1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#ifndef _ODE_OBJECTS_H_
#define _ODE_OBJECTS_H_
#include <ode/common.h>
#include <ode/mass.h>
#include <ode/contact.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup world World
*
* The world object is a container for rigid bodies and joints. Objects in
* different worlds can not interact, for example rigid bodies from two
* different worlds can not collide.
*
* All the objects in a world exist at the same point in time, thus one
* reason to use separate worlds is to simulate systems at different rates.
* Most applications will only need one world.
*/
/**
* @brief Create a new, empty world and return its ID number.
* @return an identifier
* @ingroup world
*/
ODE_API dWorldID dWorldCreate(void);
/**
* @brief Destroy a world and everything in it.
*
* This includes all bodies, and all joints that are not part of a joint
* group. Joints that are part of a joint group will be deactivated, and
* can be destroyed by calling, for example, dJointGroupEmpty().
* @ingroup world
* @param world the identifier for the world the be destroyed.
*/
ODE_API void dWorldDestroy (dWorldID world);
/**
* @brief Set the world's global gravity vector.
*
* The units are m/s^2, so Earth's gravity vector would be (0,0,-9.81),
* assuming that +z is up. The default is no gravity, i.e. (0,0,0).
*
* @ingroup world
*/
ODE_API void dWorldSetGravity (dWorldID, dReal x, dReal y, dReal z);
/**
* @brief Get the gravity vector for a given world.
* @ingroup world
*/
ODE_API void dWorldGetGravity (dWorldID, dVector3 gravity);
/**
* @brief Set the global ERP value, that controls how much error
* correction is performed in each time step.
* @ingroup world
* @param dWorldID the identifier of the world.
* @param erp Typical values are in the range 0.1--0.8. The default is 0.2.
*/
ODE_API void dWorldSetERP (dWorldID, dReal erp);
/**
* @brief Get the error reduction parameter.
* @ingroup world
* @return ERP value
*/
ODE_API dReal dWorldGetERP (dWorldID);
/**
* @brief Set the global CFM (constraint force mixing) value.
* @ingroup world
* @param cfm Typical values are in the range @m{10^{-9}} -- 1.
* The default is 10^-5 if single precision is being used, or 10^-10
* if double precision is being used.
*/
ODE_API void dWorldSetCFM (dWorldID, dReal cfm);
/**
* @brief Get the constraint force mixing value.
* @ingroup world
* @return CFM value
*/
ODE_API dReal dWorldGetCFM (dWorldID);
/**
* @brief Step the world.
*
* This uses a "big matrix" method that takes time on the order of m^3
* and memory on the order of m^2, where m is the total number of constraint
* rows. For large systems this will use a lot of memory and can be very slow,
* but this is currently the most accurate method.
* @ingroup world
* @param stepsize The number of seconds that the simulation has to advance.
*/
ODE_API void dWorldStep (dWorldID, dReal stepsize);
/**
* @brief Converts an impulse to a force.
* @ingroup world
* @remarks
* If you want to apply a linear or angular impulse to a rigid body,
* instead of a force or a torque, then you can use this function to convert
* the desired impulse into a force/torque vector before calling the
* BodyAdd... function.
* The current algorithm simply scales the impulse by 1/stepsize,
* where stepsize is the step size for the next step that will be taken.
* This function is given a dWorldID because, in the future, the force
* computation may depend on integrator parameters that are set as
* properties of the world.
*/
ODE_API void dWorldImpulseToForce
(
dWorldID, dReal stepsize,
dReal ix, dReal iy, dReal iz, dVector3 force
);
/**
* @brief Step the world.
* @ingroup world
* @remarks
* This uses an iterative method that takes time on the order of m*N
* and memory on the order of m, where m is the total number of constraint
* rows N is the number of iterations.
* For large systems this is a lot faster than dWorldStep(),
* but it is less accurate.
* @remarks
* QuickStep is great for stacks of objects especially when the
* auto-disable feature is used as well.
* However, it has poor accuracy for near-singular systems.
* Near-singular systems can occur when using high-friction contacts, motors,
* or certain articulated structures. For example, a robot with multiple legs
* sitting on the ground may be near-singular.
* @remarks
* There are ways to help overcome QuickStep's inaccuracy problems:
* \li Increase CFM.
* \li Reduce the number of contacts in your system (e.g. use the minimum
* number of contacts for the feet of a robot or creature).
* \li Don't use excessive friction in the contacts.
* \li Use contact slip if appropriate
* \li Avoid kinematic loops (however, kinematic loops are inevitable in
* legged creatures).
* \li Don't use excessive motor strength.
* \liUse force-based motors instead of velocity-based motors.
*
* Increasing the number of QuickStep iterations may help a little bit, but
* it is not going to help much if your system is really near singular.
*/
ODE_API void dWorldQuickStep (dWorldID w, dReal stepsize);
/**
* @brief Set the number of iterations that the QuickStep method performs per
* step.
* @ingroup world
* @remarks
* More iterations will give a more accurate solution, but will take
* longer to compute.
* @param num The default is 20 iterations.
*/
ODE_API void dWorldSetQuickStepNumIterations (dWorldID, int num);
/**
* @brief Get the number of iterations that the QuickStep method performs per
* step.
* @ingroup world
* @return nr of iterations
*/
ODE_API int dWorldGetQuickStepNumIterations (dWorldID);
/**
* @brief Set the SOR over-relaxation parameter
* @ingroup world
* @param over_relaxation value to use by SOR
*/
ODE_API void dWorldSetQuickStepW (dWorldID, dReal over_relaxation);
/**
* @brief Get the SOR over-relaxation parameter
* @ingroup world
* @returns the over-relaxation setting
*/
ODE_API dReal dWorldGetQuickStepW (dWorldID);
/* World contact parameter functions */
/**
* @brief Set the maximum correcting velocity that contacts are allowed
* to generate.
* @ingroup world
* @param vel The default value is infinity (i.e. no limit).
* @remarks
* Reducing this value can help prevent "popping" of deeply embedded objects.
*/
ODE_API void dWorldSetContactMaxCorrectingVel (dWorldID, dReal vel);
/**
* @brief Get the maximum correcting velocity that contacts are allowed
* to generated.
* @ingroup world
*/
ODE_API dReal dWorldGetContactMaxCorrectingVel (dWorldID);
/**
* @brief Set the depth of the surface layer around all geometry objects.
* @ingroup world
* @remarks
* Contacts are allowed to sink into the surface layer up to the given
* depth before coming to rest.
* @param depth The default value is zero.
* @remarks
* Increasing this to some small value (e.g. 0.001) can help prevent
* jittering problems due to contacts being repeatedly made and broken.
*/
ODE_API void dWorldSetContactSurfaceLayer (dWorldID, dReal depth);
/**
* @brief Get the depth of the surface layer around all geometry objects.
* @ingroup world
* @returns the depth
*/
ODE_API dReal dWorldGetContactSurfaceLayer (dWorldID);
/* StepFast1 functions */
/**
* @brief Step the world using the StepFast1 algorithm.
* @param stepsize the nr of seconds to advance the simulation.
* @param maxiterations The number of iterations to perform.
* @ingroup world
*/
ODE_API void dWorldStepFast1(dWorldID, dReal stepsize, int maxiterations);
/**
* @defgroup disable Automatic Enabling and Disabling
*
* Every body can be enabled or disabled. Enabled bodies participate in the
* simulation, while disabled bodies are turned off and do not get updated
* during a simulation step. New bodies are always created in the enabled state.
*
* A disabled body that is connected through a joint to an enabled body will be
* automatically re-enabled at the next simulation step.
*
* Disabled bodies do not consume CPU time, therefore to speed up the simulation
* bodies should be disabled when they come to rest. This can be done automatically
* with the auto-disable feature.
*
* If a body has its auto-disable flag turned on, it will automatically disable
* itself when
* @li It has been idle for a given number of simulation steps.
* @li It has also been idle for a given amount of simulation time.
*
* A body is considered to be idle when the magnitudes of both its
* linear average velocity and angular average velocity are below given thresholds.
* The sample size for the average defaults to one and can be disabled by setting
* to zero with
*
* Thus, every body has six auto-disable parameters: an enabled flag, a idle step
* count, an idle time, linear/angular average velocity thresholds, and the
* average samples count.
*
* Newly created bodies get these parameters from world.
*/
/**
* @brief Set the AutoEnableDepth parameter used by the StepFast1 algorithm.
* @ingroup disable
*/
ODE_API void dWorldSetAutoEnableDepthSF1(dWorldID, int autoEnableDepth);
/**
* @brief Get the AutoEnableDepth parameter used by the StepFast1 algorithm.
* @ingroup disable
*/
ODE_API int dWorldGetAutoEnableDepthSF1(dWorldID);
/**
* @brief Get auto disable linear threshold for newly created bodies.
* @ingroup disable
* @return the threshold
*/
ODE_API dReal dWorldGetAutoDisableLinearThreshold (dWorldID);
/**
* @brief Set auto disable linear threshold for newly created bodies.
* @param linear_threshold default is 0.01
* @ingroup disable
*/
ODE_API void dWorldSetAutoDisableLinearThreshold (dWorldID, dReal linear_threshold);
/**
* @brief Get auto disable angular threshold for newly created bodies.
* @ingroup disable
* @return the threshold
*/
ODE_API dReal dWorldGetAutoDisableAngularThreshold (dWorldID);
/**
* @brief Set auto disable angular threshold for newly created bodies.
* @param linear_threshold default is 0.01
* @ingroup disable
*/
ODE_API void dWorldSetAutoDisableAngularThreshold (dWorldID, dReal angular_threshold);
/**
* @brief Get auto disable linear average threshold for newly created bodies.
* @ingroup disable
* @return the threshold
*/
ODE_API dReal dWorldGetAutoDisableLinearAverageThreshold (dWorldID);
/**
* @brief Set auto disable linear average threshold for newly created bodies.
* @param linear_average_threshold default is 0.01
* @ingroup disable
*/
ODE_API void dWorldSetAutoDisableLinearAverageThreshold (dWorldID, dReal linear_average_threshold);
/**
* @brief Get auto disable angular average threshold for newly created bodies.
* @ingroup disable
* @return the threshold
*/
ODE_API dReal dWorldGetAutoDisableAngularAverageThreshold (dWorldID);
/**
* @brief Set auto disable angular average threshold for newly created bodies.
* @param linear_average_threshold default is 0.01
* @ingroup disable
*/
ODE_API void dWorldSetAutoDisableAngularAverageThreshold (dWorldID, dReal angular_average_threshold);
/**
* @brief Get auto disable sample count for newly created bodies.
* @ingroup disable
* @return number of samples used
*/
ODE_API int dWorldGetAutoDisableAverageSamplesCount (dWorldID);
/**
* @brief Set auto disable average sample count for newly created bodies.
* @ingroup disable
* @param average_samples_count Default is 1, meaning only instantaneous velocity is used.
* Set to zero to disable sampling and thus prevent any body from auto-disabling.
*/
ODE_API void dWorldSetAutoDisableAverageSamplesCount (dWorldID, unsigned int average_samples_count );
/**
* @brief Get auto disable steps for newly created bodies.
* @ingroup disable
* @return nr of steps
*/
ODE_API int dWorldGetAutoDisableSteps (dWorldID);
/**
* @brief Set auto disable steps for newly created bodies.
* @ingroup disable
* @param steps default is 10
*/
ODE_API void dWorldSetAutoDisableSteps (dWorldID, int steps);
/**
* @brief Get auto disable time for newly created bodies.
* @ingroup disable
* @return nr of seconds
*/
ODE_API dReal dWorldGetAutoDisableTime (dWorldID);
/**
* @brief Set auto disable time for newly created bodies.
* @ingroup disable
* @param time default is 0 seconds
*/
ODE_API void dWorldSetAutoDisableTime (dWorldID, dReal time);
/**
* @brief Get auto disable flag for newly created bodies.
* @ingroup disable
* @return 0 or 1
*/
ODE_API int dWorldGetAutoDisableFlag (dWorldID);
/**
* @brief Set auto disable flag for newly created bodies.
* @ingroup disable
* @param do_auto_disable default is false.
*/
ODE_API void dWorldSetAutoDisableFlag (dWorldID, int do_auto_disable);
/**
* @defgroup bodies Rigid Bodies
*
* A rigid body has various properties from the point of view of the
* simulation. Some properties change over time:
*
* @li Position vector (x,y,z) of the body's point of reference.
* Currently the point of reference must correspond to the body's center of mass.
* @li Linear velocity of the point of reference, a vector (vx,vy,vz).
* @li Orientation of a body, represented by a quaternion (qs,qx,qy,qz) or
* a 3x3 rotation matrix.
* @li Angular velocity vector (wx,wy,wz) which describes how the orientation
* changes over time.
*
* Other body properties are usually constant over time:
*
* @li Mass of the body.
* @li Position of the center of mass with respect to the point of reference.
* In the current implementation the center of mass and the point of
* reference must coincide.
* @li Inertia matrix. This is a 3x3 matrix that describes how the body's mass
* is distributed around the center of mass. Conceptually each body has an
* x-y-z coordinate frame embedded in it that moves and rotates with the body.
*
* The origin of this coordinate frame is the body's point of reference. Some values
* in ODE (vectors, matrices etc) are relative to the body coordinate frame, and others
* are relative to the global coordinate frame.
*
* Note that the shape of a rigid body is not a dynamical property (except insofar as
* it influences the various mass properties). It is only collision detection that cares
* about the detailed shape of the body.
*/
/**
* @brief Get auto disable linear average threshold.
* @ingroup bodies
* @return the threshold
*/
ODE_API dReal dBodyGetAutoDisableLinearThreshold (dBodyID);
/**
* @brief Set auto disable linear average threshold.
* @ingroup bodies
* @return the threshold
*/
ODE_API void dBodySetAutoDisableLinearThreshold (dBodyID, dReal linear_average_threshold);
/**
* @brief Get auto disable angular average threshold.
* @ingroup bodies
* @return the threshold
*/
ODE_API dReal dBodyGetAutoDisableAngularThreshold (dBodyID);
/**
* @brief Set auto disable angular average threshold.
* @ingroup bodies
* @return the threshold
*/
ODE_API void dBodySetAutoDisableAngularThreshold (dBodyID, dReal angular_average_threshold);
/**
* @brief Get auto disable average size (samples count).
* @ingroup bodies
* @return the nr of steps/size.
*/
ODE_API int dBodyGetAutoDisableAverageSamplesCount (dBodyID);
/**
* @brief Set auto disable average buffer size (average steps).
* @ingroup bodies
* @param average_samples_count the nr of samples to review.
*/
ODE_API void dBodySetAutoDisableAverageSamplesCount (dBodyID, unsigned int average_samples_count);
/**
* @brief Get auto steps a body must be thought of as idle to disable
* @ingroup bodies
* @return the nr of steps
*/
ODE_API int dBodyGetAutoDisableSteps (dBodyID);
/**
* @brief Set auto disable steps.
* @ingroup bodies
* @param steps the nr of steps.
*/
ODE_API void dBodySetAutoDisableSteps (dBodyID, int steps);
/**
* @brief Get auto disable time.
* @ingroup bodies
* @return nr of seconds
*/
ODE_API dReal dBodyGetAutoDisableTime (dBodyID);
/**
* @brief Set auto disable time.
* @ingroup bodies
* @param time nr of seconds.
*/
ODE_API void dBodySetAutoDisableTime (dBodyID, dReal time);
/**
* @brief Get auto disable flag.
* @ingroup bodies
* @return 0 or 1
*/
ODE_API int dBodyGetAutoDisableFlag (dBodyID);
/**
* @brief Set auto disable flag.
* @ingroup bodies
* @param do_auto_disable 0 or 1
*/
ODE_API void dBodySetAutoDisableFlag (dBodyID, int do_auto_disable);
/**
* @brief Set auto disable defaults.
* @remarks
* Set the values for the body to those set as default for the world.
* @ingroup bodies
*/
ODE_API void dBodySetAutoDisableDefaults (dBodyID);
/**
* @brief Retrives the world attached to te given body.
* @remarks
*
* @ingroup bodies
*/
ODE_API dWorldID dBodyGetWorld (dBodyID);
/**
* @brief Create a body in given world.
* @remarks
* Default mass parameters are at position (0,0,0).
* @ingroup bodies
*/
ODE_API dBodyID dBodyCreate (dWorldID);
/**
* @brief Destroy a body.
* @remarks
* All joints that are attached to this body will be put into limbo:
* i.e. unattached and not affecting the simulation, but they will NOT be
* deleted.
* @ingroup bodies
*/
ODE_API void dBodyDestroy (dBodyID);
/**
* @brief Set the body's user-data pointer.
* @ingroup bodies
* @param data arbitraty pointer
*/
ODE_API void dBodySetData (dBodyID, void *data);
/**
* @brief Get the body's user-data pointer.
* @ingroup bodies
* @return a pointer to the user's data.
*/
ODE_API void *dBodyGetData (dBodyID);
/**
* @brief Set position of a body.
* @remarks
* After setting, the outcome of the simulation is undefined
* if the new configuration is inconsistent with the joints/constraints
* that are present.
* @ingroup bodies
*/
ODE_API void dBodySetPosition (dBodyID, dReal x, dReal y, dReal z);
/**
* @brief Set the orientation of a body.
* @ingroup bodies
* @remarks
* After setting, the outcome of the simulation is undefined
* if the new configuration is inconsistent with the joints/constraints
* that are present.
*/
ODE_API void dBodySetRotation (dBodyID, const dMatrix3 R);
/**
* @brief Set the orientation of a body.
* @ingroup bodies
* @remarks
* After setting, the outcome of the simulation is undefined
* if the new configuration is inconsistent with the joints/constraints
* that are present.
*/
ODE_API void dBodySetQuaternion (dBodyID, const dQuaternion q);
/**
* @brief Set the linear velocity of a body.
* @ingroup bodies
*/
ODE_API void dBodySetLinearVel (dBodyID, dReal x, dReal y, dReal z);
/**
* @brief Set the angular velocity of a body.
* @ingroup bodies
*/
ODE_API void dBodySetAngularVel (dBodyID, dReal x, dReal y, dReal z);
/**
* @brief Get the position of a body.
* @ingroup bodies
* @remarks
* When getting, the returned values are pointers to internal data structures,
* so the vectors are valid until any changes are made to the rigid body
* system structure.
* @sa dBodyCopyPosition
*/
ODE_API const dReal * dBodyGetPosition (dBodyID);
/**
* @brief Copy the position of a body into a vector.
* @ingroup bodies
* @param body the body to query
* @param pos a copy of the body position
* @sa dBodyGetPosition
*/
ODE_API void dBodyCopyPosition (dBodyID body, dVector3 pos);
/**
* @brief Get the rotation of a body.
* @ingroup bodies
* @return pointer to a 4x3 rotation matrix.
*/
ODE_API const dReal * dBodyGetRotation (dBodyID);
/**
* @brief Copy the rotation of a body.
* @ingroup bodies
* @param body the body to query
* @param R a copy of the rotation matrix
* @sa dBodyGetRotation
*/
ODE_API void dBodyCopyRotation (dBodyID, dMatrix3 R);
/**
* @brief Get the rotation of a body.
* @ingroup bodies
* @return pointer to 4 scalars that represent the quaternion.
*/
ODE_API const dReal * dBodyGetQuaternion (dBodyID);
/**
* @brief Copy the orientation of a body into a quaternion.
* @ingroup bodies
* @param body the body to query
* @param quat a copy of the orientation quaternion
* @sa dBodyGetQuaternion
*/
ODE_API void dBodyCopyQuaternion(dBodyID body, dQuaternion quat);
/**
* @brief Get the linear velocity of a body.
* @ingroup bodies
*/
ODE_API const dReal * dBodyGetLinearVel (dBodyID);
/**
* @brief Get the angular velocity of a body.
* @ingroup bodies
*/
ODE_API const dReal * dBodyGetAngularVel (dBodyID);
/**
* @brief Set the mass of a body.
* @ingroup bodies
*/
ODE_API void dBodySetMass (dBodyID, const dMass *mass);
/**
* @brief Get the mass of a body.
* @ingroup bodies
*/
ODE_API void dBodyGetMass (dBodyID, dMass *mass);
/**
* @brief Add force at centre of mass of body in absolute coordinates.
* @ingroup bodies
*/
ODE_API void dBodyAddForce (dBodyID, dReal fx, dReal fy, dReal fz);
/**
* @brief Add torque at centre of mass of body in absolute coordinates.
* @ingroup bodies
*/
ODE_API void dBodyAddTorque (dBodyID, dReal fx, dReal fy, dReal fz);
/**
* @brief Add force at centre of mass of body in coordinates relative to body.
* @ingroup bodies
*/
ODE_API void dBodyAddRelForce (dBodyID, dReal fx, dReal fy, dReal fz);
/**
* @brief Add torque at centre of mass of body in coordinates relative to body.
* @ingroup bodies
*/
ODE_API void dBodyAddRelTorque (dBodyID, dReal fx, dReal fy, dReal fz);
/**
* @brief Add force at specified point in body in global coordinates.
* @ingroup bodies
*/
ODE_API void dBodyAddForceAtPos (dBodyID, dReal fx, dReal fy, dReal fz,
dReal px, dReal py, dReal pz);
/**
* @brief Add force at specified point in body in local coordinates.
* @ingroup bodies
*/
ODE_API void dBodyAddForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz,
dReal px, dReal py, dReal pz);
/**
* @brief Add force at specified point in body in global coordinates.
* @ingroup bodies
*/
ODE_API void dBodyAddRelForceAtPos (dBodyID, dReal fx, dReal fy, dReal fz,
dReal px, dReal py, dReal pz);
/**
* @brief Add force at specified point in body in local coordinates.
* @ingroup bodies
*/
ODE_API void dBodyAddRelForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz,
dReal px, dReal py, dReal pz);
/**
* @brief Return the current accumulated force vector.
* @return points to an array of 3 reals.
* @remarks
* The returned values are pointers to internal data structures, so
* the vectors are only valid until any changes are made to the rigid
* body system.
* @ingroup bodies
*/
ODE_API const dReal * dBodyGetForce (dBodyID);
/**
* @brief Return the current accumulated torque vector.
* @return points to an array of 3 reals.
* @remarks
* The returned values are pointers to internal data structures, so
* the vectors are only valid until any changes are made to the rigid
* body system.
* @ingroup bodies
*/
ODE_API const dReal * dBodyGetTorque (dBodyID);
/**
* @brief Set the body force accumulation vector.
* @remarks
* This is mostly useful to zero the force and torque for deactivated bodies
* before they are reactivated, in the case where the force-adding functions
* were called on them while they were deactivated.
* @ingroup bodies
*/
ODE_API void dBodySetForce (dBodyID b, dReal x, dReal y, dReal z);
/**
* @brief Set the body torque accumulation vector.
* @remarks
* This is mostly useful to zero the force and torque for deactivated bodies
* before they are reactivated, in the case where the force-adding functions
* were called on them while they were deactivated.
* @ingroup bodies
*/
ODE_API void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z);
/**
* @brief Get world position of a relative point on body.
* @ingroup bodies
* @param result will contain the result.
*/
ODE_API void dBodyGetRelPointPos
(
dBodyID, dReal px, dReal py, dReal pz,
dVector3 result
);
/**
* @brief Get velocity vector in global coords of a relative point on body.
* @ingroup bodies
* @param result will contain the result.
*/
ODE_API void dBodyGetRelPointVel
(
dBodyID, dReal px, dReal py, dReal pz,
dVector3 result
);
/**
* @brief Get velocity vector in global coords of a globally
* specified point on a body.
* @ingroup bodies
* @param result will contain the result.
*/
ODE_API void dBodyGetPointVel
(
dBodyID, dReal px, dReal py, dReal pz,
dVector3 result
);
/**
* @brief takes a point in global coordinates and returns
* the point's position in body-relative coordinates.
* @remarks
* This is the inverse of dBodyGetRelPointPos()
* @ingroup bodies
* @param result will contain the result.
*/
ODE_API void dBodyGetPosRelPoint
(
dBodyID, dReal px, dReal py, dReal pz,
dVector3 result
);
/**
* @brief Convert from local to world coordinates.
* @ingroup bodies
* @param result will contain the result.
*/
ODE_API void dBodyVectorToWorld
(
dBodyID, dReal px, dReal py, dReal pz,
dVector3 result
);
/**
* @brief Convert from world to local coordinates.
* @ingroup bodies
* @param result will contain the result.
*/
ODE_API void dBodyVectorFromWorld
(
dBodyID, dReal px, dReal py, dReal pz,
dVector3 result
);
/**
* @brief controls the way a body's orientation is updated at each timestep.
* @ingroup bodies
* @param mode can be 0 or 1:
* \li 0: An ``infinitesimal'' orientation update is used.
* This is fast to compute, but it can occasionally cause inaccuracies
* for bodies that are rotating at high speed, especially when those
* bodies are joined to other bodies.
* This is the default for every new body that is created.
* \li 1: A ``finite'' orientation update is used.
* This is more costly to compute, but will be more accurate for high
* speed rotations.
* @remarks
* Note however that high speed rotations can result in many types of
* error in a simulation, and the finite mode will only fix one of those
* sources of error.
*/
ODE_API void dBodySetFiniteRotationMode (dBodyID, int mode);
/**
* @brief sets the finite rotation axis for a body.
* @ingroup bodies
* @remarks
* This is axis only has meaning when the finite rotation mode is set
* If this axis is zero (0,0,0), full finite rotations are performed on
* the body.
* If this axis is nonzero, the body is rotated by performing a partial finite
* rotation along the axis direction followed by an infinitesimal rotation
* along an orthogonal direction.
* @remarks
* This can be useful to alleviate certain sources of error caused by quickly
* spinning bodies. For example, if a car wheel is rotating at high speed
* you can call this function with the wheel's hinge axis as the argument to
* try and improve its behavior.
*/
ODE_API void dBodySetFiniteRotationAxis (dBodyID, dReal x, dReal y, dReal z);
/**
* @brief Get the way a body's orientation is updated each timestep.
* @ingroup bodies
* @return the mode 0 (infitesimal) or 1 (finite).
*/
ODE_API int dBodyGetFiniteRotationMode (dBodyID);
/**
* @brief Get the finite rotation axis.
* @param result will contain the axis.
* @ingroup bodies
*/
ODE_API void dBodyGetFiniteRotationAxis (dBodyID, dVector3 result);
/**
* @brief Get the number of joints that are attached to this body.
* @ingroup bodies
* @return nr of joints
*/
ODE_API int dBodyGetNumJoints (dBodyID b);
/**
* @brief Return a joint attached to this body, given by index.
* @ingroup bodies
* @param index valid range is 0 to n-1 where n is the value returned by
* dBodyGetNumJoints().
*/
ODE_API dJointID dBodyGetJoint (dBodyID, int index);
/**
* @brief Manually enable a body.
* @param dBodyID identification of body.
* @ingroup bodies
*/
ODE_API void dBodyEnable (dBodyID);
/**
* @brief Manually disable a body.
* @ingroup bodies
* @remarks
* A disabled body that is connected through a joint to an enabled body will
* be automatically re-enabled at the next simulation step.
*/
ODE_API void dBodyDisable (dBodyID);
/**
* @brief Check wether a body is enabled.
* @ingroup bodies
* @return 1 if a body is currently enabled or 0 if it is disabled.
*/
ODE_API int dBodyIsEnabled (dBodyID);
/**
* @brief Set whether the body is influenced by the world's gravity or not.
* @ingroup bodies
* @param mode when nonzero gravity affects this body.
* @remarks
* Newly created bodies are always influenced by the world's gravity.
*/
ODE_API void dBodySetGravityMode (dBodyID b, int mode);
/**
* @brief Get whether the body is influenced by the world's gravity or not.
* @ingroup bodies
* @return nonzero means gravity affects this body.
*/
ODE_API int dBodyGetGravityMode (dBodyID b);
/**
* @defgroup joints Joints
*
* In real life a joint is something like a hinge, that is used to connect two
* objects.
* In ODE a joint is very similar: It is a relationship that is enforced between
* two bodies so that they can only have certain positions and orientations
* relative to each other.
* This relationship is called a constraint -- the words joint and
* constraint are often used interchangeably.
*
* A joint has a set of parameters that can be set. These include:
*
*
* \li dParamLoStop Low stop angle or position. Setting this to
* -dInfinity (the default value) turns off the low stop.
* For rotational joints, this stop must be greater than -pi to be
* effective.
* \li dParamHiStop High stop angle or position. Setting this to
* dInfinity (the default value) turns off the high stop.
* For rotational joints, this stop must be less than pi to be
* effective.
* If the high stop is less than the low stop then both stops will
* be ineffective.
* \li dParamVel Desired motor velocity (this will be an angular or
* linear velocity).
* \li dParamFMax The maximum force or torque that the motor will use to
* achieve the desired velocity.
* This must always be greater than or equal to zero.
* Setting this to zero (the default value) turns off the motor.
* \li dParamFudgeFactor The current joint stop/motor implementation has
* a small problem:
* when the joint is at one stop and the motor is set to move it away
* from the stop, too much force may be applied for one time step,
* causing a ``jumping'' motion.
* This fudge factor is used to scale this excess force.
* It should have a value between zero and one (the default value).
* If the jumping motion is too visible in a joint, the value can be
* reduced.
* Making this value too small can prevent the motor from being able to
* move the joint away from a stop.
* \li dParamBounce The bouncyness of the stops.
* This is a restitution parameter in the range 0..1.
* 0 means the stops are not bouncy at all, 1 means maximum bouncyness.
* \li dParamCFM The constraint force mixing (CFM) value used when not
* at a stop.
* \li dParamStopERP The error reduction parameter (ERP) used by the
* stops.
* \li dParamStopCFM The constraint force mixing (CFM) value used by the
* stops. Together with the ERP value this can be used to get spongy or
* soft stops.
* Note that this is intended for unpowered joints, it does not really
* work as expected when a powered joint reaches its limit.
* \li dParamSuspensionERP Suspension error reduction parameter (ERP).
* Currently this is only implemented on the hinge-2 joint.
* \li dParamSuspensionCFM Suspension constraint force mixing (CFM) value.
* Currently this is only implemented on the hinge-2 joint.
*
* If a particular parameter is not implemented by a given joint, setting it
* will have no effect.
* These parameter names can be optionally followed by a digit (2 or 3)
* to indicate the second or third set of parameters, e.g. for the second axis
* in a hinge-2 joint, or the third axis in an AMotor joint.
*/
/**
* @brief Create a new joint of the ball type.
* @ingroup joints
* @remarks
* The joint is initially in "limbo" (i.e. it has no effect on the simulation)
* because it does not connect to any bodies.
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateBall (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the hinge type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateHinge (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the slider type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateSlider (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the contact type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateContact (dWorldID, dJointGroupID, const dContact *);
/**
* @brief Create a new joint of the hinge2 type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateHinge2 (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the universal type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateUniversal (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the PR (Prismatic and Rotoide) type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreatePR (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the fixed type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateFixed (dWorldID, dJointGroupID);
ODE_API dJointID dJointCreateNull (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the A-motor type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateAMotor (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the L-motor type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreateLMotor (dWorldID, dJointGroupID);
/**
* @brief Create a new joint of the plane-2d type.
* @ingroup joints
* @param dJointGroupID set to 0 to allocate the joint normally.
* If it is nonzero the joint is allocated in the given joint group.
*/
ODE_API dJointID dJointCreatePlane2D (dWorldID, dJointGroupID);
/**
* @brief Destroy a joint.
* @ingroup joints
*
* disconnects it from its attached bodies and removing it from the world.
* However, if the joint is a member of a group then this function has no
* effect - to destroy that joint the group must be emptied or destroyed.
*/
ODE_API void dJointDestroy (dJointID);
/**
* @brief Create a joint group
* @ingroup joints
* @param max_size deprecated. Set to 0.
*/
ODE_API dJointGroupID dJointGroupCreate (int max_size);
/**
* @brief Destroy a joint group.
* @ingroup joints
*
* All joints in the joint group will be destroyed.
*/
ODE_API void dJointGroupDestroy (dJointGroupID);
/**
* @brief Empty a joint group.
* @ingroup joints
*
* All joints in the joint group will be destroyed,
* but the joint group itself will not be destroyed.
*/
ODE_API void dJointGroupEmpty (dJointGroupID);
/**
* @brief Attach the joint to some new bodies.
* @ingroup joints
*
* If the joint is already attached, it will be detached from the old bodies
* first.
* To attach this joint to only one body, set body1 or body2 to zero - a zero
* body refers to the static environment.
* Setting both bodies to zero puts the joint into "limbo", i.e. it will
* have no effect on the simulation.
* @remarks
* Some joints, like hinge-2 need to be attached to two bodies to work.
*/
ODE_API void dJointAttach (dJointID, dBodyID body1, dBodyID body2);
/**
* @brief Set the user-data pointer
* @ingroup joints
*/
ODE_API void dJointSetData (dJointID, void *data);
/**
* @brief Get the user-data pointer
* @ingroup joints
*/
ODE_API void *dJointGetData (dJointID);
/**
* @brief Get the type of the joint
* @ingroup joints
* @return the type, being one of these:
* \li JointTypeBall
* \li JointTypeHinge
* \li JointTypeSlider
* \li JointTypeContact
* \li JointTypeUniversal
* \li JointTypeHinge2
* \li JointTypeFixed
* \li JointTypeAMotor
* \li JointTypeLMotor
*/
ODE_API int dJointGetType (dJointID);
/**
* @brief Return the bodies that this joint connects.
* @ingroup joints
* @param index return the first (0) or second (1) body.
* @remarks
* If one of these returned body IDs is zero, the joint connects the other body
* to the static environment.
* If both body IDs are zero, the joint is in ``limbo'' and has no effect on
* the simulation.
*/
ODE_API dBodyID dJointGetBody (dJointID, int index);
/**
* @brief Sets the datastructure that is to receive the feedback.
*
* The feedback can be used by the user, so that it is known how
* much force an individual joint exerts.
* @ingroup joints
*/
ODE_API void dJointSetFeedback (dJointID, dJointFeedback *);
/**
* @brief Gets the datastructure that is to receive the feedback.
* @ingroup joints
*/
ODE_API dJointFeedback *dJointGetFeedback (dJointID);
/**
* @brief Set the joint anchor point.
* @ingroup joints
*
* The joint will try to keep this point on each body
* together. The input is specified in world coordinates.
*/
ODE_API void dJointSetBallAnchor (dJointID, dReal x, dReal y, dReal z);
/**
* @brief Set the joint anchor point.
* @ingroup joints
*/
ODE_API void dJointSetBallAnchor2 (dJointID, dReal x, dReal y, dReal z);
/**
* @brief Param setting for Ball joints
* @ingroup joints
*/
ODE_API void dJointSetBallParam (dJointID, int parameter, dReal value);
/**
* @brief Set hinge anchor parameter.
* @ingroup joints
*/
ODE_API void dJointSetHingeAnchor (dJointID, dReal x, dReal y, dReal z);
ODE_API void dJointSetHingeAnchorDelta (dJointID, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az);
/**
* @brief Set hinge axis.
* @ingroup joints
*/
ODE_API void dJointSetHingeAxis (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set joint parameter
* @ingroup joints
*/
ODE_API void dJointSetHingeParam (dJointID, int parameter, dReal value);
/**
* @brief Applies the torque about the hinge axis.
*
* That is, it applies a torque with specified magnitude in the direction
* of the hinge axis, to body 1, and with the same magnitude but in opposite
* direction to body 2. This function is just a wrapper for dBodyAddTorque()}
* @ingroup joints
*/
ODE_API void dJointAddHingeTorque(dJointID joint, dReal torque);
/**
* @brief set the joint axis
* @ingroup joints
*/
ODE_API void dJointSetSliderAxis (dJointID, dReal x, dReal y, dReal z);
/**
* @ingroup joints
*/
ODE_API void dJointSetSliderAxisDelta (dJointID, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az);
/**
* @brief set joint parameter
* @ingroup joints
*/
ODE_API void dJointSetSliderParam (dJointID, int parameter, dReal value);
/**
* @brief Applies the given force in the slider's direction.
*
* That is, it applies a force with specified magnitude, in the direction of
* slider's axis, to body1, and with the same magnitude but opposite
* direction to body2. This function is just a wrapper for dBodyAddForce().
* @ingroup joints
*/
ODE_API void dJointAddSliderForce(dJointID joint, dReal force);
/**
* @brief set anchor
* @ingroup joints
*/
ODE_API void dJointSetHinge2Anchor (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set axis
* @ingroup joints
*/
ODE_API void dJointSetHinge2Axis1 (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set axis
* @ingroup joints
*/
ODE_API void dJointSetHinge2Axis2 (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set joint parameter
* @ingroup joints
*/
ODE_API void dJointSetHinge2Param (dJointID, int parameter, dReal value);
/**
* @brief Applies torque1 about the hinge2's axis 1, torque2 about the
* hinge2's axis 2.
* @remarks This function is just a wrapper for dBodyAddTorque().
* @ingroup joints
*/
ODE_API void dJointAddHinge2Torques(dJointID joint, dReal torque1, dReal torque2);
/**
* @brief set anchor
* @ingroup joints
*/
ODE_API void dJointSetUniversalAnchor (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set axis
* @ingroup joints
*/
ODE_API void dJointSetUniversalAxis1 (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set axis
* @ingroup joints
*/
ODE_API void dJointSetUniversalAxis2 (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set joint parameter
* @ingroup joints
*/
ODE_API void dJointSetUniversalParam (dJointID, int parameter, dReal value);
/**
* @brief Applies torque1 about the universal's axis 1, torque2 about the
* universal's axis 2.
* @remarks This function is just a wrapper for dBodyAddTorque().
* @ingroup joints
*/
ODE_API void dJointAddUniversalTorques(dJointID joint, dReal torque1, dReal torque2);
/**
* @brief set anchor
* @ingroup joints
*/
ODE_API void dJointSetPRAnchor (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set the axis for the prismatic articulation
* @ingroup joints
*/
ODE_API void dJointSetPRAxis1 (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set the axis for the rotoide articulation
* @ingroup joints
*/
ODE_API void dJointSetPRAxis2 (dJointID, dReal x, dReal y, dReal z);
/**
* @brief set joint parameter
* @ingroup joints
*
* @note parameterX where X equal 2 refer to parameter for the rotoide articulation
*/
ODE_API void dJointSetPRParam (dJointID, int parameter, dReal value);
/**
* @brief Applies the torque about the rotoide axis of the PR joint
*
* That is, it applies a torque with specified magnitude in the direction
* of the rotoide axis, to body 1, and with the same magnitude but in opposite
* direction to body 2. This function is just a wrapper for dBodyAddTorque()}
* @ingroup joints
*/
ODE_API void dJointAddPRTorque (dJointID j, dReal torque);
/**
* @brief Call this on the fixed joint after it has been attached to
* remember the current desired relative offset and desired relative
* rotation between the bodies.
* @ingroup joints
*/
ODE_API void dJointSetFixed (dJointID);
/*
* @brief Sets joint parameter
*
* @ingroup joints
*/
ODE_API void dJointSetFixedParam (dJointID, int parameter, dReal value);
/**
* @brief set the nr of axes
* @param num 0..3
* @ingroup joints
*/
ODE_API void dJointSetAMotorNumAxes (dJointID, int num);
/**
* @brief set axis
* @ingroup joints
*/
ODE_API void dJointSetAMotorAxis (dJointID, int anum, int rel,
dReal x, dReal y, dReal z);
/**
* @brief Tell the AMotor what the current angle is along axis anum.
*
* This function should only be called in dAMotorUser mode, because in this
* mode the AMotor has no other way of knowing the joint angles.
* The angle information is needed if stops have been set along the axis,
* but it is not needed for axis motors.
* @ingroup joints
*/
ODE_API void dJointSetAMotorAngle (dJointID, int anum, dReal angle);
/**
* @brief set joint parameter
* @ingroup joints
*/
ODE_API void dJointSetAMotorParam (dJointID, int parameter, dReal value);
/**
* @brief set mode
* @ingroup joints
*/
ODE_API void dJointSetAMotorMode (dJointID, int mode);
/**
* @brief Applies torque0 about the AMotor's axis 0, torque1 about the
* AMotor's axis 1, and torque2 about the AMotor's axis 2.
* @remarks
* If the motor has fewer than three axes, the higher torques are ignored.
* This function is just a wrapper for dBodyAddTorque().
* @ingroup joints
*/
ODE_API void dJointAddAMotorTorques (dJointID, dReal torque1, dReal torque2, dReal torque3);
/**
* @brief Set the number of axes that will be controlled by the LMotor.
* @param num can range from 0 (which effectively deactivates the joint) to 3.
* @ingroup joints
*/
ODE_API void dJointSetLMotorNumAxes (dJointID, int num);
/**
* @brief Set the AMotor axes.
* @param anum selects the axis to change (0,1 or 2).
* @param rel Each axis can have one of three ``relative orientation'' modes
* \li 0: The axis is anchored to the global frame.
* \li 1: The axis is anchored to the first body.
* \li 2: The axis is anchored to the second body.
* @remarks The axis vector is always specified in global coordinates
* regardless of the setting of rel.
* @ingroup joints
*/
ODE_API void dJointSetLMotorAxis (dJointID, int anum, int rel, dReal x, dReal y, dReal z);
/**
* @brief set joint parameter
* @ingroup joints
*/
ODE_API void dJointSetLMotorParam (dJointID, int parameter, dReal value);
/**
* @ingroup joints
*/
ODE_API void dJointSetPlane2DXParam (dJointID, int parameter, dReal value);
/**
* @ingroup joints
*/
ODE_API void dJointSetPlane2DYParam (dJointID, int parameter, dReal value);
/**
* @ingroup joints
*/
ODE_API void dJointSetPlane2DAngleParam (dJointID, int parameter, dReal value);
/**
* @brief Get the joint anchor point, in world coordinates.
*
* This returns the point on body 1. If the joint is perfectly satisfied,
* this will be the same as the point on body 2.
*/
ODE_API void dJointGetBallAnchor (dJointID, dVector3 result);
/**
* @brief Get the joint anchor point, in world coordinates.
*
* This returns the point on body 2. You can think of a ball and socket
* joint as trying to keep the result of dJointGetBallAnchor() and
* dJointGetBallAnchor2() the same. If the joint is perfectly satisfied,
* this function will return the same value as dJointGetBallAnchor() to
* within roundoff errors. dJointGetBallAnchor2() can be used, along with
* dJointGetBallAnchor(), to see how far the joint has come apart.
*/
ODE_API void dJointGetBallAnchor2 (dJointID, dVector3 result);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetBallParam (dJointID, int parameter);
/**
* @brief Get the hinge anchor point, in world coordinates.
*
* This returns the point on body 1. If the joint is perfectly satisfied,
* this will be the same as the point on body 2.
* @ingroup joints
*/
ODE_API void dJointGetHingeAnchor (dJointID, dVector3 result);
/**
* @brief Get the joint anchor point, in world coordinates.
* @return The point on body 2. If the joint is perfectly satisfied,
* this will return the same value as dJointGetHingeAnchor().
* If not, this value will be slightly different.
* This can be used, for example, to see how far the joint has come apart.
* @ingroup joints
*/
ODE_API void dJointGetHingeAnchor2 (dJointID, dVector3 result);
/**
* @brief get axis
* @ingroup joints
*/
ODE_API void dJointGetHingeAxis (dJointID, dVector3 result);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetHingeParam (dJointID, int parameter);
/**
* @brief Get the hinge angle.
*
* The angle is measured between the two bodies, or between the body and
* the static environment.
* The angle will be between -pi..pi.
* When the hinge anchor or axis is set, the current position of the attached
* bodies is examined and that position will be the zero angle.
* @ingroup joints
*/
ODE_API dReal dJointGetHingeAngle (dJointID);
/**
* @brief Get the hinge angle time derivative.
* @ingroup joints
*/
ODE_API dReal dJointGetHingeAngleRate (dJointID);
/**
* @brief Get the slider linear position (i.e. the slider's extension)
*
* When the axis is set, the current position of the attached bodies is
* examined and that position will be the zero position.
* @ingroup joints
*/
ODE_API dReal dJointGetSliderPosition (dJointID);
/**
* @brief Get the slider linear position's time derivative.
* @ingroup joints
*/
ODE_API dReal dJointGetSliderPositionRate (dJointID);
/**
* @brief Get the slider axis
* @ingroup joints
*/
ODE_API void dJointGetSliderAxis (dJointID, dVector3 result);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetSliderParam (dJointID, int parameter);
/**
* @brief Get the joint anchor point, in world coordinates.
* @return the point on body 1. If the joint is perfectly satisfied,
* this will be the same as the point on body 2.
* @ingroup joints
*/
ODE_API void dJointGetHinge2Anchor (dJointID, dVector3 result);
/**
* @brief Get the joint anchor point, in world coordinates.
* This returns the point on body 2. If the joint is perfectly satisfied,
* this will return the same value as dJointGetHinge2Anchor.
* If not, this value will be slightly different.
* This can be used, for example, to see how far the joint has come apart.
* @ingroup joints
*/
ODE_API void dJointGetHinge2Anchor2 (dJointID, dVector3 result);
/**
* @brief Get joint axis
* @ingroup joints
*/
ODE_API void dJointGetHinge2Axis1 (dJointID, dVector3 result);
/**
* @brief Get joint axis
* @ingroup joints
*/
ODE_API void dJointGetHinge2Axis2 (dJointID, dVector3 result);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetHinge2Param (dJointID, int parameter);
/**
* @brief Get angle
* @ingroup joints
*/
ODE_API dReal dJointGetHinge2Angle1 (dJointID);
/**
* @brief Get time derivative of angle
* @ingroup joints
*/
ODE_API dReal dJointGetHinge2Angle1Rate (dJointID);
/**
* @brief Get time derivative of angle
* @ingroup joints
*/
ODE_API dReal dJointGetHinge2Angle2Rate (dJointID);
/**
* @brief Get the joint anchor point, in world coordinates.
* @return the point on body 1. If the joint is perfectly satisfied,
* this will be the same as the point on body 2.
* @ingroup joints
*/
ODE_API void dJointGetUniversalAnchor (dJointID, dVector3 result);
/**
* @brief Get the joint anchor point, in world coordinates.
* @return This returns the point on body 2.
* @remarks
* You can think of the ball and socket part of a universal joint as
* trying to keep the result of dJointGetBallAnchor() and
* dJointGetBallAnchor2() the same. If the joint is
* perfectly satisfied, this function will return the same value
* as dJointGetUniversalAnchor() to within roundoff errors.
* dJointGetUniversalAnchor2() can be used, along with
* dJointGetUniversalAnchor(), to see how far the joint has come apart.
* @ingroup joints
*/
ODE_API void dJointGetUniversalAnchor2 (dJointID, dVector3 result);
/**
* @brief Get axis
* @ingroup joints
*/
ODE_API void dJointGetUniversalAxis1 (dJointID, dVector3 result);
/**
* @brief Get axis
* @ingroup joints
*/
ODE_API void dJointGetUniversalAxis2 (dJointID, dVector3 result);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetUniversalParam (dJointID, int parameter);
/**
* @brief Get both angles at the same time.
* @ingroup joints
*
* @param joint The universal joint for which we want to calculate the angles
* @param angle1 The angle between the body1 and the axis 1
* @param angle2 The angle between the body2 and the axis 2
*
* @note This function combine getUniversalAngle1 and getUniversalAngle2 together
* and try to avoid redundant calculation
*/
ODE_API void dJointGetUniversalAngles (dJointID, dReal *angle1, dReal *angle2);
/**
* @brief Get angle
* @ingroup joints
*/
ODE_API dReal dJointGetUniversalAngle1 (dJointID);
/**
* @brief Get angle
* @ingroup joints
*/
ODE_API dReal dJointGetUniversalAngle2 (dJointID);
/**
* @brief Get time derivative of angle
* @ingroup joints
*/
ODE_API dReal dJointGetUniversalAngle1Rate (dJointID);
/**
* @brief Get time derivative of angle
* @ingroup joints
*/
ODE_API dReal dJointGetUniversalAngle2Rate (dJointID);
/**
* @brief Get the joint anchor point, in world coordinates.
* @return the point on body 1. If the joint is perfectly satisfied,
* this will be the same as the point on body 2.
* @ingroup joints
*/
ODE_API void dJointGetPRAnchor (dJointID, dVector3 result);
/**
* @brief Get the PR linear position (i.e. the prismatic's extension)
*
* When the axis is set, the current position of the attached bodies is
* examined and that position will be the zero position.
*
* The position is the "oriented" length between the
* position = (Prismatic axis) dot_product [(body1 + offset) - (body2 + anchor2)]
*
* @ingroup joints
*/
ODE_API dReal dJointGetPRPosition (dJointID);
/**
* @brief Get the PR linear position's time derivative
*
* @ingroup joints
*/
ODE_API dReal dJointGetPRPositionRate (dJointID);
/**
* @brief Get the prismatic axis
* @ingroup joints
*/
ODE_API void dJointGetPRAxis1 (dJointID, dVector3 result);
/**
* @brief Get the Rotoide axis
* @ingroup joints
*/
ODE_API void dJointGetPRAxis2 (dJointID, dVector3 result);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetPRParam (dJointID, int parameter);
/**
* @brief Get the number of angular axes that will be controlled by the
* AMotor.
* @param num can range from 0 (which effectively deactivates the
* joint) to 3.
* This is automatically set to 3 in dAMotorEuler mode.
* @ingroup joints
*/
ODE_API int dJointGetAMotorNumAxes (dJointID);
/**
* @brief Get the AMotor axes.
* @param anum selects the axis to change (0,1 or 2).
* @param rel Each axis can have one of three ``relative orientation'' modes.
* \li 0: The axis is anchored to the global frame.
* \li 1: The axis is anchored to the first body.
* \li 2: The axis is anchored to the second body.
* @ingroup joints
*/
ODE_API void dJointGetAMotorAxis (dJointID, int anum, dVector3 result);
/**
* @brief Get axis
* @remarks
* The axis vector is always specified in global coordinates regardless
* of the setting of rel.
* There are two GetAMotorAxis functions, one to return the axis and one to
* return the relative mode.
*
* For dAMotorEuler mode:
* \li Only axes 0 and 2 need to be set. Axis 1 will be determined
automatically at each time step.
* \li Axes 0 and 2 must be perpendicular to each other.
* \li Axis 0 must be anchored to the first body, axis 2 must be anchored
to the second body.
* @ingroup joints
*/
ODE_API int dJointGetAMotorAxisRel (dJointID, int anum);
/**
* @brief Get the current angle for axis.
* @remarks
* In dAMotorUser mode this is simply the value that was set with
* dJointSetAMotorAngle().
* In dAMotorEuler mode this is the corresponding euler angle.
* @ingroup joints
*/
ODE_API dReal dJointGetAMotorAngle (dJointID, int anum);
/**
* @brief Get the current angle rate for axis anum.
* @remarks
* In dAMotorUser mode this is always zero, as not enough information is
* available.
* In dAMotorEuler mode this is the corresponding euler angle rate.
* @ingroup joints
*/
ODE_API dReal dJointGetAMotorAngleRate (dJointID, int anum);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetAMotorParam (dJointID, int parameter);
/**
* @brief Get the angular motor mode.
* @param mode must be one of the following constants:
* \li dAMotorUser The AMotor axes and joint angle settings are entirely
* controlled by the user. This is the default mode.
* \li dAMotorEuler Euler angles are automatically computed.
* The axis a1 is also automatically computed.
* The AMotor axes must be set correctly when in this mode,
* as described below.
* When this mode is initially set the current relative orientations
* of the bodies will correspond to all euler angles at zero.
* @ingroup joints
*/
ODE_API int dJointGetAMotorMode (dJointID);
/**
* @brief Get nr of axes.
* @ingroup joints
*/
ODE_API int dJointGetLMotorNumAxes (dJointID);
/**
* @brief Get axis.
* @ingroup joints
*/
ODE_API void dJointGetLMotorAxis (dJointID, int anum, dVector3 result);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetLMotorParam (dJointID, int parameter);
/**
* @brief get joint parameter
* @ingroup joints
*/
ODE_API dReal dJointGetFixedParam (dJointID, int parameter);
/**
* @ingroup joints
*/
ODE_API dJointID dConnectingJoint (dBodyID, dBodyID);
/**
* @ingroup joints
*/
ODE_API int dConnectingJointList (dBodyID, dBodyID, dJointID*);
/**
* @brief Utility function
* @return 1 if the two bodies are connected together by
* a joint, otherwise return 0.
* @ingroup joints
*/
ODE_API int dAreConnected (dBodyID, dBodyID);
/**
* @brief Utility function
* @return 1 if the two bodies are connected together by
* a joint that does not have type @arg{joint_type}, otherwise return 0.
* @param body1 A body to check.
* @param body2 A body to check.
* @param joint_type is a dJointTypeXXX constant.
* This is useful for deciding whether to add contact joints between two bodies:
* if they are already connected by non-contact joints then it may not be
* appropriate to add contacts, however it is okay to add more contact between-
* bodies that already have contacts.
* @ingroup joints
*/
ODE_API int dAreConnectedExcluding (dBodyID body1, dBodyID body2, int joint_type);
#ifdef __cplusplus
}
#endif
#endif
|