1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
/*
Bullet for XNA Copyright (c) 2003-2007 Vsevolod Klementjev http://www.codeplex.com/xnadevru
Bullet original C++ version Copyright (c) 2003-2007 Erwin Coumans http://bulletphysics.com
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
using System;
using System.Collections.Generic;
using System.Text;
using MonoXnaCompactMaths;
namespace XnaDevRu.BulletX
{
/// <summary>
/// MinkowskiPenetrationDepthSolver implements bruteforce penetration depth estimation.
/// Implementation is based on sampling the depth using support mapping, and using GJK step to get the witness points.
/// </summary>
public class MinkowskiPenetrationDepthSolver : IConvexPenetrationDepthSolver
{
private const int UnitSpherePointsCount = 42;
private static Vector3[] penetrationDirections =
{
new Vector3(0.000000f , -0.000000f,-1.000000f),
new Vector3(0.723608f , -0.525725f,-0.447219f),
new Vector3(-0.276388f , -0.850649f,-0.447219f),
new Vector3(-0.894426f , -0.000000f,-0.447216f),
new Vector3(-0.276388f , 0.850649f,-0.447220f),
new Vector3(0.723608f , 0.525725f,-0.447219f),
new Vector3(0.276388f , -0.850649f,0.447220f),
new Vector3(-0.723608f , -0.525725f,0.447219f),
new Vector3(-0.723608f , 0.525725f,0.447219f),
new Vector3(0.276388f , 0.850649f,0.447219f),
new Vector3(0.894426f , 0.000000f,0.447216f),
new Vector3(-0.000000f , 0.000000f,1.000000f),
new Vector3(0.425323f , -0.309011f,-0.850654f),
new Vector3(-0.162456f , -0.499995f,-0.850654f),
new Vector3(0.262869f , -0.809012f,-0.525738f),
new Vector3(0.425323f , 0.309011f,-0.850654f),
new Vector3(0.850648f , -0.000000f,-0.525736f),
new Vector3(-0.525730f , -0.000000f,-0.850652f),
new Vector3(-0.688190f , -0.499997f,-0.525736f),
new Vector3(-0.162456f , 0.499995f,-0.850654f),
new Vector3(-0.688190f , 0.499997f,-0.525736f),
new Vector3(0.262869f , 0.809012f,-0.525738f),
new Vector3(0.951058f , 0.309013f,0.000000f),
new Vector3(0.951058f , -0.309013f,0.000000f),
new Vector3(0.587786f , -0.809017f,0.000000f),
new Vector3(0.000000f , -1.000000f,0.000000f),
new Vector3(-0.587786f , -0.809017f,0.000000f),
new Vector3(-0.951058f , -0.309013f,-0.000000f),
new Vector3(-0.951058f , 0.309013f,-0.000000f),
new Vector3(-0.587786f , 0.809017f,-0.000000f),
new Vector3(-0.000000f , 1.000000f,-0.000000f),
new Vector3(0.587786f , 0.809017f,-0.000000f),
new Vector3(0.688190f , -0.499997f,0.525736f),
new Vector3(-0.262869f , -0.809012f,0.525738f),
new Vector3(-0.850648f , 0.000000f,0.525736f),
new Vector3(-0.262869f , 0.809012f,0.525738f),
new Vector3(0.688190f , 0.499997f,0.525736f),
new Vector3(0.525730f , 0.000000f,0.850652f),
new Vector3(0.162456f , -0.499995f,0.850654f),
new Vector3(-0.425323f , -0.309011f,0.850654f),
new Vector3(-0.425323f , 0.309011f,0.850654f),
new Vector3(0.162456f , 0.499995f,0.850654f)
};
private class IntermediateResult : DiscreteCollisionDetectorInterface.Result
{
private Vector3 _normalOnBInWorld;
private Vector3 _pointInWorld;
private float _depth;
private bool _hasResult;
public IntermediateResult()
{
_hasResult = false;
}
public bool HasResult { get { return _hasResult; } }
public float Depth { get { return _depth; } }
public Vector3 PointInWorld { get { return _pointInWorld; } }
public override void SetShapeIdentifiers(int partId0, int index0, int partId1, int index1)
{
}
public override void AddContactPoint(Vector3 normalOnBInWorld, Vector3 pointInWorld, float depth)
{
_normalOnBInWorld = normalOnBInWorld;
_pointInWorld = pointInWorld;
_depth = depth;
_hasResult = true;
}
}
#region IConvexPenetrationDepthSolver Members
public bool CalculatePenetrationDepth(ISimplexSolver simplexSolver,
ConvexShape convexA, ConvexShape convexB,
Matrix transformA, Matrix transformB,
Vector3 v, out Vector3 pa, out Vector3 pb, IDebugDraw debugDraw)
{
pa = new Vector3();
pb = new Vector3();
//just take fixed number of orientation, and sample the penetration depth in that direction
float minProj = 1e30f;
Vector3 minNorm = new Vector3();
Vector3 minA = new Vector3(), minB = new Vector3();
Vector3 seperatingAxisInA, seperatingAxisInB;
Vector3 pInA, qInB, pWorld, qWorld, w;
Vector3[] supportVerticesABatch = new Vector3[UnitSpherePointsCount + ConvexShape.MaxPreferredPenetrationDirections * 2];
Vector3[] supportVerticesBBatch = new Vector3[UnitSpherePointsCount + ConvexShape.MaxPreferredPenetrationDirections * 2];
Vector3[] seperatingAxisInABatch = new Vector3[UnitSpherePointsCount + ConvexShape.MaxPreferredPenetrationDirections * 2];
Vector3[] seperatingAxisInBBatch = new Vector3[UnitSpherePointsCount + ConvexShape.MaxPreferredPenetrationDirections * 2];
int numSampleDirections = UnitSpherePointsCount;
for (int i = 0; i < numSampleDirections; i++)
{
Vector3 norm = penetrationDirections[i];
seperatingAxisInABatch[i] = Vector3.TransformNormal((-norm), transformA);
seperatingAxisInBBatch[i] = Vector3.TransformNormal(norm, transformB);
}
{
int numPDA = convexA.PreferredPenetrationDirectionsCount;
if (numPDA != 0)
{
for (int i = 0; i < numPDA; i++)
{
Vector3 norm;
convexA.GetPreferredPenetrationDirection(i, out norm);
norm = Vector3.TransformNormal(norm, transformA);
penetrationDirections[numSampleDirections] = norm;
seperatingAxisInABatch[numSampleDirections] = Vector3.TransformNormal((-norm), transformA);
seperatingAxisInBBatch[numSampleDirections] = Vector3.TransformNormal(norm, transformB);
numSampleDirections++;
}
}
}
{
int numPDB = convexB.PreferredPenetrationDirectionsCount;
if (numPDB != 0)
{
for (int i = 0; i < numPDB; i++)
{
Vector3 norm;
convexB.GetPreferredPenetrationDirection(i, out norm);
norm = Vector3.TransformNormal(norm, transformB);
penetrationDirections[numSampleDirections] = norm;
seperatingAxisInABatch[numSampleDirections] = Vector3.TransformNormal((-norm), transformA);
seperatingAxisInBBatch[numSampleDirections] = Vector3.TransformNormal(norm, transformB);
numSampleDirections++;
}
}
}
convexA.BatchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInABatch, supportVerticesABatch); //, numSampleDirections);
convexB.BatchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInBBatch, supportVerticesBBatch); //, numSampleDirections);
for (int i = 0; i < numSampleDirections; i++)
{
Vector3 norm = penetrationDirections[i];
seperatingAxisInA = seperatingAxisInABatch[i];
seperatingAxisInB = seperatingAxisInBBatch[i];
pInA = supportVerticesABatch[i];
qInB = supportVerticesBBatch[i];
pWorld = MathHelper.MatrixToVector(transformA, pInA);
qWorld = MathHelper.MatrixToVector(transformB, qInB);
w = qWorld - pWorld;
float delta = Vector3.Dot(norm, w);
//find smallest delta
if (delta < minProj)
{
minProj = delta;
minNorm = norm;
minA = pWorld;
minB = qWorld;
}
}
//add the margins
minA += minNorm * convexA.Margin;
minB -= minNorm * convexB.Margin;
//no penetration
if (minProj < 0)
return false;
minProj += (convexA.Margin + convexB.Margin);
GjkPairDetector gjkdet = new GjkPairDetector(convexA, convexB, simplexSolver, null);
float offsetDist = minProj;
Vector3 offset = minNorm * offsetDist;
GjkPairDetector.ClosestPointInput input = new DiscreteCollisionDetectorInterface.ClosestPointInput();
Vector3 newOrg = transformA.Translation + offset;
Matrix displacedTrans = transformA;
displacedTrans.Translation = newOrg;
input.TransformA = displacedTrans;
input.TransformB = transformB;
input.MaximumDistanceSquared = 1e30f;//minProj;
IntermediateResult res = new IntermediateResult();
gjkdet.GetClosestPoints(input, res, debugDraw);
float correctedMinNorm = minProj - res.Depth;
//the penetration depth is over-estimated, relax it
float penetration_relaxation = 1;
minNorm *= penetration_relaxation;
if (res.HasResult)
{
pa = res.PointInWorld - minNorm * correctedMinNorm;
pb = res.PointInWorld;
}
return res.HasResult;
}
#endregion
}
}
|