1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* OPCODE - Optimized Collision Detection
* Copyright (C) 2001 Pierre Terdiman
* Homepage: http://www.codercorner.com/Opcode.htm
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for a tree collider.
* \file OPC_TreeCollider.cpp
* \author Pierre Terdiman
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains an AABB tree collider.
* This class performs a collision test between two AABB trees.
*
* \class AABBTreeCollider
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace Opcode;
#include "OPC_BoxBoxOverlap.h"
#include "OPC_TriBoxOverlap.h"
#include "OPC_TriTriOverlap.h"
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBTreeCollider::AABBTreeCollider() :
mNbBVBVTests (0),
mNbPrimPrimTests (0),
mNbBVPrimTests (0),
mFullBoxBoxTest (true),
mFullPrimBoxTest (true),
mIMesh0 (null),
mIMesh1 (null)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBTreeCollider::~AABBTreeCollider()
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Validates current settings. You should call this method after all the settings and callbacks have been defined.
* \return null if everything is ok, else a string describing the problem
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
const char* AABBTreeCollider::ValidateSettings()
{
if(TemporalCoherenceEnabled() && !FirstContactEnabled()) return "Temporal coherence only works with ""First contact"" mode!";
return null;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Generic collision query for generic OPCODE models. After the call, access the results with:
* - GetContactStatus()
* - GetNbPairs()
* - GetPairs()
*
* \param cache [in] collision cache for model pointers and a colliding pair of primitives
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(BVTCache& cache, const Matrix4x4* world0, const Matrix4x4* world1)
{
// Checkings
if(!cache.Model0 || !cache.Model1) return false;
if(cache.Model0->HasLeafNodes()!=cache.Model1->HasLeafNodes()) return false;
if(cache.Model0->IsQuantized()!=cache.Model1->IsQuantized()) return false;
/*
Rules:
- perform hull test
- when hulls collide, disable hull test
- if meshes overlap, reset countdown
- if countdown reaches 0, enable hull test
*/
#ifdef __MESHMERIZER_H__
// Handle hulls
if(cache.HullTest)
{
if(cache.Model0->GetHull() && cache.Model1->GetHull())
{
struct Local
{
static Point* SVCallback(const Point& sv, udword& previndex, udword user_data)
{
CollisionHull* Hull = (CollisionHull*)user_data;
previndex = Hull->ComputeSupportingVertex(sv, previndex);
return (Point*)&Hull->GetVerts()[previndex];
}
};
bool Collide;
if(0)
{
static GJKEngine GJK;
static bool GJKInitDone=false;
if(!GJKInitDone)
{
GJK.Enable(GJK_BACKUP_PROCEDURE);
GJK.Enable(GJK_DEGENERATE);
GJK.Enable(GJK_HILLCLIMBING);
GJKInitDone = true;
}
GJK.SetCallbackObj0(Local::SVCallback);
GJK.SetCallbackObj1(Local::SVCallback);
GJK.SetUserData0(udword(cache.Model0->GetHull()));
GJK.SetUserData1(udword(cache.Model1->GetHull()));
Collide = GJK.Collide(*world0, *world1, &cache.SepVector);
}
else
{
static SVEngine SVE;
SVE.SetCallbackObj0(Local::SVCallback);
SVE.SetCallbackObj1(Local::SVCallback);
SVE.SetUserData0(udword(cache.Model0->GetHull()));
SVE.SetUserData1(udword(cache.Model1->GetHull()));
Collide = SVE.Collide(*world0, *world1, &cache.SepVector);
}
if(!Collide)
{
// Reset stats & contact status
mFlags &= ~OPC_CONTACT;
mNbBVBVTests = 0;
mNbPrimPrimTests = 0;
mNbBVPrimTests = 0;
mPairs.Reset();
return true;
}
}
}
// Here, hulls collide
cache.HullTest = false;
#endif // __MESHMERIZER_H__
// Checkings
if(!Setup(cache.Model0->GetMeshInterface(), cache.Model1->GetMeshInterface())) return false;
// Simple double-dispatch
bool Status;
if(!cache.Model0->HasLeafNodes())
{
if(cache.Model0->IsQuantized())
{
const AABBQuantizedNoLeafTree* T0 = (const AABBQuantizedNoLeafTree*)cache.Model0->GetTree();
const AABBQuantizedNoLeafTree* T1 = (const AABBQuantizedNoLeafTree*)cache.Model1->GetTree();
Status = Collide(T0, T1, world0, world1, &cache);
}
else
{
const AABBNoLeafTree* T0 = (const AABBNoLeafTree*)cache.Model0->GetTree();
const AABBNoLeafTree* T1 = (const AABBNoLeafTree*)cache.Model1->GetTree();
Status = Collide(T0, T1, world0, world1, &cache);
}
}
else
{
if(cache.Model0->IsQuantized())
{
const AABBQuantizedTree* T0 = (const AABBQuantizedTree*)cache.Model0->GetTree();
const AABBQuantizedTree* T1 = (const AABBQuantizedTree*)cache.Model1->GetTree();
Status = Collide(T0, T1, world0, world1, &cache);
}
else
{
const AABBCollisionTree* T0 = (const AABBCollisionTree*)cache.Model0->GetTree();
const AABBCollisionTree* T1 = (const AABBCollisionTree*)cache.Model1->GetTree();
Status = Collide(T0, T1, world0, world1, &cache);
}
}
#ifdef __MESHMERIZER_H__
if(Status)
{
// Reset counter as long as overlap occurs
if(GetContactStatus()) cache.ResetCountDown();
// Enable hull test again when counter reaches zero
cache.CountDown--;
if(!cache.CountDown)
{
cache.ResetCountDown();
cache.HullTest = true;
}
}
#endif
return Status;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Initializes a collision query :
* - reset stats & contact status
* - setup matrices
*
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::InitQuery(const Matrix4x4* world0, const Matrix4x4* world1)
{
// Reset stats & contact status
Collider::InitQuery();
mNbBVBVTests = 0;
mNbPrimPrimTests = 0;
mNbBVPrimTests = 0;
mPairs.Reset();
// Setup matrices
Matrix4x4 InvWorld0, InvWorld1;
if(world0) InvertPRMatrix(InvWorld0, *world0);
else InvWorld0.Identity();
if(world1) InvertPRMatrix(InvWorld1, *world1);
else InvWorld1.Identity();
Matrix4x4 World0to1 = world0 ? (*world0 * InvWorld1) : InvWorld1;
Matrix4x4 World1to0 = world1 ? (*world1 * InvWorld0) : InvWorld0;
mR0to1 = World0to1; World0to1.GetTrans(mT0to1);
mR1to0 = World1to0; World1to0.GetTrans(mT1to0);
// Precompute absolute 1-to-0 rotation matrix
for(udword i=0;i<3;i++)
{
for(udword j=0;j<3;j++)
{
// Epsilon value prevents floating-point inaccuracies (strategy borrowed from RAPID)
mAR.m[i][j] = 1e-6f + fabsf(mR1to0.m[i][j]);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Takes advantage of temporal coherence.
* \param cache [in] cache for a pair of previously colliding primitives
* \return true if we can return immediately
* \warning only works for "First Contact" mode
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::CheckTemporalCoherence(Pair* cache)
{
// Checkings
if(!cache) return false;
// Test previously colliding primitives first
if(TemporalCoherenceEnabled() && FirstContactEnabled())
{
PrimTest(cache->id0, cache->id1);
if(GetContactStatus()) return true;
}
return false;
}
#define UPDATE_CACHE \
if(cache && GetContactStatus()) \
{ \
cache->id0 = mPairs.GetEntry(0); \
cache->id1 = mPairs.GetEntry(1); \
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Collision query for normal AABB trees.
* \param tree0 [in] AABB tree from first object
* \param tree1 [in] AABB tree from second object
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \param cache [in/out] cache for a pair of previously colliding primitives
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(const AABBCollisionTree* tree0, const AABBCollisionTree* tree1, const Matrix4x4* world0, const Matrix4x4* world1, Pair* cache)
{
// Init collision query
InitQuery(world0, world1);
// Check previous state
if(CheckTemporalCoherence(cache)) return true;
// Perform collision query
_Collide(tree0->GetNodes(), tree1->GetNodes());
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Collision query for no-leaf AABB trees.
* \param tree0 [in] AABB tree from first object
* \param tree1 [in] AABB tree from second object
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \param cache [in/out] cache for a pair of previously colliding primitives
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(const AABBNoLeafTree* tree0, const AABBNoLeafTree* tree1, const Matrix4x4* world0, const Matrix4x4* world1, Pair* cache)
{
// Init collision query
InitQuery(world0, world1);
// Check previous state
if(CheckTemporalCoherence(cache)) return true;
// Perform collision query
_Collide(tree0->GetNodes(), tree1->GetNodes());
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Collision query for quantized AABB trees.
* \param tree0 [in] AABB tree from first object
* \param tree1 [in] AABB tree from second object
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \param cache [in/out] cache for a pair of previously colliding primitives
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(const AABBQuantizedTree* tree0, const AABBQuantizedTree* tree1, const Matrix4x4* world0, const Matrix4x4* world1, Pair* cache)
{
// Init collision query
InitQuery(world0, world1);
// Check previous state
if(CheckTemporalCoherence(cache)) return true;
// Setup dequantization coeffs
mCenterCoeff0 = tree0->mCenterCoeff;
mExtentsCoeff0 = tree0->mExtentsCoeff;
mCenterCoeff1 = tree1->mCenterCoeff;
mExtentsCoeff1 = tree1->mExtentsCoeff;
// Dequantize box A
const AABBQuantizedNode* N0 = tree0->GetNodes();
const Point a(float(N0->mAABB.mExtents[0]) * mExtentsCoeff0.x, float(N0->mAABB.mExtents[1]) * mExtentsCoeff0.y, float(N0->mAABB.mExtents[2]) * mExtentsCoeff0.z);
const Point Pa(float(N0->mAABB.mCenter[0]) * mCenterCoeff0.x, float(N0->mAABB.mCenter[1]) * mCenterCoeff0.y, float(N0->mAABB.mCenter[2]) * mCenterCoeff0.z);
// Dequantize box B
const AABBQuantizedNode* N1 = tree1->GetNodes();
const Point b(float(N1->mAABB.mExtents[0]) * mExtentsCoeff1.x, float(N1->mAABB.mExtents[1]) * mExtentsCoeff1.y, float(N1->mAABB.mExtents[2]) * mExtentsCoeff1.z);
const Point Pb(float(N1->mAABB.mCenter[0]) * mCenterCoeff1.x, float(N1->mAABB.mCenter[1]) * mCenterCoeff1.y, float(N1->mAABB.mCenter[2]) * mCenterCoeff1.z);
// Perform collision query
_Collide(N0, N1, a, Pa, b, Pb);
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Collision query for quantized no-leaf AABB trees.
* \param tree0 [in] AABB tree from first object
* \param tree1 [in] AABB tree from second object
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \param cache [in/out] cache for a pair of previously colliding primitives
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(const AABBQuantizedNoLeafTree* tree0, const AABBQuantizedNoLeafTree* tree1, const Matrix4x4* world0, const Matrix4x4* world1, Pair* cache)
{
// Init collision query
InitQuery(world0, world1);
// Check previous state
if(CheckTemporalCoherence(cache)) return true;
// Setup dequantization coeffs
mCenterCoeff0 = tree0->mCenterCoeff;
mExtentsCoeff0 = tree0->mExtentsCoeff;
mCenterCoeff1 = tree1->mCenterCoeff;
mExtentsCoeff1 = tree1->mExtentsCoeff;
// Perform collision query
_Collide(tree0->GetNodes(), tree1->GetNodes());
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Standard trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// The normal AABB tree can use 2 different descent rules (with different performances)
//#define ORIGINAL_CODE //!< UNC-like descent rules
#define ALTERNATIVE_CODE //!< Alternative descent rules
#ifdef ORIGINAL_CODE
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for normal AABB trees.
* \param b0 [in] collision node from first tree
* \param b1 [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBCollisionNode* b0, const AABBCollisionNode* b1)
{
// Perform BV-BV overlap test
if(!BoxBoxOverlap(b0->mAABB.mExtents, b0->mAABB.mCenter, b1->mAABB.mExtents, b1->mAABB.mCenter)) return;
if(b0->IsLeaf() && b1->IsLeaf()) { PrimTest(b0->GetPrimitive(), b1->GetPrimitive()); return; }
if(b1->IsLeaf() || (!b0->IsLeaf() && (b0->GetSize() > b1->GetSize())))
{
_Collide(b0->GetNeg(), b1);
if(ContactFound()) return;
_Collide(b0->GetPos(), b1);
}
else
{
_Collide(b0, b1->GetNeg());
if(ContactFound()) return;
_Collide(b0, b1->GetPos());
}
}
#endif
#ifdef ALTERNATIVE_CODE
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for normal AABB trees.
* \param b0 [in] collision node from first tree
* \param b1 [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBCollisionNode* b0, const AABBCollisionNode* b1)
{
// Perform BV-BV overlap test
if(!BoxBoxOverlap(b0->mAABB.mExtents, b0->mAABB.mCenter, b1->mAABB.mExtents, b1->mAABB.mCenter))
{
return;
}
if(b0->IsLeaf())
{
if(b1->IsLeaf())
{
PrimTest(b0->GetPrimitive(), b1->GetPrimitive());
}
else
{
_Collide(b0, b1->GetNeg());
if(ContactFound()) return;
_Collide(b0, b1->GetPos());
}
}
else if(b1->IsLeaf())
{
_Collide(b0->GetNeg(), b1);
if(ContactFound()) return;
_Collide(b0->GetPos(), b1);
}
else
{
_Collide(b0->GetNeg(), b1->GetNeg());
if(ContactFound()) return;
_Collide(b0->GetNeg(), b1->GetPos());
if(ContactFound()) return;
_Collide(b0->GetPos(), b1->GetNeg());
if(ContactFound()) return;
_Collide(b0->GetPos(), b1->GetPos());
}
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// No-leaf trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Leaf-leaf test for two primitive indices.
* \param id0 [in] index from first leaf-triangle
* \param id1 [in] index from second leaf-triangle
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::PrimTest(udword id0, udword id1)
{
// Request vertices from the app
VertexPointers VP0;
VertexPointers VP1;
mIMesh0->GetTriangle(VP0, id0);
mIMesh1->GetTriangle(VP1, id1);
// Transform from space 1 to space 0
Point u0,u1,u2;
TransformPoint(u0, *VP1.Vertex[0], mR1to0, mT1to0);
TransformPoint(u1, *VP1.Vertex[1], mR1to0, mT1to0);
TransformPoint(u2, *VP1.Vertex[2], mR1to0, mT1to0);
// Perform triangle-triangle overlap test
if(TriTriOverlap(*VP0.Vertex[0], *VP0.Vertex[1], *VP0.Vertex[2], u0, u1, u2))
{
// Keep track of colliding pairs
mPairs.Add(id0).Add(id1);
// Set contact status
mFlags |= OPC_CONTACT;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Leaf-leaf test for a previously fetched triangle from tree A (in B's space) and a new leaf from B.
* \param id1 [in] leaf-triangle index from tree B
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
inline_ void AABBTreeCollider::PrimTestTriIndex(udword id1)
{
// Request vertices from the app
VertexPointers VP;
mIMesh1->GetTriangle(VP, id1);
// Perform triangle-triangle overlap test
if(TriTriOverlap(mLeafVerts[0], mLeafVerts[1], mLeafVerts[2], *VP.Vertex[0], *VP.Vertex[1], *VP.Vertex[2]))
{
// Keep track of colliding pairs
mPairs.Add(mLeafIndex).Add(id1);
// Set contact status
mFlags |= OPC_CONTACT;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Leaf-leaf test for a previously fetched triangle from tree B (in A's space) and a new leaf from A.
* \param id0 [in] leaf-triangle index from tree A
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
inline_ void AABBTreeCollider::PrimTestIndexTri(udword id0)
{
// Request vertices from the app
VertexPointers VP;
mIMesh0->GetTriangle(VP, id0);
// Perform triangle-triangle overlap test
if(TriTriOverlap(mLeafVerts[0], mLeafVerts[1], mLeafVerts[2], *VP.Vertex[0], *VP.Vertex[1], *VP.Vertex[2]))
{
// Keep track of colliding pairs
mPairs.Add(id0).Add(mLeafIndex);
// Set contact status
mFlags |= OPC_CONTACT;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision of a leaf node from A and a branch from B.
* \param b [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_CollideTriBox(const AABBNoLeafNode* b)
{
// Perform triangle-box overlap test
if(!TriBoxOverlap(b->mAABB.mCenter, b->mAABB.mExtents)) return;
// Keep same triangle, deal with first child
if(b->HasPosLeaf()) PrimTestTriIndex(b->GetPosPrimitive());
else _CollideTriBox(b->GetPos());
if(ContactFound()) return;
// Keep same triangle, deal with second child
if(b->HasNegLeaf()) PrimTestTriIndex(b->GetNegPrimitive());
else _CollideTriBox(b->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision of a leaf node from B and a branch from A.
* \param b [in] collision node from first tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_CollideBoxTri(const AABBNoLeafNode* b)
{
// Perform triangle-box overlap test
if(!TriBoxOverlap(b->mAABB.mCenter, b->mAABB.mExtents)) return;
// Keep same triangle, deal with first child
if(b->HasPosLeaf()) PrimTestIndexTri(b->GetPosPrimitive());
else _CollideBoxTri(b->GetPos());
if(ContactFound()) return;
// Keep same triangle, deal with second child
if(b->HasNegLeaf()) PrimTestIndexTri(b->GetNegPrimitive());
else _CollideBoxTri(b->GetNeg());
}
//! Request triangle vertices from the app and transform them
#define FETCH_LEAF(prim_index, imesh, rot, trans) \
mLeafIndex = prim_index; \
/* Request vertices from the app */ \
VertexPointers VP; imesh->GetTriangle(VP, prim_index); \
/* Transform them in a common space */ \
TransformPoint(mLeafVerts[0], *VP.Vertex[0], rot, trans); \
TransformPoint(mLeafVerts[1], *VP.Vertex[1], rot, trans); \
TransformPoint(mLeafVerts[2], *VP.Vertex[2], rot, trans);
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for no-leaf AABB trees.
* \param a [in] collision node from first tree
* \param b [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBNoLeafNode* a, const AABBNoLeafNode* b)
{
// Perform BV-BV overlap test
if(!BoxBoxOverlap(a->mAABB.mExtents, a->mAABB.mCenter, b->mAABB.mExtents, b->mAABB.mCenter)) return;
// Catch leaf status
BOOL BHasPosLeaf = b->HasPosLeaf();
BOOL BHasNegLeaf = b->HasNegLeaf();
if(a->HasPosLeaf())
{
FETCH_LEAF(a->GetPosPrimitive(), mIMesh0, mR0to1, mT0to1)
if(BHasPosLeaf) PrimTestTriIndex(b->GetPosPrimitive());
else _CollideTriBox(b->GetPos());
if(ContactFound()) return;
if(BHasNegLeaf) PrimTestTriIndex(b->GetNegPrimitive());
else _CollideTriBox(b->GetNeg());
}
else
{
if(BHasPosLeaf)
{
FETCH_LEAF(b->GetPosPrimitive(), mIMesh1, mR1to0, mT1to0)
_CollideBoxTri(a->GetPos());
}
else _Collide(a->GetPos(), b->GetPos());
if(ContactFound()) return;
if(BHasNegLeaf)
{
FETCH_LEAF(b->GetNegPrimitive(), mIMesh1, mR1to0, mT1to0)
_CollideBoxTri(a->GetPos());
}
else _Collide(a->GetPos(), b->GetNeg());
}
if(ContactFound()) return;
if(a->HasNegLeaf())
{
FETCH_LEAF(a->GetNegPrimitive(), mIMesh0, mR0to1, mT0to1)
if(BHasPosLeaf) PrimTestTriIndex(b->GetPosPrimitive());
else _CollideTriBox(b->GetPos());
if(ContactFound()) return;
if(BHasNegLeaf) PrimTestTriIndex(b->GetNegPrimitive());
else _CollideTriBox(b->GetNeg());
}
else
{
if(BHasPosLeaf)
{
// ### That leaf has possibly already been fetched
FETCH_LEAF(b->GetPosPrimitive(), mIMesh1, mR1to0, mT1to0)
_CollideBoxTri(a->GetNeg());
}
else _Collide(a->GetNeg(), b->GetPos());
if(ContactFound()) return;
if(BHasNegLeaf)
{
// ### That leaf has possibly already been fetched
FETCH_LEAF(b->GetNegPrimitive(), mIMesh1, mR1to0, mT1to0)
_CollideBoxTri(a->GetNeg());
}
else _Collide(a->GetNeg(), b->GetNeg());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantized trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for quantized AABB trees.
* \param b0 [in] collision node from first tree
* \param b1 [in] collision node from second tree
* \param a [in] extent from box A
* \param Pa [in] center from box A
* \param b [in] extent from box B
* \param Pb [in] center from box B
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBQuantizedNode* b0, const AABBQuantizedNode* b1, const Point& a, const Point& Pa, const Point& b, const Point& Pb)
{
// Perform BV-BV overlap test
if(!BoxBoxOverlap(a, Pa, b, Pb)) return;
if(b0->IsLeaf() && b1->IsLeaf()) { PrimTest(b0->GetPrimitive(), b1->GetPrimitive()); return; }
if(b1->IsLeaf() || (!b0->IsLeaf() && (b0->GetSize() > b1->GetSize())))
{
// Dequantize box
const QuantizedAABB* Box = &b0->GetNeg()->mAABB;
const Point negPa(float(Box->mCenter[0]) * mCenterCoeff0.x, float(Box->mCenter[1]) * mCenterCoeff0.y, float(Box->mCenter[2]) * mCenterCoeff0.z);
const Point nega(float(Box->mExtents[0]) * mExtentsCoeff0.x, float(Box->mExtents[1]) * mExtentsCoeff0.y, float(Box->mExtents[2]) * mExtentsCoeff0.z);
_Collide(b0->GetNeg(), b1, nega, negPa, b, Pb);
if(ContactFound()) return;
// Dequantize box
Box = &b0->GetPos()->mAABB;
const Point posPa(float(Box->mCenter[0]) * mCenterCoeff0.x, float(Box->mCenter[1]) * mCenterCoeff0.y, float(Box->mCenter[2]) * mCenterCoeff0.z);
const Point posa(float(Box->mExtents[0]) * mExtentsCoeff0.x, float(Box->mExtents[1]) * mExtentsCoeff0.y, float(Box->mExtents[2]) * mExtentsCoeff0.z);
_Collide(b0->GetPos(), b1, posa, posPa, b, Pb);
}
else
{
// Dequantize box
const QuantizedAABB* Box = &b1->GetNeg()->mAABB;
const Point negPb(float(Box->mCenter[0]) * mCenterCoeff1.x, float(Box->mCenter[1]) * mCenterCoeff1.y, float(Box->mCenter[2]) * mCenterCoeff1.z);
const Point negb(float(Box->mExtents[0]) * mExtentsCoeff1.x, float(Box->mExtents[1]) * mExtentsCoeff1.y, float(Box->mExtents[2]) * mExtentsCoeff1.z);
_Collide(b0, b1->GetNeg(), a, Pa, negb, negPb);
if(ContactFound()) return;
// Dequantize box
Box = &b1->GetPos()->mAABB;
const Point posPb(float(Box->mCenter[0]) * mCenterCoeff1.x, float(Box->mCenter[1]) * mCenterCoeff1.y, float(Box->mCenter[2]) * mCenterCoeff1.z);
const Point posb(float(Box->mExtents[0]) * mExtentsCoeff1.x, float(Box->mExtents[1]) * mExtentsCoeff1.y, float(Box->mExtents[2]) * mExtentsCoeff1.z);
_Collide(b0, b1->GetPos(), a, Pa, posb, posPb);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantized no-leaf trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision of a leaf node from A and a quantized branch from B.
* \param leaf [in] leaf triangle from first tree
* \param b [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_CollideTriBox(const AABBQuantizedNoLeafNode* b)
{
// Dequantize box
const QuantizedAABB* bb = &b->mAABB;
const Point Pb(float(bb->mCenter[0]) * mCenterCoeff1.x, float(bb->mCenter[1]) * mCenterCoeff1.y, float(bb->mCenter[2]) * mCenterCoeff1.z);
const Point eb(float(bb->mExtents[0]) * mExtentsCoeff1.x, float(bb->mExtents[1]) * mExtentsCoeff1.y, float(bb->mExtents[2]) * mExtentsCoeff1.z);
// Perform triangle-box overlap test
if(!TriBoxOverlap(Pb, eb)) return;
if(b->HasPosLeaf()) PrimTestTriIndex(b->GetPosPrimitive());
else _CollideTriBox(b->GetPos());
if(ContactFound()) return;
if(b->HasNegLeaf()) PrimTestTriIndex(b->GetNegPrimitive());
else _CollideTriBox(b->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision of a leaf node from B and a quantized branch from A.
* \param b [in] collision node from first tree
* \param leaf [in] leaf triangle from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_CollideBoxTri(const AABBQuantizedNoLeafNode* b)
{
// Dequantize box
const QuantizedAABB* bb = &b->mAABB;
const Point Pa(float(bb->mCenter[0]) * mCenterCoeff0.x, float(bb->mCenter[1]) * mCenterCoeff0.y, float(bb->mCenter[2]) * mCenterCoeff0.z);
const Point ea(float(bb->mExtents[0]) * mExtentsCoeff0.x, float(bb->mExtents[1]) * mExtentsCoeff0.y, float(bb->mExtents[2]) * mExtentsCoeff0.z);
// Perform triangle-box overlap test
if(!TriBoxOverlap(Pa, ea)) return;
if(b->HasPosLeaf()) PrimTestIndexTri(b->GetPosPrimitive());
else _CollideBoxTri(b->GetPos());
if(ContactFound()) return;
if(b->HasNegLeaf()) PrimTestIndexTri(b->GetNegPrimitive());
else _CollideBoxTri(b->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for quantized no-leaf AABB trees.
* \param a [in] collision node from first tree
* \param b [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBQuantizedNoLeafNode* a, const AABBQuantizedNoLeafNode* b)
{
// Dequantize box A
const QuantizedAABB* ab = &a->mAABB;
const Point Pa(float(ab->mCenter[0]) * mCenterCoeff0.x, float(ab->mCenter[1]) * mCenterCoeff0.y, float(ab->mCenter[2]) * mCenterCoeff0.z);
const Point ea(float(ab->mExtents[0]) * mExtentsCoeff0.x, float(ab->mExtents[1]) * mExtentsCoeff0.y, float(ab->mExtents[2]) * mExtentsCoeff0.z);
// Dequantize box B
const QuantizedAABB* bb = &b->mAABB;
const Point Pb(float(bb->mCenter[0]) * mCenterCoeff1.x, float(bb->mCenter[1]) * mCenterCoeff1.y, float(bb->mCenter[2]) * mCenterCoeff1.z);
const Point eb(float(bb->mExtents[0]) * mExtentsCoeff1.x, float(bb->mExtents[1]) * mExtentsCoeff1.y, float(bb->mExtents[2]) * mExtentsCoeff1.z);
// Perform BV-BV overlap test
if(!BoxBoxOverlap(ea, Pa, eb, Pb)) return;
// Catch leaf status
BOOL BHasPosLeaf = b->HasPosLeaf();
BOOL BHasNegLeaf = b->HasNegLeaf();
if(a->HasPosLeaf())
{
FETCH_LEAF(a->GetPosPrimitive(), mIMesh0, mR0to1, mT0to1)
if(BHasPosLeaf) PrimTestTriIndex(b->GetPosPrimitive());
else _CollideTriBox(b->GetPos());
if(ContactFound()) return;
if(BHasNegLeaf) PrimTestTriIndex(b->GetNegPrimitive());
else _CollideTriBox(b->GetNeg());
}
else
{
if(BHasPosLeaf)
{
FETCH_LEAF(b->GetPosPrimitive(), mIMesh1, mR1to0, mT1to0)
_CollideBoxTri(a->GetPos());
}
else _Collide(a->GetPos(), b->GetPos());
if(ContactFound()) return;
if(BHasNegLeaf)
{
FETCH_LEAF(b->GetNegPrimitive(), mIMesh1, mR1to0, mT1to0)
_CollideBoxTri(a->GetPos());
}
else _Collide(a->GetPos(), b->GetNeg());
}
if(ContactFound()) return;
if(a->HasNegLeaf())
{
FETCH_LEAF(a->GetNegPrimitive(), mIMesh0, mR0to1, mT0to1)
if(BHasPosLeaf) PrimTestTriIndex(b->GetPosPrimitive());
else _CollideTriBox(b->GetPos());
if(ContactFound()) return;
if(BHasNegLeaf) PrimTestTriIndex(b->GetNegPrimitive());
else _CollideTriBox(b->GetNeg());
}
else
{
if(BHasPosLeaf)
{
// ### That leaf has possibly already been fetched
FETCH_LEAF(b->GetPosPrimitive(), mIMesh1, mR1to0, mT1to0)
_CollideBoxTri(a->GetNeg());
}
else _Collide(a->GetNeg(), b->GetPos());
if(ContactFound()) return;
if(BHasNegLeaf)
{
// ### That leaf has possibly already been fetched
FETCH_LEAF(b->GetNegPrimitive(), mIMesh1, mR1to0, mT1to0)
_CollideBoxTri(a->GetNeg());
}
else _Collide(a->GetNeg(), b->GetNeg());
}
}
|