aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9/OPCODE/Ice/IcePoint.cpp
blob: e715055b8a832d4d3719ac27bb88d0d3ada3eebd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	Contains code for 3D vectors.
 *	\file		IcePoint.cpp
 *	\author		Pierre Terdiman
 *	\date		April, 4, 2000
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	3D point.
 *
 *	The name is "Point" instead of "Vector" since a vector is N-dimensional, whereas a point is an implicit "vector of dimension 3".
 *	So the choice was between "Point" and "Vector3", the first one looked better (IMHO).
 *
 *	Some people, then, use a typedef to handle both points & vectors using the same class: typedef Point Vector3;
 *	This is bad since it opens the door to a lot of confusion while reading the code. I know it may sounds weird but check this out:
 *
 *	\code
 *		Point P0,P1 = some 3D points;
 *		Point Delta = P1 - P0;
 *	\endcode
 *
 *	This compiles fine, although you should have written:
 *
 *	\code
 *		Point P0,P1 = some 3D points;
 *		Vector3 Delta = P1 - P0;
 *	\endcode
 *
 *	Subtle things like this are not caught at compile-time, and when you find one in the code, you never know whether it's a mistake
 *	from the author or something you don't get.
 *
 *	One way to handle it at compile-time would be to use different classes for Point & Vector3, only overloading operator "-" for vectors.
 *	But then, you get a lot of redundant code in thoses classes, and basically it's really a lot of useless work.
 *
 *	Another way would be to use homogeneous points: w=1 for points, w=0 for vectors. That's why the HPoint class exists. Now, to store
 *	your model's vertices and in most cases, you really want to use Points to save ram.
 *
 *	\class		Point
 *	\author		Pierre Terdiman
 *	\version	1.0
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"

using namespace IceMaths;

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	Creates a positive unit random vector.
 *	\return		Self-reference
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Point& Point::PositiveUnitRandomVector()
{
	x = UnitRandomFloat();
	y = UnitRandomFloat();
	z = UnitRandomFloat();
	Normalize();
	return *this;
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	Creates a unit random vector.
 *	\return		Self-reference
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Point& Point::UnitRandomVector()
{
	x = UnitRandomFloat() - 0.5f;
	y = UnitRandomFloat() - 0.5f;
	z = UnitRandomFloat() - 0.5f;
	Normalize();
	return *this;
}

// Cast operator
// WARNING: not inlined
Point::operator HPoint() const	{ return HPoint(x, y, z, 0.0f); }

Point& Point::Refract(const Point& eye, const Point& n, float refractindex, Point& refracted)
{
	//	Point EyePt = eye position
	//	Point p = current vertex
	//	Point n = vertex normal
	//	Point rv = refracted vector
	//	Eye vector - doesn't need to be normalized
	Point Env;
	Env.x = eye.x - x;
	Env.y = eye.y - y;
	Env.z = eye.z - z;

	float NDotE = n|Env;
	float NDotN = n|n;
	NDotE /= refractindex;

	// Refracted vector
	refracted = n*NDotE - Env*NDotN;

	return *this;
}

Point& Point::ProjectToPlane(const Plane& p)
{
	*this-= (p.d + (*this|p.n))*p.n;
	return *this;
}

void Point::ProjectToScreen(float halfrenderwidth, float halfrenderheight, const Matrix4x4& mat, HPoint& projected) const
{
	projected = HPoint(x, y, z, 1.0f) * mat;
	projected.w = 1.0f / projected.w;

	projected.x*=projected.w;
	projected.y*=projected.w;
	projected.z*=projected.w;

	projected.x *= halfrenderwidth;		projected.x += halfrenderwidth;
	projected.y *= -halfrenderheight;	projected.y += halfrenderheight;
}

void Point::SetNotUsed()
{
	// We use a particular integer pattern : 0xffffffff everywhere. This is a NAN.
	IR(x) = 0xffffffff;
	IR(y) = 0xffffffff;
	IR(z) = 0xffffffff;
}

BOOL Point::IsNotUsed()	const
{
	if(IR(x)!=0xffffffff)	return FALSE;
	if(IR(y)!=0xffffffff)	return FALSE;
	if(IR(z)!=0xffffffff)	return FALSE;
	return TRUE;
}

Point& Point::Mult(const Matrix3x3& mat, const Point& a)
{
	x = a.x * mat.m[0][0] + a.y * mat.m[0][1] + a.z * mat.m[0][2];
	y = a.x * mat.m[1][0] + a.y * mat.m[1][1] + a.z * mat.m[1][2];
	z = a.x * mat.m[2][0] + a.y * mat.m[2][1] + a.z * mat.m[2][2];
	return *this;
}

Point& Point::Mult2(const Matrix3x3& mat1, const Point& a1, const Matrix3x3& mat2, const Point& a2)
{
	x = a1.x * mat1.m[0][0] + a1.y * mat1.m[0][1] + a1.z * mat1.m[0][2] + a2.x * mat2.m[0][0] + a2.y * mat2.m[0][1] + a2.z * mat2.m[0][2];
	y = a1.x * mat1.m[1][0] + a1.y * mat1.m[1][1] + a1.z * mat1.m[1][2] + a2.x * mat2.m[1][0] + a2.y * mat2.m[1][1] + a2.z * mat2.m[1][2];
	z = a1.x * mat1.m[2][0] + a1.y * mat1.m[2][1] + a1.z * mat1.m[2][2] + a2.x * mat2.m[2][0] + a2.y * mat2.m[2][1] + a2.z * mat2.m[2][2];
	return *this;
}

Point& Point::Mac(const Matrix3x3& mat, const Point& a)
{
	x += a.x * mat.m[0][0] + a.y * mat.m[0][1] + a.z * mat.m[0][2];
	y += a.x * mat.m[1][0] + a.y * mat.m[1][1] + a.z * mat.m[1][2];
	z += a.x * mat.m[2][0] + a.y * mat.m[2][1] + a.z * mat.m[2][2];
	return *this;
}

Point& Point::TransMult(const Matrix3x3& mat, const Point& a)
{
	x = a.x * mat.m[0][0] + a.y * mat.m[1][0] + a.z * mat.m[2][0];
	y = a.x * mat.m[0][1] + a.y * mat.m[1][1] + a.z * mat.m[2][1];
	z = a.x * mat.m[0][2] + a.y * mat.m[1][2] + a.z * mat.m[2][2];
	return *this;
}

Point& Point::Transform(const Point& r, const Matrix3x3& rotpos, const Point& linpos)
{
	x = r.x * rotpos.m[0][0] + r.y * rotpos.m[0][1] + r.z * rotpos.m[0][2] + linpos.x;
	y = r.x * rotpos.m[1][0] + r.y * rotpos.m[1][1] + r.z * rotpos.m[1][2] + linpos.y;
	z = r.x * rotpos.m[2][0] + r.y * rotpos.m[2][1] + r.z * rotpos.m[2][2] + linpos.z;
	return *this;
}

Point& Point::InvTransform(const Point& r, const Matrix3x3& rotpos, const Point& linpos)
{
	float sx = r.x - linpos.x;
	float sy = r.y - linpos.y;
	float sz = r.z - linpos.z;
	x = sx * rotpos.m[0][0] + sy * rotpos.m[1][0] + sz * rotpos.m[2][0];
	y = sx * rotpos.m[0][1] + sy * rotpos.m[1][1] + sz * rotpos.m[2][1];
	z = sx * rotpos.m[0][2] + sy * rotpos.m[1][2] + sz * rotpos.m[2][2];
	return *this;
}