aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9/ode/src/box.cpp
blob: f328651d913e1b4d92326eafbd3a6b3f30e86990 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of EITHER:                                  *
 *   (1) The GNU Lesser General Public License as published by the Free  *
 *       Software Foundation; either version 2.1 of the License, or (at  *
 *       your option) any later version. The text of the GNU Lesser      *
 *       General Public License is included with this library in the     *
 *       file LICENSE.TXT.                                               *
 *   (2) The BSD-style license that is included with this library in     *
 *       the file LICENSE-BSD.TXT.                                       *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

/*

standard ODE geometry primitives: public API and pairwise collision functions.

the rule is that only the low level primitive collision functions should set
dContactGeom::g1 and dContactGeom::g2.

*/

#include <ode/common.h>
#include <ode/collision.h>
#include <ode/matrix.h>
#include <ode/rotation.h>
#include <ode/odemath.h>
#include "collision_kernel.h"
#include "collision_std.h"
#include "collision_util.h"

#ifdef _MSC_VER
#pragma warning(disable:4291)  // for VC++, no complaints about "no matching operator delete found"
#endif

//****************************************************************************
// box public API

dxBox::dxBox (dSpaceID space, dReal lx, dReal ly, dReal lz) : dxGeom (space,1)
{
  dAASSERT (lx >= 0 && ly >= 0 && lz >= 0);
  type = dBoxClass;
  side[0] = lx;
  side[1] = ly;
  side[2] = lz;
}


void dxBox::computeAABB()
{
  const dMatrix3& R = final_posr->R;
  const dVector3& pos = final_posr->pos;
  
  dReal xrange = REAL(0.5) * (dFabs (R[0] * side[0]) +
    dFabs (R[1] * side[1]) + dFabs (R[2] * side[2]));
  dReal yrange = REAL(0.5) * (dFabs (R[4] * side[0]) +
    dFabs (R[5] * side[1]) + dFabs (R[6] * side[2]));
  dReal zrange = REAL(0.5) * (dFabs (R[8] * side[0]) +
    dFabs (R[9] * side[1]) + dFabs (R[10] * side[2]));
  aabb[0] = pos[0] - xrange;
  aabb[1] = pos[0] + xrange;
  aabb[2] = pos[1] - yrange;
  aabb[3] = pos[1] + yrange;
  aabb[4] = pos[2] - zrange;
  aabb[5] = pos[2] + zrange;
}


dGeomID dCreateBox (dSpaceID space, dReal lx, dReal ly, dReal lz)
{
  return new dxBox (space,lx,ly,lz);
}


void dGeomBoxSetLengths (dGeomID g, dReal lx, dReal ly, dReal lz)
{
  dUASSERT (g && g->type == dBoxClass,"argument not a box");
  dAASSERT (lx > 0 && ly > 0 && lz > 0);
  dxBox *b = (dxBox*) g;
  b->side[0] = lx;
  b->side[1] = ly;
  b->side[2] = lz;
  dGeomMoved (g);
}


void dGeomBoxGetLengths (dGeomID g, dVector3 result)
{
  dUASSERT (g && g->type == dBoxClass,"argument not a box");
  dxBox *b = (dxBox*) g;
  result[0] = b->side[0];
  result[1] = b->side[1];
  result[2] = b->side[2];
}


dReal dGeomBoxPointDepth (dGeomID g, dReal x, dReal y, dReal z)
{
  dUASSERT (g && g->type == dBoxClass,"argument not a box");
  g->recomputePosr();
  dxBox *b = (dxBox*) g;

  // Set p = (x,y,z) relative to box center
  //
  // This will be (0,0,0) if the point is at (side[0]/2,side[1]/2,side[2]/2)

  dVector3 p,q;

  p[0] = x - b->final_posr->pos[0];
  p[1] = y - b->final_posr->pos[1];
  p[2] = z - b->final_posr->pos[2];

  // Rotate p into box's coordinate frame, so we can
  // treat the OBB as an AABB

  dMULTIPLY1_331 (q,b->final_posr->R,p);

  // Record distance from point to each successive box side, and see
  // if the point is inside all six sides

  dReal dist[6];
  int   i;

  bool inside = true;

  for (i=0; i < 3; i++) {
    dReal side = b->side[i] * REAL(0.5);

    dist[i  ] = side - q[i];
    dist[i+3] = side + q[i];

    if ((dist[i] < 0) || (dist[i+3] < 0)) {
      inside = false;
    }
  }

  // If point is inside the box, the depth is the smallest positive distance
  // to any side

  if (inside) {
    dReal smallest_dist = (dReal) (unsigned) -1;

    for (i=0; i < 6; i++) {
      if (dist[i] < smallest_dist) smallest_dist = dist[i];
    }

    return smallest_dist;
  }

  // Otherwise, if point is outside the box, the depth is the largest
  // distance to any side.  This is an approximation to the 'proper'
  // solution (the proper solution may be larger in some cases).

  dReal largest_dist = 0;

  for (i=0; i < 6; i++) {
    if (dist[i] > largest_dist) largest_dist = dist[i];
  }

  return -largest_dist;
}

//****************************************************************************
// box-box collision utility


// find all the intersection points between the 2D rectangle with vertices
// at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]),
// (p[2],p[3]),(p[4],p[5]),(p[6],p[7]).
//
// the intersection points are returned as x,y pairs in the 'ret' array.
// the number of intersection points is returned by the function (this will
// be in the range 0 to 8).

static int intersectRectQuad (dReal h[2], dReal p[8], dReal ret[16])
{
  // q (and r) contain nq (and nr) coordinate points for the current (and
  // chopped) polygons
  int nq=4,nr;
  dReal buffer[16];
  dReal *q = p;
  dReal *r = ret;
  for (int dir=0; dir <= 1; dir++) {
    // direction notation: xy[0] = x axis, xy[1] = y axis
    for (int sign=-1; sign <= 1; sign += 2) {
      // chop q along the line xy[dir] = sign*h[dir]
      dReal *pq = q;
      dReal *pr = r;
      nr = 0;
      for (int i=nq; i > 0; i--) {
	// go through all points in q and all lines between adjacent points
	if (sign*pq[dir] < h[dir]) {
	  // this point is inside the chopping line
	  pr[0] = pq[0];
	  pr[1] = pq[1];
	  pr += 2;
	  nr++;
	  if (nr & 8) {
	    q = r;
	    goto done;
	  }
	}
	dReal *nextq = (i > 1) ? pq+2 : q;
	if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) {
	  // this line crosses the chopping line
	  pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) /
	    (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]);
	  pr[dir] = sign*h[dir];
	  pr += 2;
	  nr++;
	  if (nr & 8) {
	    q = r;
	    goto done;
	  }
	}
	pq += 2;
      }
      q = r;
      r = (q==ret) ? buffer : ret;
      nq = nr;
    }
  }
 done:
  if (q != ret) memcpy (ret,q,nr*2*sizeof(dReal));
  return nr;
}


// given n points in the plane (array p, of size 2*n), generate m points that
// best represent the whole set. the definition of 'best' here is not
// predetermined - the idea is to select points that give good box-box
// collision detection behavior. the chosen point indexes are returned in the
// array iret (of size m). 'i0' is always the first entry in the array.
// n must be in the range [1..8]. m must be in the range [1..n]. i0 must be
// in the range [0..n-1].

void cullPoints (int n, dReal p[], int m, int i0, int iret[])
{
  // compute the centroid of the polygon in cx,cy
  int i,j;
  dReal a,cx,cy,q;
  if (n==1) {
    cx = p[0];
    cy = p[1];
  }
  else if (n==2) {
    cx = REAL(0.5)*(p[0] + p[2]);
    cy = REAL(0.5)*(p[1] + p[3]);
  }
  else {
    a = 0;
    cx = 0;
    cy = 0;
    for (i=0; i<(n-1); i++) {
      q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1];
      a += q;
      cx += q*(p[i*2]+p[i*2+2]);
      cy += q*(p[i*2+1]+p[i*2+3]);
    }
    q = p[n*2-2]*p[1] - p[0]*p[n*2-1];
    a = dRecip(REAL(3.0)*(a+q));
    cx = a*(cx + q*(p[n*2-2]+p[0]));
    cy = a*(cy + q*(p[n*2-1]+p[1]));
  }

  // compute the angle of each point w.r.t. the centroid
  dReal A[8];
  for (i=0; i<n; i++) A[i] = dAtan2(p[i*2+1]-cy,p[i*2]-cx);

  // search for points that have angles closest to A[i0] + i*(2*pi/m).
  int avail[8];
  for (i=0; i<n; i++) avail[i] = 1;
  avail[i0] = 0;
  iret[0] = i0;
  iret++;
  for (j=1; j<m; j++) {
    a = dReal(j)*(2*M_PI/m) + A[i0];
    if (a > M_PI) a -= 2*M_PI;
    dReal maxdiff=1e9,diff;
#ifndef dNODEBUG
    *iret = i0;			// iret is not allowed to keep this value
#endif
    for (i=0; i<n; i++) {
      if (avail[i]) {
	diff = dFabs (A[i]-a);
	if (diff > M_PI) diff = 2*M_PI - diff;
	if (diff < maxdiff) {
	  maxdiff = diff;
	  *iret = i;
	}
      }
    }
#ifndef dNODEBUG
    dIASSERT (*iret != i0);	// ensure iret got set
#endif
    avail[*iret] = 0;
    iret++;
  }
}


// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
// generate contact points. this returns 0 if there is no contact otherwise
// it returns the number of contacts generated.
// `normal' returns the contact normal.
// `depth' returns the maximum penetration depth along that normal.
// `return_code' returns a number indicating the type of contact that was
// detected:
//        1,2,3 = box 2 intersects with a face of box 1
//        4,5,6 = box 1 intersects with a face of box 2
//        7..15 = edge-edge contact
// `maxc' is the maximum number of contacts allowed to be generated, i.e.
// the size of the `contact' array.
// `contact' and `skip' are the contact array information provided to the
// collision functions. this function only fills in the position and depth
// fields.


int dBoxBox (const dVector3 p1, const dMatrix3 R1,
	     const dVector3 side1, const dVector3 p2,
	     const dMatrix3 R2, const dVector3 side2,
	     dVector3 normal, dReal *depth, int *return_code,
	     int flags, dContactGeom *contact, int skip)
{
  const dReal fudge_factor = REAL(1.05);
  dVector3 p,pp,normalC;
  const dReal *normalR = 0;
  dReal A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
    Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l,expr1_val;
  int i,j,invert_normal,code;

  // get vector from centers of box 1 to box 2, relative to box 1
  p[0] = p2[0] - p1[0];
  p[1] = p2[1] - p1[1];
  p[2] = p2[2] - p1[2];
  dMULTIPLY1_331 (pp,R1,p);		// get pp = p relative to body 1

  // get side lengths / 2
  A[0] = side1[0]*REAL(0.5);
  A[1] = side1[1]*REAL(0.5);
  A[2] = side1[2]*REAL(0.5);
  B[0] = side2[0]*REAL(0.5);
  B[1] = side2[1]*REAL(0.5);
  B[2] = side2[2]*REAL(0.5);

  // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
  R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
  R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
  R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);

  Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13);
  Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23);
  Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33);

  // for all 15 possible separating axes:
  //   * see if the axis separates the boxes. if so, return 0.
  //   * find the depth of the penetration along the separating axis (s2)
  //   * if this is the largest depth so far, record it.
  // the normal vector will be set to the separating axis with the smallest
  // depth. note: normalR is set to point to a column of R1 or R2 if that is
  // the smallest depth normal so far. otherwise normalR is 0 and normalC is
  // set to a vector relative to body 1. invert_normal is 1 if the sign of
  // the normal should be flipped.

  do {
#define TST(expr1,expr2,norm,cc) \
    expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \
    s2 = dFabs(expr1_val) - (expr2); \
    if (s2 > 0) return 0; \
    if (s2 > s) { \
      s = s2; \
      normalR = norm; \
      invert_normal = ((expr1_val) < 0); \
      code = (cc); \
	  if (flags & CONTACTS_UNIMPORTANT) break; \
	}

    s = -dInfinity;
    invert_normal = 0;
    code = 0;

    // separating axis = u1,u2,u3
    TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
    TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
    TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);

    // separating axis = v1,v2,v3
    TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
    TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
    TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);

    // note: cross product axes need to be scaled when s is computed.
    // normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1,expr2,n1,n2,n3,cc) \
    expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \
    s2 = dFabs(expr1_val) - (expr2); \
    if (s2 > 0) return 0; \
    l = dSqrt ((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
    if (l > 0) { \
      s2 /= l; \
      if (s2*fudge_factor > s) { \
        s = s2; \
        normalR = 0; \
        normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
        invert_normal = ((expr1_val) < 0); \
        code = (cc); \
        if (flags & CONTACTS_UNIMPORTANT) break; \
	  } \
	}

    // separating axis = u1 x (v1,v2,v3)
    TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
    TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
    TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);

    // separating axis = u2 x (v1,v2,v3)
    TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
    TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
    TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);

    // separating axis = u3 x (v1,v2,v3)
    TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
    TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
    TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);
#undef TST
  } while (0);

  if (!code) return 0;

  // if we get to this point, the boxes interpenetrate. compute the normal
  // in global coordinates.
  if (normalR) {
    normal[0] = normalR[0];
    normal[1] = normalR[4];
    normal[2] = normalR[8];
  }
  else {
    dMULTIPLY0_331 (normal,R1,normalC);
  }
  if (invert_normal) {
    normal[0] = -normal[0];
    normal[1] = -normal[1];
    normal[2] = -normal[2];
  }
  *depth = -s;

  // compute contact point(s)

  if (code > 6) {
    // an edge from box 1 touches an edge from box 2.
    // find a point pa on the intersecting edge of box 1
    dVector3 pa;
    dReal sign;
    for (i=0; i<3; i++) pa[i] = p1[i];
    for (j=0; j<3; j++) {
      sign = (dDOT14(normal,R1+j) > 0) ? REAL(1.0) : REAL(-1.0);
      for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
    }

    // find a point pb on the intersecting edge of box 2
    dVector3 pb;
    for (i=0; i<3; i++) pb[i] = p2[i];
    for (j=0; j<3; j++) {
      sign = (dDOT14(normal,R2+j) > 0) ? REAL(-1.0) : REAL(1.0);
      for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
    }

    dReal alpha,beta;
    dVector3 ua,ub;
    for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
    for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];

    dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
    for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
    for (i=0; i<3; i++) pb[i] += ub[i]*beta;

    for (i=0; i<3; i++) contact[0].pos[i] = REAL(0.5)*(pa[i]+pb[i]);
    contact[0].depth = *depth;
    *return_code = code;
    return 1;
  }

  // okay, we have a face-something intersection (because the separating
  // axis is perpendicular to a face). define face 'a' to be the reference
  // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
  // the incident face (the closest face of the other box).

  const dReal *Ra,*Rb,*pa,*pb,*Sa,*Sb;
  if (code <= 3) {
    Ra = R1;
    Rb = R2;
    pa = p1;
    pb = p2;
    Sa = A;
    Sb = B;
  }
  else {
    Ra = R2;
    Rb = R1;
    pa = p2;
    pb = p1;
    Sa = B;
    Sb = A;
  }

  // nr = normal vector of reference face dotted with axes of incident box.
  // anr = absolute values of nr.
  dVector3 normal2,nr,anr;
  if (code <= 3) {
    normal2[0] = normal[0];
    normal2[1] = normal[1];
    normal2[2] = normal[2];
  }
  else {
    normal2[0] = -normal[0];
    normal2[1] = -normal[1];
    normal2[2] = -normal[2];
  }
  dMULTIPLY1_331 (nr,Rb,normal2);
  anr[0] = dFabs (nr[0]);
  anr[1] = dFabs (nr[1]);
  anr[2] = dFabs (nr[2]);

  // find the largest compontent of anr: this corresponds to the normal
  // for the indident face. the other axis numbers of the indicent face
  // are stored in a1,a2.
  int lanr,a1,a2;
  if (anr[1] > anr[0]) {
    if (anr[1] > anr[2]) {
      a1 = 0;
      lanr = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }
  else {
    if (anr[0] > anr[2]) {
      lanr = 0;
      a1 = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }

  // compute center point of incident face, in reference-face coordinates
  dVector3 center;
  if (nr[lanr] < 0) {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
  }
  else {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
  }

  // find the normal and non-normal axis numbers of the reference box
  int codeN,code1,code2;
  if (code <= 3) codeN = code-1; else codeN = code-4;
  if (codeN==0) {
    code1 = 1;
    code2 = 2;
  }
  else if (codeN==1) {
    code1 = 0;
    code2 = 2;
  }
  else {
    code1 = 0;
    code2 = 1;
  }

  // find the four corners of the incident face, in reference-face coordinates
  dReal quad[8];	// 2D coordinate of incident face (x,y pairs)
  dReal c1,c2,m11,m12,m21,m22;
  c1 = dDOT14 (center,Ra+code1);
  c2 = dDOT14 (center,Ra+code2);
  // optimize this? - we have already computed this data above, but it is not
  // stored in an easy-to-index format. for now it's quicker just to recompute
  // the four dot products.
  m11 = dDOT44 (Ra+code1,Rb+a1);
  m12 = dDOT44 (Ra+code1,Rb+a2);
  m21 = dDOT44 (Ra+code2,Rb+a1);
  m22 = dDOT44 (Ra+code2,Rb+a2);
  {
    dReal k1 = m11*Sb[a1];
    dReal k2 = m21*Sb[a1];
    dReal k3 = m12*Sb[a2];
    dReal k4 = m22*Sb[a2];
    quad[0] = c1 - k1 - k3;
    quad[1] = c2 - k2 - k4;
    quad[2] = c1 - k1 + k3;
    quad[3] = c2 - k2 + k4;
    quad[4] = c1 + k1 + k3;
    quad[5] = c2 + k2 + k4;
    quad[6] = c1 + k1 - k3;
    quad[7] = c2 + k2 - k4;
  }

  // find the size of the reference face
  dReal rect[2];
  rect[0] = Sa[code1];
  rect[1] = Sa[code2];

  // intersect the incident and reference faces
  dReal ret[16];
  int n = intersectRectQuad (rect,quad,ret);
  if (n < 1) return 0;		// this should never happen

  // convert the intersection points into reference-face coordinates,
  // and compute the contact position and depth for each point. only keep
  // those points that have a positive (penetrating) depth. delete points in
  // the 'ret' array as necessary so that 'point' and 'ret' correspond.
  dReal point[3*8];		// penetrating contact points
  dReal dep[8];			// depths for those points
  dReal det1 = dRecip(m11*m22 - m12*m21);
  m11 *= det1;
  m12 *= det1;
  m21 *= det1;
  m22 *= det1;
  int cnum = 0;			// number of penetrating contact points found
  for (j=0; j < n; j++) {
    dReal k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
    dReal k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
    for (i=0; i<3; i++) point[cnum*3+i] =
			  center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
    dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
    if (dep[cnum] >= 0) {
      ret[cnum*2] = ret[j*2];
      ret[cnum*2+1] = ret[j*2+1];
      cnum++;
	  if ((cnum | CONTACTS_UNIMPORTANT) == (flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
		  break;
	  }
    }
  }
  if (cnum < 1) { 
	  return 0;	// this should not happen, yet does at times (demo_plane2d single precision).
  }

  // we can't generate more contacts than we actually have
  int maxc = flags & NUMC_MASK;
  if (maxc > cnum) maxc = cnum;
  if (maxc < 1) maxc = 1;	// Even though max count must not be zero this check is kept for backward compatibility as this is a public function

  if (cnum <= maxc) {
    // we have less contacts than we need, so we use them all
    for (j=0; j < cnum; j++) {
      dContactGeom *con = CONTACT(contact,skip*j);
      for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i];
      con->depth = dep[j];
    }
  }
  else {
    dIASSERT(!(flags & CONTACTS_UNIMPORTANT)); // cnum should be generated not greater than maxc so that "then" clause is executed
    // we have more contacts than are wanted, some of them must be culled.
    // find the deepest point, it is always the first contact.
    int i1 = 0;
    dReal maxdepth = dep[0];
    for (i=1; i<cnum; i++) {
      if (dep[i] > maxdepth) {
	maxdepth = dep[i];
	i1 = i;
      }
    }

    int iret[8];
    cullPoints (cnum,ret,maxc,i1,iret);

    for (j=0; j < maxc; j++) {
      dContactGeom *con = CONTACT(contact,skip*j);
      for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
      con->depth = dep[iret[j]];
    }
    cnum = maxc;
  }

  *return_code = code;
  return cnum;
}



int dCollideBoxBox (dxGeom *o1, dxGeom *o2, int flags,
		    dContactGeom *contact, int skip)
{
  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dBoxClass);
  dIASSERT (o2->type == dBoxClass);
  dIASSERT ((flags & NUMC_MASK) >= 1);

  dVector3 normal;
  dReal depth;
  int code;
  dxBox *b1 = (dxBox*) o1;
  dxBox *b2 = (dxBox*) o2;
  int num = dBoxBox (o1->final_posr->pos,o1->final_posr->R,b1->side, o2->final_posr->pos,o2->final_posr->R,b2->side,
		     normal,&depth,&code,flags,contact,skip);
  for (int i=0; i<num; i++) {
    CONTACT(contact,i*skip)->normal[0] = -normal[0];
    CONTACT(contact,i*skip)->normal[1] = -normal[1];
    CONTACT(contact,i*skip)->normal[2] = -normal[2];
    CONTACT(contact,i*skip)->g1 = o1;
    CONTACT(contact,i*skip)->g2 = o2;
  }
  return num;
}


int dCollideBoxPlane (dxGeom *o1, dxGeom *o2,
		      int flags, dContactGeom *contact, int skip)
{
  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dBoxClass);
  dIASSERT (o2->type == dPlaneClass);
  dIASSERT ((flags & NUMC_MASK) >= 1);

  dxBox *box = (dxBox*) o1;
  dxPlane *plane = (dxPlane*) o2;

  contact->g1 = o1;
  contact->g2 = o2;
  int ret = 0;

  //@@@ problem: using 4-vector (plane->p) as 3-vector (normal).
  const dReal *R = o1->final_posr->R;		// rotation of box
  const dReal *n = plane->p;		// normal vector

  // project sides lengths along normal vector, get absolute values
  dReal Q1 = dDOT14(n,R+0);
  dReal Q2 = dDOT14(n,R+1);
  dReal Q3 = dDOT14(n,R+2);
  dReal A1 = box->side[0] * Q1;
  dReal A2 = box->side[1] * Q2;
  dReal A3 = box->side[2] * Q3;
  dReal B1 = dFabs(A1);
  dReal B2 = dFabs(A2);
  dReal B3 = dFabs(A3);

  // early exit test
  dReal depth = plane->p[3] + REAL(0.5)*(B1+B2+B3) - dDOT(n,o1->final_posr->pos);
  if (depth < 0) return 0;

  // find number of contacts requested
  int maxc = flags & NUMC_MASK;
  // if (maxc < 1) maxc = 1; // an assertion is made on entry
  if (maxc > 3) maxc = 3;	// not more than 3 contacts per box allowed

  // find deepest point
  dVector3 p;
  p[0] = o1->final_posr->pos[0];
  p[1] = o1->final_posr->pos[1];
  p[2] = o1->final_posr->pos[2];
#define FOO(i,op) \
  p[0] op REAL(0.5)*box->side[i] * R[0+i]; \
  p[1] op REAL(0.5)*box->side[i] * R[4+i]; \
  p[2] op REAL(0.5)*box->side[i] * R[8+i];
#define BAR(i,iinc) if (A ## iinc > 0) { FOO(i,-=) } else { FOO(i,+=) }
  BAR(0,1);
  BAR(1,2);
  BAR(2,3);
#undef FOO
#undef BAR

  // the deepest point is the first contact point
  contact->pos[0] = p[0];
  contact->pos[1] = p[1];
  contact->pos[2] = p[2];
  contact->normal[0] = n[0];
  contact->normal[1] = n[1];
  contact->normal[2] = n[2];
  contact->depth = depth;
  ret = 1;		// ret is number of contact points found so far
  if (maxc == 1) goto done;

  // get the second and third contact points by starting from `p' and going
  // along the two sides with the smallest projected length.

#define FOO(i,j,op) \
  CONTACT(contact,i*skip)->pos[0] = p[0] op box->side[j] * R[0+j]; \
  CONTACT(contact,i*skip)->pos[1] = p[1] op box->side[j] * R[4+j]; \
  CONTACT(contact,i*skip)->pos[2] = p[2] op box->side[j] * R[8+j];
#define BAR(ctact,side,sideinc) \
  depth -= B ## sideinc; \
  if (depth < 0) goto done; \
  if (A ## sideinc > 0) { FOO(ctact,side,+); } else { FOO(ctact,side,-); } \
  CONTACT(contact,ctact*skip)->depth = depth; \
  ret++;

  CONTACT(contact,skip)->normal[0] = n[0];
  CONTACT(contact,skip)->normal[1] = n[1];
  CONTACT(contact,skip)->normal[2] = n[2];
  if (maxc == 3) {
    CONTACT(contact,2*skip)->normal[0] = n[0];
    CONTACT(contact,2*skip)->normal[1] = n[1];
    CONTACT(contact,2*skip)->normal[2] = n[2];
  }

  if (B1 < B2) {
    if (B3 < B1) goto use_side_3; else {
      BAR(1,0,1);	// use side 1
      if (maxc == 2) goto done;
      if (B2 < B3) goto contact2_2; else goto contact2_3;
    }
  }
  else {
    if (B3 < B2) {
      use_side_3:	// use side 3
      BAR(1,2,3);
      if (maxc == 2) goto done;
      if (B1 < B2) goto contact2_1; else goto contact2_2;
    }
    else {
      BAR(1,1,2);	// use side 2
      if (maxc == 2) goto done;
      if (B1 < B3) goto contact2_1; else goto contact2_3;
    }
  }

  contact2_1: BAR(2,0,1); goto done;
  contact2_2: BAR(2,1,2); goto done;
  contact2_3: BAR(2,2,3); goto done;
#undef FOO
#undef BAR

 done:
  for (int i=0; i<ret; i++) {
    CONTACT(contact,i*skip)->g1 = o1;
    CONTACT(contact,i*skip)->g2 = o2;
  }
  return ret;
}