1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#ifndef _ODE_JOINT_H_
#define _ODE_JOINT_H_
#include "objects.h"
#include <ode/contact.h>
#include "obstack.h"
// joint flags
enum {
// if this flag is set, the joint was allocated in a joint group
dJOINT_INGROUP = 1,
// if this flag is set, the joint was attached with arguments (0,body).
// our convention is to treat all attaches as (body,0), i.e. so node[0].body
// is always nonzero, so this flag records the fact that the arguments were
// swapped.
dJOINT_REVERSE = 2,
// if this flag is set, the joint can not have just one body attached to it,
// it must have either zero or two bodies attached.
dJOINT_TWOBODIES = 4
};
// there are two of these nodes in the joint, one for each connection to a
// body. these are node of a linked list kept by each body of it's connecting
// joints. but note that the body pointer in each node points to the body that
// makes use of the *other* node, not this node. this trick makes it a bit
// easier to traverse the body/joint graph.
struct dxJointNode {
dxJoint *joint; // pointer to enclosing dxJoint object
dxBody *body; // *other* body this joint is connected to
dxJointNode *next; // next node in body's list of connected joints
};
/******************** breakable joint contribution ***********************/
struct dxJointBreakInfo : public dBase {
int flags;
dReal b1MaxF[3]; // maximum force on body 1
dReal b1MaxT[3]; // maximum torque on body 1
dReal b2MaxF[3]; // maximum force on body 2
dReal b2MaxT[3]; // maximum torque on body 2
dJointBreakCallback *callback; // function that is called when this joint breaks
};
/*************************************************************************/
struct dxJoint : public dObject {
// naming convention: the "first" body this is connected to is node[0].body,
// and the "second" body is node[1].body. if this joint is only connected
// to one body then the second body is 0.
// info returned by getInfo1 function. the constraint dimension is m (<=6).
// i.e. that is the total number of rows in the jacobian. `nub' is the
// number of unbounded variables (which have lo,hi = -/+ infinity).
struct Info1 {
int m,nub;
};
// info returned by getInfo2 function
struct Info2 {
// integrator parameters: frames per second (1/stepsize), default error
// reduction parameter (0..1).
dReal fps,erp;
// for the first and second body, pointers to two (linear and angular)
// n*3 jacobian sub matrices, stored by rows. these matrices will have
// been initialized to 0 on entry. if the second body is zero then the
// J2xx pointers may be 0.
dReal *J1l,*J1a,*J2l,*J2a;
// elements to jump from one row to the next in J's
int rowskip;
// right hand sides of the equation J*v = c + cfm * lambda. cfm is the
// "constraint force mixing" vector. c is set to zero on entry, cfm is
// set to a constant value (typically very small or zero) value on entry.
dReal *c,*cfm;
// lo and hi limits for variables (set to -/+ infinity on entry).
dReal *lo,*hi;
// findex vector for variables. see the LCP solver interface for a
// description of what this does. this is set to -1 on entry.
// note that the returned indexes are relative to the first index of
// the constraint.
int *findex;
};
// virtual function table: size of the joint structure, function pointers.
// we do it this way instead of using C++ virtual functions because
// sometimes we need to allocate joints ourself within a memory pool.
typedef void init_fn (dxJoint *joint);
typedef void getInfo1_fn (dxJoint *joint, Info1 *info);
typedef void getInfo2_fn (dxJoint *joint, Info2 *info);
struct Vtable {
int size;
init_fn *init;
getInfo1_fn *getInfo1;
getInfo2_fn *getInfo2;
int typenum; // a dJointTypeXXX type number
};
Vtable *vtable; // virtual function table
int flags; // dJOINT_xxx flags
dxJointNode node[2]; // connections to bodies. node[1].body can be 0
dJointFeedback *feedback; // optional feedback structure
/******************** breakable joint contribution ***********************/
// optional break info structure. if this is not NULL the the joint is
// breakable.
dxJointBreakInfo *breakInfo;
/*************************************************************************/
};
// joint group. NOTE: any joints in the group that have their world destroyed
// will have their world pointer set to 0.
struct dxJointGroup : public dBase {
int num; // number of joints on the stack
dObStack stack; // a stack of (possibly differently sized) dxJoint
}; // objects.
// common limit and motor information for a single joint axis of movement
struct dxJointLimitMotor {
dReal vel,fmax; // powered joint: velocity, max force
dReal lostop,histop; // joint limits, relative to initial position
dReal fudge_factor; // when powering away from joint limits
dReal normal_cfm; // cfm to use when not at a stop
dReal stop_erp,stop_cfm; // erp and cfm for when at joint limit
dReal bounce; // restitution factor
// variables used between getInfo1() and getInfo2()
int limit; // 0=free, 1=at lo limit, 2=at hi limit
dReal limit_err; // if at limit, amount over limit
void init (dxWorld *);
void set (int num, dReal value);
dReal get (int num);
int testRotationalLimit (dReal angle);
int addLimot (dxJoint *joint, dxJoint::Info2 *info, int row,
dVector3 ax1, int rotational);
};
// ball and socket
struct dxJointBall : public dxJoint {
dVector3 anchor1; // anchor w.r.t first body
dVector3 anchor2; // anchor w.r.t second body
};
extern struct dxJoint::Vtable __dball_vtable;
// hinge
struct dxJointHinge : public dxJoint {
dVector3 anchor1; // anchor w.r.t first body
dVector3 anchor2; // anchor w.r.t second body
dVector3 axis1; // axis w.r.t first body
dVector3 axis2; // axis w.r.t second body
dQuaternion qrel; // initial relative rotation body1 -> body2
dxJointLimitMotor limot; // limit and motor information
};
extern struct dxJoint::Vtable __dhinge_vtable;
// universal
struct dxJointUniversal : public dxJoint {
dVector3 anchor1; // anchor w.r.t first body
dVector3 anchor2; // anchor w.r.t second body
dVector3 axis1; // axis w.r.t first body
dVector3 axis2; // axis w.r.t second body
dQuaternion qrel1; // initial relative rotation body1 -> virtual cross piece
dQuaternion qrel2; // initial relative rotation virtual cross piece -> body2
dxJointLimitMotor limot1; // limit and motor information for axis1
dxJointLimitMotor limot2; // limit and motor information for axis2
};
extern struct dxJoint::Vtable __duniversal_vtable;
// slider. if body2 is 0 then qrel is the absolute rotation of body1 and
// offset is the position of body1 center along axis1.
struct dxJointSlider : public dxJoint {
dVector3 axis1; // axis w.r.t first body
dQuaternion qrel; // initial relative rotation body1 -> body2
dVector3 offset; // point relative to body2 that should be
// aligned with body1 center along axis1
dxJointLimitMotor limot; // limit and motor information
};
extern struct dxJoint::Vtable __dslider_vtable;
// contact
struct dxJointContact : public dxJoint {
int the_m; // number of rows computed by getInfo1
dContact contact;
};
extern struct dxJoint::Vtable __dcontact_vtable;
// hinge 2
struct dxJointHinge2 : public dxJoint {
dVector3 anchor1; // anchor w.r.t first body
dVector3 anchor2; // anchor w.r.t second body
dVector3 axis1; // axis 1 w.r.t first body
dVector3 axis2; // axis 2 w.r.t second body
dReal c0,s0; // cos,sin of desired angle between axis 1,2
dVector3 v1,v2; // angle ref vectors embedded in first body
dxJointLimitMotor limot1; // limit+motor info for axis 1
dxJointLimitMotor limot2; // limit+motor info for axis 2
dReal susp_erp,susp_cfm; // suspension parameters (erp,cfm)
};
extern struct dxJoint::Vtable __dhinge2_vtable;
// angular motor
struct dxJointAMotor : public dxJoint {
int num; // number of axes (0..3)
int mode; // a dAMotorXXX constant
int rel[3]; // what the axes are relative to (global,b1,b2)
dVector3 axis[3]; // three axes
dxJointLimitMotor limot[3]; // limit+motor info for axes
dReal angle[3]; // user-supplied angles for axes
// these vectors are used for calculating euler angles
dVector3 reference1; // original axis[2], relative to body 1
dVector3 reference2; // original axis[0], relative to body 2
};
extern struct dxJoint::Vtable __damotor_vtable;
// fixed
struct dxJointFixed : public dxJoint {
dQuaternion qrel; // initial relative rotation body1 -> body2
dVector3 offset; // relative offset between the bodies
};
extern struct dxJoint::Vtable __dfixed_vtable;
// null joint, for testing only
struct dxJointNull : public dxJoint {
};
extern struct dxJoint::Vtable __dnull_vtable;
#endif
|