1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSim Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS AS IS AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
using System;
using System.IO;
using System.Globalization;
using System.Diagnostics;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using OpenSim.Framework;
using OpenSim.Framework.Console;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin.Meshing
{
public class Meshmerizer
{
// Setting baseDir to a path will enable the dumping of raw files
// raw files can be imported by blender so a visual inspection of the results can be done
// const string baseDir = "rawFiles";
const string baseDir = null;
static void IntersectionParameterPD(PhysicsVector p1, PhysicsVector r1, PhysicsVector p2, PhysicsVector r2, ref float lambda, ref float mu)
{
// p1, p2, points on the straight
// r1, r2, directional vectors of the straight. Not necessarily of length 1!
// note, that l, m can be scaled such, that the range 0..1 is mapped to the area between two points,
// thus allowing to decide whether an intersection is between two points
float r1x = r1.X;
float r1y = r1.Y;
float r2x = r2.X;
float r2y = r2.Y;
float denom = r1y*r2x - r1x*r2y;
if (denom == 0.0)
{
lambda = Single.NaN;
mu = Single.NaN;
return;
}
float p1x = p1.X;
float p1y = p1.Y;
float p2x = p2.X;
float p2y = p2.Y;
lambda = (-p2x * r2y + p1x * r2y + (p2y - p1y) * r2x) / denom;
mu = (-p2x * r1y + p1x * r1y + (p2y - p1y) * r1x) / denom;
}
private static List<Triangle> FindInfluencedTriangles(List<Triangle> triangles, Vertex v)
{
List<Triangle> influenced = new List<Triangle>();
foreach (Triangle t in triangles)
{
if (t.isInCircle(v.X, v.Y))
{
influenced.Add(t);
}
}
return influenced;
}
private static void InsertVertices(List<Vertex> vertices, int usedForSeed, List<Triangle> triangles)
{
// This is a variant of the delaunay algorithm
// each time a new vertex is inserted, all triangles that are influenced by it are deleted
// and replaced by new ones including the new vertex
// It is not very time efficient but easy to implement.
int iCurrentVertex;
int iMaxVertex = vertices.Count;
for (iCurrentVertex = usedForSeed; iCurrentVertex < iMaxVertex; iCurrentVertex++)
{
// Background: A triangle mesh fulfills the delaunay condition if (iff!)
// each circumlocutory circle (i.e. the circle that touches all three corners)
// of each triangle is empty of other vertices.
// Obviously a single (seeding) triangle fulfills this condition.
// If we now add one vertex, we need to reconstruct all triangles, that
// do not fulfill this condition with respect to the new triangle
// Find the triangles that are influenced by the new vertex
Vertex v=vertices[iCurrentVertex];
if (v == null)
continue; // Null is polygon stop marker. Ignore it
List<Triangle> influencedTriangles=FindInfluencedTriangles(triangles, v);
List<Simplex> simplices = new List<Simplex>();
// Reconstruction phase. First step, dissolve each triangle into it's simplices,
// i.e. it's "border lines"
// Goal is to find "inner" borders and delete them, while the hull gets conserved.
// Inner borders are special in the way that they always come twice, which is how we detect them
foreach (Triangle t in influencedTriangles)
{
List<Simplex> newSimplices = t.GetSimplices();
simplices.AddRange(newSimplices);
triangles.Remove(t);
}
// Now sort the simplices. That will make identical ones reside side by side in the list
simplices.Sort();
// Look for duplicate simplices here.
// Remember, they are directly side by side in the list right now,
// So we only check directly neighbours
int iSimplex;
List<Simplex> innerSimplices = new List<Simplex>();
for (iSimplex = 1; iSimplex < simplices.Count; iSimplex++) // Startindex=1, so we can refer backwards
{
if (simplices[iSimplex - 1].CompareTo(simplices[iSimplex]) == 0)
{
innerSimplices.Add(simplices[iSimplex - 1]);
innerSimplices.Add(simplices[iSimplex]);
}
}
foreach (Simplex s in innerSimplices)
{
simplices.Remove(s);
}
// each simplex still in the list belongs to the hull of the region in question
// The new vertex (yes, we still deal with verices here :-) ) forms a triangle
// with each of these simplices. Build the new triangles and add them to the list
foreach (Simplex s in simplices)
{
Triangle t = new Triangle(s.v1, s.v2, vertices[iCurrentVertex]);
if (!t.isDegraded())
{
triangles.Add(t);
}
}
}
}
static Mesh CreateBoxMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
// Builds the z (+ and -) surfaces of a box shaped prim
{
UInt16 hollowFactor = primShape.ProfileHollow;
UInt16 profileBegin = primShape.ProfileBegin;
UInt16 profileEnd = primShape.ProfileEnd;
// Procedure: This is based on the fact that the upper (plus) and lower (minus) Z-surface
// of a block are basically the same
// They may be warped differently but the shape is identical
// So we only create one surface as a model and derive both plus and minus surface of the block from it
// This is done in a model space where the block spans from -.5 to +.5 in X and Y
// The mapping to Scene space is done later during the "extrusion" phase
// Base
Vertex MM = new Vertex(-0.5f, -0.5f, 0.0f);
Vertex PM = new Vertex(+0.5f, -0.5f, 0.0f);
Vertex MP = new Vertex(-0.5f, +0.5f, 0.0f);
Vertex PP = new Vertex(+0.5f, +0.5f, 0.0f);
Meshing.SimpleHull outerHull = new SimpleHull();
outerHull.AddVertex(MM);
outerHull.AddVertex(PM);
outerHull.AddVertex(PP);
outerHull.AddVertex(MP);
// Deal with cuts now
if ((profileBegin != 0) || (profileEnd != 0))
{
double fProfileBeginAngle = profileBegin / 50000.0 * 360.0; // In degree, for easier debugging and understanding
fProfileBeginAngle -= (90.0 + 45.0); // for some reasons, the SL client counts from the corner -X/-Y
double fProfileEndAngle = 360.0 - profileEnd / 50000.0 * 360.0; // Pathend comes as complement to 1.0
fProfileEndAngle -= (90.0 + 45.0);
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0;
// Note, that we don't want to cut out a triangle, even if this is a
// good approximation for small cuts. Indeed we want to cut out an arc
// and we approximate this arc by a polygon chain
// Also note, that these vectors are of length 1.0 and thus their endpoints lay outside the model space
// So it can easily be subtracted from the outer hull
int iSteps = (int)(((fProfileBeginAngle - fProfileEndAngle) / 45.0) + .5); // how many steps do we need with approximately 45 degree
double dStepWidth=(fProfileBeginAngle-fProfileEndAngle)/iSteps;
Vertex origin = new Vertex(0.0f, 0.0f, 0.0f);
// Note the sequence of vertices here. It's important to have the other rotational sense than in outerHull
SimpleHull cutHull = new SimpleHull();
cutHull.AddVertex(origin);
for (int i=0; i<iSteps; i++) {
double angle=fProfileBeginAngle-i*dStepWidth; // we count against the angle orientation!!!!
Vertex v = Vertex.FromAngle(angle * Math.PI / 180.0);
cutHull.AddVertex(v);
}
Vertex legEnd = Vertex.FromAngle(fProfileEndAngle * Math.PI / 180.0); // Calculated separately to avoid errors
cutHull.AddVertex(legEnd);
MainLog.Instance.Debug("Starting cutting of the hollow shape from the prim {1}", 0, primName);
SimpleHull cuttedHull = SimpleHull.SubtractHull(outerHull, cutHull);
outerHull = cuttedHull;
}
// Deal with the hole here
if (hollowFactor > 0)
{
float hollowFactorF = (float) hollowFactor/(float) 50000;
Vertex IMM = new Vertex(-0.5f * hollowFactorF, -0.5f * hollowFactorF, 0.0f);
Vertex IPM = new Vertex(+0.5f * hollowFactorF, -0.5f * hollowFactorF, 0.0f);
Vertex IMP = new Vertex(-0.5f * hollowFactorF, +0.5f * hollowFactorF, 0.0f);
Vertex IPP = new Vertex(+0.5f * hollowFactorF, +0.5f * hollowFactorF, 0.0f);
SimpleHull holeHull = new SimpleHull();
holeHull.AddVertex(IMM);
holeHull.AddVertex(IMP);
holeHull.AddVertex(IPP);
holeHull.AddVertex(IPM);
SimpleHull hollowedHull = SimpleHull.SubtractHull(outerHull, holeHull);
outerHull = hollowedHull;
}
Mesh m = new Mesh();
Vertex Seed1 = new Vertex(0.0f, -10.0f, 0.0f);
Vertex Seed2 = new Vertex(-10.0f, 10.0f, 0.0f);
Vertex Seed3 = new Vertex(10.0f, 10.0f, 0.0f);
m.Add(Seed1);
m.Add(Seed2);
m.Add(Seed3);
m.Add(new Triangle(Seed1, Seed2, Seed3));
m.Add(outerHull.getVertices());
InsertVertices(m.vertices, 3, m.triangles);
m.DumpRaw(baseDir, primName, "Proto first Mesh");
m.Remove(Seed1);
m.Remove(Seed2);
m.Remove(Seed3);
m.DumpRaw(baseDir, primName, "Proto seeds removed");
m.RemoveTrianglesOutside(outerHull);
m.DumpRaw(baseDir, primName, "Proto outsides removed");
foreach (Triangle t in m.triangles)
{
PhysicsVector n = t.getNormal();
if (n.Z < 0.0)
t.invertNormal();
}
Extruder extr = new Extruder();
extr.size = size;
Mesh result = extr.Extrude(m);
result.DumpRaw(baseDir, primName, "Z extruded");
return result;
}
public static void CalcNormals(Mesh mesh)
{
int iTriangles = mesh.triangles.Count;
mesh.normals = new float[iTriangles*3];
int i = 0;
foreach (Triangle t in mesh.triangles)
{
float ux, uy, uz;
float vx, vy, vz;
float wx, wy, wz;
ux = t.v1.X;
uy = t.v1.Y;
uz = t.v1.Z;
vx = t.v2.X;
vy = t.v2.Y;
vz = t.v2.Z;
wx = t.v3.X;
wy = t.v3.Y;
wz = t.v3.Z;
// Vectors for edges
float e1x, e1y, e1z;
float e2x, e2y, e2z;
e1x = ux - vx;
e1y = uy - vy;
e1z = uz - vz;
e2x = ux - wx;
e2y = uy - wy;
e2z = uz - wz;
// Cross product for normal
float nx, ny, nz;
nx = e1y*e2z - e1z*e2y;
ny = e1z*e2x - e1x*e2z;
nz = e1x*e2y - e1y*e2x;
// Length
float l = (float) Math.Sqrt(nx*nx + ny*ny + nz*nz);
// Normalized "normal"
nx /= l;
ny /= l;
nz /= l;
mesh.normals[i] = nx;
mesh.normals[i + 1] = ny;
mesh.normals[i + 2] = nz;
i += 3;
}
}
public static Mesh CreateMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
{
Mesh mesh = null;
switch (primShape.ProfileShape)
{
case ProfileShape.Square:
mesh=CreateBoxMesh(primName, primShape, size);
CalcNormals(mesh);
break;
default:
mesh = CreateBoxMesh(primName, primShape, size);
CalcNormals(mesh);
//Set default mesh to cube otherwise it'll return
// null and crash on the 'setMesh' method in the physics plugins.
//mesh = null;
break;
}
return mesh;
}
}
}
|