2 && lo < hi) {
	      // generate up to two contacts. if one of those contacts is
	      // not made, fall back on the one-contact strategy.
	      for (i=0; i<3; i++) sphere1[i] = pos1[i] + lo*axis1[i];
	      for (i=0; i<3; i++) sphere2[i] = pos2[i] + (lo+k)*axis2[i];
	      int n1 = dCollideSpheres (sphere1,cyl1->radius,
					sphere2,cyl2->radius,contact);
	      if (n1) {
		for (i=0; i<3; i++) sphere1[i] = pos1[i] + hi*axis1[i];
		for (i=0; i<3; i++) sphere2[i] = pos2[i] + (hi+k)*axis2[i];
		dContactGeom *c2 = CONTACT(contact,skip);
		int n2 = dCollideSpheres (sphere1,cyl1->radius,
					  sphere2,cyl2->radius, c2);
		if (n2) {
		  c2->g1 = o1;
		  c2->g2 = o2;
		  return 2;
		}
	      }
	    }

	    // just one contact to generate, so put it in the middle of
	    // the range
	    alpha1 = (lo + hi) * REAL(0.5);
	    alpha2 = alpha1 + k;
	    for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
	    for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
	    return dCollideSpheres (sphere1,cyl1->radius,
				    sphere2,cyl2->radius,contact);
	  }
	  else return 0;
	}
	det = REAL(1.0)/det;
	dReal delta[3];
	for (i=0; i<3; i++) delta[i] = pos1[i] - pos2[i];
	dReal q1 = dDOT (delta,axis1);
	dReal q2 = dDOT (delta,axis2);
	alpha1 = det*(a1a2*q2-q1);
	alpha2 = det*(q2-a1a2*q1);
	for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
	for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
      }
    }

    // if the alphas are outside their allowed ranges then fix them and
    // try again
    if (fix1==0) {
      if (alpha1 < -lz1) {
	fix1 = -1;
	continue;
      }
      if (alpha1 > lz1) {
	fix1 = 1;
	continue;
      }
    }
    if (fix2==0) {
      if (alpha2 < -lz2) {
	fix2 = -1;
	continue;
      }
      if (alpha2 > lz2) {
	fix2 = 1;
	continue;
      }
    }

    // unfix the alpha variables if the local distance gradient indicates
    // that we are not yet at the minimum
    dReal tmp[3];
    for (i=0; i<3; i++) tmp[i] = sphere1[i] - sphere2[i];
    if (fix1) {
      dReal gradient = dDOT (tmp,axis1);
      if ((fix1 > 0 && gradient > 0) || (fix1 < 0 && gradient < 0)) {
	fix1 = 0;
	continue;
      }
    }
    if (fix2) {
      dReal gradient = -dDOT (tmp,axis2);
      if ((fix2 > 0 && gradient > 0) || (fix2 < 0 && gradient < 0)) {
	fix2 = 0;
	continue;
      }
    }
    return dCollideSpheres (sphere1,cyl1->radius,sphere2,cyl2->radius,contact);
  }
  // if we go through the loop too much, then give up. we should NEVER get to
  // this point (i hope).
  dMessage (0,"dCollideCC(): too many iterations");
  return 0;
}