1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
/*
Bullet for XNA Copyright (c) 2003-2007 Vsevolod Klementjev http://www.codeplex.com/xnadevru
Bullet original C++ version Copyright (c) 2003-2007 Erwin Coumans http://bulletphysics.com
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
using System;
using System.Collections.Generic;
using System.Text;
using MonoXnaCompactMaths;
namespace XnaDevRu.BulletX
{
/// <summary>
/// CollisionShape provides generic interface for collidable objects
/// </summary>
public abstract class CollisionShape
{
//debugging support
private string _tempDebug;
public abstract string Name { get; }
public string ExtraDebugInfo { get { return _tempDebug; } set { _tempDebug = value; } }
public bool IsPolyhedral
{
get
{
return BroadphaseProxy.IsPolyhedral(ShapeType);
}
}
public bool IsConvex
{
get
{
return BroadphaseProxy.IsConvex(ShapeType);
}
}
public bool IsConcave
{
get
{
return BroadphaseProxy.IsConcave(ShapeType);
}
}
public bool IsCompound
{
get
{
return BroadphaseProxy.IsCompound(ShapeType);
}
}
//isInfinite is used to catch simulation error (aabb check)
public bool IsInfinite
{
get
{
return BroadphaseProxy.IsInfinite(ShapeType);
}
}
public abstract float Margin { get; set; }
public abstract Vector3 LocalScaling { get; set; }
public abstract BroadphaseNativeTypes ShapeType { get; }
public virtual void GetBoundingSphere(out Vector3 center, out float radius)
{
Matrix tr = Matrix.Identity;
Vector3 aabbMin, aabbMax;
GetAabb(tr, out aabbMin, out aabbMax);
radius = (aabbMax - aabbMin).Length() * 0.5f;
center = (aabbMin + aabbMax) * 0.5f;
}
public virtual float GetAngularMotionDisc()
{
Vector3 center;
float disc;
GetBoundingSphere(out center, out disc);
disc += center.Length();
return disc;
}
//calculateTemporalAabb calculates the enclosing aabb for the moving object over interval [0..timeStep)
//result is conservative
public void CalculateTemporalAabb(Matrix currentTransform, Vector3 linearVelocity, Vector3 angularVelocity, float timeStep, out Vector3 temporalAabbMin, out Vector3 temporalAabbMax)
{
//start with static aabb
GetAabb(currentTransform, out temporalAabbMin, out temporalAabbMax);
float temporalAabbMaxx = temporalAabbMax.X;
float temporalAabbMaxy = temporalAabbMax.Y;
float temporalAabbMaxz = temporalAabbMax.Z;
float temporalAabbMinx = temporalAabbMin.X;
float temporalAabbMiny = temporalAabbMin.Y;
float temporalAabbMinz = temporalAabbMin.Z;
// add linear motion
Vector3 linMotion = linearVelocity * timeStep;
//todo: simd would have a vector max/min operation, instead of per-element access
if (linMotion.X > 0)
temporalAabbMaxx += linMotion.X;
else
temporalAabbMinx += linMotion.X;
if (linMotion.Y > 0)
temporalAabbMaxy += linMotion.Y;
else
temporalAabbMiny += linMotion.Y;
if (linMotion.Z > 0)
temporalAabbMaxz += linMotion.Z;
else
temporalAabbMinz += linMotion.Z;
//add conservative angular motion
float angularMotion = angularVelocity.Length() * GetAngularMotionDisc() * timeStep;
Vector3 angularMotion3d = new Vector3(angularMotion, angularMotion, angularMotion);
temporalAabbMin = new Vector3(temporalAabbMinx, temporalAabbMiny, temporalAabbMinz);
temporalAabbMax = new Vector3(temporalAabbMaxx, temporalAabbMaxy, temporalAabbMaxz);
temporalAabbMin -= angularMotion3d;
temporalAabbMax += angularMotion3d;
}
public abstract void GetAabb(Matrix transform, out Vector3 aabbMin, out Vector3 aabbMax);
public abstract void CalculateLocalInertia(float mass, out Vector3 inertia);
}
}
|