aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs
blob: 14d5caac7ea556bf745266bce24a32c8edde2d00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/*
 * Copyright (c) Contributors, http://opensimulator.org/
 * See CONTRIBUTORS.TXT for a full list of copyright holders.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the OpenSimulator Project nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
 * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
 * ODEPrim.cs contains methods dealing with Prim editing, Prim
 * characteristics and Kinetic motion.
 * ODEDynamics.cs contains methods dealing with Prim Physical motion
 * (dynamics) and the associated settings. Old Linear and angular
 * motors for dynamic motion have been replace with  MoveLinear()
 * and MoveAngular(); 'Physical' is used only to switch ODE dynamic 
 * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
 * switch between 'VEHICLE' parameter use and general dynamics
 * settings use.
 * 
 */

/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
 * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
 * ODEPrim.cs contains methods dealing with Prim editing, Prim
 * characteristics and Kinetic motion.
 * ODEDynamics.cs contains methods dealing with Prim Physical motion
 * (dynamics) and the associated settings. Old Linear and angular
 * motors for dynamic motion have been replace with  MoveLinear()
 * and MoveAngular(); 'Physical' is used only to switch ODE dynamic 
 * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
 * switch between 'VEHICLE' parameter use and general dynamics
 * settings use.
 */ 

using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;

namespace OpenSim.Region.Physics.OdePlugin
{
    public class ODEDynamics
    {
        public Vehicle Type
        {        
            get { return m_type; }
        }

        public IntPtr Body
        {
            get { return m_body; }
        }

        private int frcount = 0;										// Used to limit dynamics debug output to 
        																// every 100th frame

        // private OdeScene m_parentScene = null;
        private IntPtr m_body = IntPtr.Zero;
//        private IntPtr m_jointGroup = IntPtr.Zero;
//        private IntPtr m_aMotor = IntPtr.Zero;

        // Vehicle properties
        private Vehicle m_type = Vehicle.TYPE_NONE;						// If a 'VEHICLE', and what kind
        // private Quaternion m_referenceFrame = Quaternion.Identity;	// Axis modifier
        private VehicleFlag m_flags = (VehicleFlag) 0;					// Boolean settings:
																		// HOVER_TERRAIN_ONLY
																		// HOVER_GLOBAL_HEIGHT
																		// NO_DEFLECTION_UP
																		// HOVER_WATER_ONLY
																		// HOVER_UP_ONLY
																		// LIMIT_MOTOR_UP
																		// LIMIT_ROLL_ONLY
        
        // Linear properties
        private Vector3 m_linearMotorDirection = Vector3.Zero;			// (was m_linearMotorDirectionLASTSET) the (local) Velocity 
        																			//requested by LSL
        private float   m_linearMotorTimescale = 0;						// Motor Attack rate set by LSL
        private float   m_linearMotorDecayTimescale = 0;				// Motor Decay rate set by LSL
        private Vector3 m_linearFrictionTimescale = Vector3.Zero;		// General Friction set by LSL
        
		private Vector3 m_lLinMotorDVel = Vector3.Zero;					// decayed motor
		private Vector3 m_lLinObjectVel = Vector3.Zero;					// local frame object velocity
		private Vector3 m_wLinObjectVel = Vector3.Zero;					// world frame object velocity
        
        //Angular properties
        private Vector3 m_angularMotorDirection = Vector3.Zero;			// angular velocity requested by LSL motor 
        private int m_angularMotorApply = 0;							// application frame counter
        private Vector3 m_angularMotorVelocity = Vector3.Zero;			// current angular motor velocity 
        private float m_angularMotorTimescale = 0;						// motor angular velocity ramp up rate
        private float m_angularMotorDecayTimescale = 0;					// motor angular velocity decay rate
        private Vector3 m_angularFrictionTimescale = Vector3.Zero;		// body angular velocity  decay rate
        private Vector3 m_lastAngularVelocity = Vector3.Zero;			// what was last applied to body
 //       private Vector3 m_lastVertAttractor = Vector3.Zero;				// what VA was last applied to body

		//Deflection properties        
        // private float m_angularDeflectionEfficiency = 0;
        // private float m_angularDeflectionTimescale = 0;
        // private float m_linearDeflectionEfficiency = 0;
        // private float m_linearDeflectionTimescale = 0;
        
        //Banking properties
        // private float m_bankingEfficiency = 0;
        // private float m_bankingMix = 0;
        // private float m_bankingTimescale = 0;
        
        //Hover and Buoyancy properties
        private float m_VhoverHeight = 0f;
//        private float m_VhoverEfficiency = 0f;
        private float m_VhoverTimescale = 0f;
        private float m_VhoverTargetHeight = -1.0f;     // if <0 then no hover, else its the current target height 
        private float m_VehicleBuoyancy = 0f;			// Set by VEHICLE_BUOYANCY, for a vehicle.
        			// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) 
        			// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
        			// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. 
        												
		//Attractor properties        												
        private float m_verticalAttractionEfficiency = 1.0f;		// damped
        private float m_verticalAttractionTimescale = 500f;			// Timescale > 300  means no vert attractor.
        
        



        internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
        {
            switch (pParam)
            {
                case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
                    if (pValue < 0.01f) pValue = 0.01f;
                    // m_angularDeflectionEfficiency = pValue;
                    break;
                case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    // m_angularDeflectionTimescale = pValue;
                    break;
                case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    m_angularMotorDecayTimescale = pValue;
                    break;
                case Vehicle.ANGULAR_MOTOR_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    m_angularMotorTimescale = pValue;
                    break;
                case Vehicle.BANKING_EFFICIENCY:
                    if (pValue < 0.01f) pValue = 0.01f;
                    // m_bankingEfficiency = pValue;
                    break;
                case Vehicle.BANKING_MIX:
                    if (pValue < 0.01f) pValue = 0.01f;
                    // m_bankingMix = pValue;
                    break;
                case Vehicle.BANKING_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    // m_bankingTimescale = pValue;
                    break;
                case Vehicle.BUOYANCY:
                	if (pValue < -1f) pValue = -1f;
                	if (pValue > 1f) pValue = 1f;
                    m_VehicleBuoyancy = pValue;
                    break;
//                case Vehicle.HOVER_EFFICIENCY:
//                	if (pValue < 0f) pValue = 0f;
//                	if (pValue > 1f) pValue = 1f;
//                    m_VhoverEfficiency = pValue;
//                    break;
                case Vehicle.HOVER_HEIGHT:
                    m_VhoverHeight = pValue;
                    break;
                case Vehicle.HOVER_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    m_VhoverTimescale = pValue;
                    break;
                case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
                    if (pValue < 0.01f) pValue = 0.01f;
                    // m_linearDeflectionEfficiency = pValue;
                    break;
                case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    // m_linearDeflectionTimescale = pValue;
                    break;
                case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    m_linearMotorDecayTimescale = pValue;
                    break;
                case Vehicle.LINEAR_MOTOR_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    m_linearMotorTimescale = pValue;
                    break;
                case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
                    if (pValue < 0.1f) pValue = 0.1f;	// Less goes unstable
                    if (pValue > 1.0f) pValue = 1.0f;
                    m_verticalAttractionEfficiency = pValue;
                    break;
                case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
                    if (pValue < 0.01f) pValue = 0.01f;
                    m_verticalAttractionTimescale = pValue;
                    break;
                    
                // These are vector properties but the engine lets you use a single float value to 
                // set all of the components to the same value
                case Vehicle.ANGULAR_FRICTION_TIMESCALE:
                    m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
                    break;
                case Vehicle.ANGULAR_MOTOR_DIRECTION:
                    m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
                    m_angularMotorApply = 10;
                    break;
                case Vehicle.LINEAR_FRICTION_TIMESCALE:
                    m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
                    break;
                case Vehicle.LINEAR_MOTOR_DIRECTION:
                    m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
                    UpdateLinDecay();
                    break;
                case Vehicle.LINEAR_MOTOR_OFFSET:
                    // m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
                    break;

            }
            
        }//end ProcessFloatVehicleParam

        internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
        {
            switch (pParam)
            {
                case Vehicle.ANGULAR_FRICTION_TIMESCALE:
                    m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    break;
                case Vehicle.ANGULAR_MOTOR_DIRECTION:
                    m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    // Limit requested angular speed to 2 rps= 4 pi rads/sec
                    if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; 
                    if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; 
                    if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; 
                    if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; 
                    if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; 
                    if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f; 
                    m_angularMotorApply = 10;
                    break;
                case Vehicle.LINEAR_FRICTION_TIMESCALE:
                    m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    break;
                case Vehicle.LINEAR_MOTOR_DIRECTION:
                    m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);	// velocity requested by LSL, for max limiting
                    UpdateLinDecay();
                    break;
                case Vehicle.LINEAR_MOTOR_OFFSET:
                    // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    break;
            }
            
        }//end ProcessVectorVehicleParam

        internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
        {
            switch (pParam)
            {
                case Vehicle.REFERENCE_FRAME:
                    // m_referenceFrame = pValue;
                    break;
            }
            
        }//end ProcessRotationVehicleParam
        
        internal void ProcessFlagsVehicleSet(int flags)
        {
        	m_flags |= (VehicleFlag)flags;
        }

        internal void ProcessFlagsVehicleRemove(int flags)
        {
        	m_flags &= ~((VehicleFlag)flags);         
        }
        
        internal void ProcessTypeChange(Vehicle pType)
        {
			// Set Defaults For Type
            m_type = pType;
            switch (pType)
            {
                case Vehicle.TYPE_SLED:
                    m_linearFrictionTimescale = new Vector3(30, 1, 1000);
                    m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
//                     m_lLinMotorVel = Vector3.Zero;
                    m_linearMotorTimescale = 1000;
                    m_linearMotorDecayTimescale = 120;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 1000;
                    m_angularMotorDecayTimescale = 120;
                    m_VhoverHeight = 0;
//                    m_VhoverEfficiency = 1;
                    m_VhoverTimescale = 10;
                    m_VehicleBuoyancy = 0;
                    // m_linearDeflectionEfficiency = 1;
                    // m_linearDeflectionTimescale = 1;
                    // m_angularDeflectionEfficiency = 1;
                    // m_angularDeflectionTimescale = 1000;
                    // m_bankingEfficiency = 0;
                    // m_bankingMix = 1;
                    // m_bankingTimescale = 10;
                    // m_referenceFrame = Quaternion.Identity;
                    m_flags &=
                        ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                          VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
                    break;
                case Vehicle.TYPE_CAR:
                    m_linearFrictionTimescale = new Vector3(100, 2, 1000);
                    m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
//                     m_lLinMotorVel = Vector3.Zero;
                    m_linearMotorTimescale = 1;
                    m_linearMotorDecayTimescale = 60;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 1;
                    m_angularMotorDecayTimescale = 0.8f;
                    m_VhoverHeight = 0;
//                    m_VhoverEfficiency = 0;
                    m_VhoverTimescale = 1000;
                    m_VehicleBuoyancy = 0;
                    // // m_linearDeflectionEfficiency = 1;
                    // // m_linearDeflectionTimescale = 2;
                    // // m_angularDeflectionEfficiency = 0;
                    // m_angularDeflectionTimescale = 10;
                    m_verticalAttractionEfficiency = 1f;
                    m_verticalAttractionTimescale = 10f;
                    // m_bankingEfficiency = -0.2f;
                    // m_bankingMix = 1;
                    // m_bankingTimescale = 1;
                    // m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
                                VehicleFlag.LIMIT_MOTOR_UP);
                    break;
                case Vehicle.TYPE_BOAT:
                    m_linearFrictionTimescale = new Vector3(10, 3, 2);
                    m_angularFrictionTimescale = new Vector3(10,10,10);
//                     m_lLinMotorVel = Vector3.Zero;
                    m_linearMotorTimescale = 5;
                    m_linearMotorDecayTimescale = 60;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 4;
                    m_angularMotorDecayTimescale = 4;
                    m_VhoverHeight = 0;
//                    m_VhoverEfficiency = 0.5f;
                    m_VhoverTimescale = 2;
                    m_VehicleBuoyancy = 1;
                    // m_linearDeflectionEfficiency = 0.5f;
                    // m_linearDeflectionTimescale = 3;
                    // m_angularDeflectionEfficiency = 0.5f;
                    // m_angularDeflectionTimescale = 5;
                    m_verticalAttractionEfficiency = 0.5f;
                    m_verticalAttractionTimescale = 5f;
                    // m_bankingEfficiency = -0.3f;
                    // m_bankingMix = 0.8f;
                    // m_bankingTimescale = 1;
                    // m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | 
                    		VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
                                VehicleFlag.LIMIT_MOTOR_UP);
                    break;
                case Vehicle.TYPE_AIRPLANE:
                    m_linearFrictionTimescale = new Vector3(200, 10, 5);
                    m_angularFrictionTimescale = new Vector3(20, 20, 20);
//                     m_lLinMotorVel = Vector3.Zero;
                    m_linearMotorTimescale = 2;
                    m_linearMotorDecayTimescale = 60;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 4;
                    m_angularMotorDecayTimescale = 4;
                    m_VhoverHeight = 0;
//                    m_VhoverEfficiency = 0.5f;
                    m_VhoverTimescale = 1000;
                    m_VehicleBuoyancy = 0;
                    // m_linearDeflectionEfficiency = 0.5f;
                    // m_linearDeflectionTimescale = 3;
                    // m_angularDeflectionEfficiency = 1;
                    // m_angularDeflectionTimescale = 2;
                    m_verticalAttractionEfficiency = 0.9f;
                    m_verticalAttractionTimescale = 2f;
                    // m_bankingEfficiency = 1;
                    // m_bankingMix = 0.7f;
                    // m_bankingTimescale = 2;
                    // m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                        VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
                    m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
                    break;
                case Vehicle.TYPE_BALLOON:
                    m_linearFrictionTimescale = new Vector3(5, 5, 5);
                    m_angularFrictionTimescale = new Vector3(10, 10, 10);
                    m_linearMotorTimescale = 5;
                    m_linearMotorDecayTimescale = 60;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 6;
                    m_angularMotorDecayTimescale = 10;
                    m_VhoverHeight = 5;
//                    m_VhoverEfficiency = 0.8f;
                    m_VhoverTimescale = 10;
                    m_VehicleBuoyancy = 1;
                    // m_linearDeflectionEfficiency = 0;
                    // m_linearDeflectionTimescale = 5;
                    // m_angularDeflectionEfficiency = 0;
                    // m_angularDeflectionTimescale = 5;
                    m_verticalAttractionEfficiency = 1f;
                    m_verticalAttractionTimescale = 100f;
                    // m_bankingEfficiency = 0;
                    // m_bankingMix = 0.7f;
                    // m_bankingTimescale = 5;
                    // m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                        VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
                    m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
                    break;

            }
        }//end SetDefaultsForType

        internal void Enable(IntPtr pBody, OdeScene pParentScene)
        {
            if (m_type == Vehicle.TYPE_NONE)
                return;

            m_body = pBody;
        }

        internal void Step(float pTimestep,  OdeScene pParentScene)
        {
            if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
                return;
            frcount++;					// used to limit debug comment output
            if (frcount > 24)
                frcount = 0;

  			MoveLinear(pTimestep, pParentScene);
            MoveAngular(pTimestep);
        }// end Step

		internal void Halt()
		{	// Kill all motions, when non-physical
			m_linearMotorDirection = Vector3.Zero;
			m_lLinMotorDVel = Vector3.Zero;
			m_lLinObjectVel = Vector3.Zero;						
			m_wLinObjectVel = Vector3.Zero;
			m_angularMotorDirection = Vector3.Zero;		
			m_angularMotorVelocity = Vector3.Zero;		
			m_lastAngularVelocity = Vector3.Zero;		
		}
		
		private void UpdateLinDecay()
		{
			if (Math.Abs(m_linearMotorDirection.X) > Math.Abs(m_lLinMotorDVel.X)) m_lLinMotorDVel.X = m_linearMotorDirection.X;
			if (Math.Abs(m_linearMotorDirection.Y) > Math.Abs(m_lLinMotorDVel.Y)) m_lLinMotorDVel.Y = m_linearMotorDirection.Y;
			if (Math.Abs(m_linearMotorDirection.Z) > Math.Abs(m_lLinMotorDVel.Z)) m_lLinMotorDVel.Z = m_linearMotorDirection.Z;
		} // else let the motor decay on its own

        private void MoveLinear(float pTimestep, OdeScene _pParentScene)
        {
        	Vector3 acceleration = new Vector3(0f, 0f, 0f);

            d.Quaternion rot = d.BodyGetQuaternion(Body);
	        Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);	// rotq = rotation of object
	        Quaternion irotq = Quaternion.Inverse(rotq);
			d.Vector3 velnow = d.BodyGetLinearVel(Body);					// this is in world frame
			Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z);
			acceleration = vel_now - m_wLinObjectVel;
	        m_lLinObjectVel = vel_now * irotq;
        	
            if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate
            {
            	if ( Vector3.Mag(m_lLinMotorDVel) < 1.0f)
            	{
	           		float decayfactor = m_linearMotorDecayTimescale/pTimestep;
	            	Vector3 decayAmount = (m_lLinMotorDVel/decayfactor);
	            	m_lLinMotorDVel -= decayAmount;
				}
				else
				{
	           		float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale)));
					Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * pTimestep;
					m_lLinMotorDVel -= decel;
				}
				if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f))
				{
					m_lLinMotorDVel = Vector3.Zero;
				}
				else
            	{
			        if (Math.Abs(m_lLinMotorDVel.X) <  Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X;
	    		    if (Math.Abs(m_lLinMotorDVel.Y) <  Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y;
			        if (Math.Abs(m_lLinMotorDVel.Z) <  Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z;
			    }
			}

            if ( (! m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) )
            {
            	if(!d.BodyIsEnabled (Body))  d.BodyEnable (Body);
                if (m_linearMotorTimescale < 300.0f)
                {	
	                Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel;	
	                float linfactor = m_linearMotorTimescale/pTimestep;
	                Vector3 attackAmount = (attack_error/linfactor) * 1.3f;
                	m_lLinObjectVel += attackAmount;
                }
		        if (m_linearFrictionTimescale.X < 300.0f)
		        {
			        float fricfactor = m_linearFrictionTimescale.X / pTimestep;
			        float fricX = m_lLinObjectVel.X / fricfactor;
			        m_lLinObjectVel.X -= fricX;
			    }
		        if (m_linearFrictionTimescale.Y < 300.0f)
		        {
			        float fricfactor = m_linearFrictionTimescale.Y / pTimestep;
			        float fricY = m_lLinObjectVel.Y / fricfactor;
			        m_lLinObjectVel.Y -= fricY;
			    }
		        if (m_linearFrictionTimescale.Z < 300.0f)
		        {
			        float fricfactor = m_linearFrictionTimescale.Z / pTimestep;
			        float fricZ = m_lLinObjectVel.Z / fricfactor;
			        m_lLinObjectVel.Z -= fricZ;
			    }
			}
		    m_wLinObjectVel = m_lLinObjectVel * rotq;
			// Add Gravity and Buoyancy
            Vector3 grav = Vector3.Zero;
			if(m_VehicleBuoyancy < 1.0f)
			{
				// There is some gravity, make a gravity force vector
				// that is applied after object velocity.     
	            d.Mass objMass;
	            d.BodyGetMass(Body, out objMass);
	            // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; 
	            grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force
	        } // else its 1.0, no gravity.
	        
	        // Check if hovering
	        if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
	        {	
	        	// We should hover, get the target height
        		d.Vector3 pos = d.BodyGetPosition(Body);
	        	if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
	        	{
	        		m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
	        	}
	        	else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
	        	{
	        		m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
	        	}
	        	else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
	        	{
	        		m_VhoverTargetHeight = m_VhoverHeight;
	        	}
	        	
				if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
				{
					// If body is aready heigher, use its height as target height
					if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
				}
				
//	            m_VhoverEfficiency = 0f;	// 0=boucy, 1=Crit.damped
//				m_VhoverTimescale = 0f;		// time to acheive height
//				pTimestep  is time since last frame,in secs 
				float herr0 = pos.Z - m_VhoverTargetHeight;
				// Replace Vertical speed with correction figure if significant
				if(Math.Abs(herr0) > 0.01f )
				{
		            d.Mass objMass;
		            d.BodyGetMass(Body, out objMass);
					m_wLinObjectVel.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
					//KF: m_VhoverEfficiency is not yet implemented
				}
				else
				{
					m_wLinObjectVel.Z = 0f;
				}
			}
			else
			{	// not hovering, Gravity rules
				m_wLinObjectVel.Z = vel_now.Z;
//if(frcount == 0) Console.WriteLine(" Z  {0}      a.Z  {1}", m_wLinObjectVel.Z,	acceleration.Z);			
	        }	
	        // Apply velocity
	        d.BodySetLinearVel(Body, m_wLinObjectVel.X, m_wLinObjectVel.Y, m_wLinObjectVel.Z);        
            // apply gravity force
			d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);		
//if(frcount == 0) Console.WriteLine("Grav {0}", grav);
        } // end MoveLinear()
        
        private void MoveAngular(float pTimestep)
        {
	        /*
	        private Vector3 m_angularMotorDirection = Vector3.Zero;			// angular velocity requested by LSL motor 
	        private int m_angularMotorApply = 0;							// application frame counter
 	        private float m_angularMotorVelocity = 0;						// current angular motor velocity (ramps up and down) 
	        private float m_angularMotorTimescale = 0;						// motor angular velocity ramp up rate
	        private float m_angularMotorDecayTimescale = 0;					// motor angular velocity decay rate
	        private Vector3 m_angularFrictionTimescale = Vector3.Zero;		// body angular velocity  decay rate
	        private Vector3 m_lastAngularVelocity = Vector3.Zero;			// what was last applied to body
			*/
//if(frcount == 0) Console.WriteLine("MoveAngular ");	
        
        	// Get what the body is doing, this includes 'external' influences
        	d.Vector3 angularVelocity = d.BodyGetAngularVel(Body);
   //     	Vector3 angularVelocity = Vector3.Zero;
        	
        	if (m_angularMotorApply > 0)
        	{	
				// ramp up to new value
				//   current velocity  += 		                error       				/    ( time to get there / step interval )
				//							   requested speed     	   -  last motor speed
				m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) /  (m_angularMotorTimescale / pTimestep);
				m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) /  (m_angularMotorTimescale / pTimestep);
				m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) /  (m_angularMotorTimescale / pTimestep);

				m_angularMotorApply--;		// This is done so that if script request rate is less than phys frame rate the expected
											// velocity may still be acheived.
			}
			else
			{
				// no motor recently applied, keep the body velocity
		/*		m_angularMotorVelocity.X = angularVelocity.X;
				m_angularMotorVelocity.Y = angularVelocity.Y;
				m_angularMotorVelocity.Z = angularVelocity.Z; */
				
				// and decay the velocity
				m_angularMotorVelocity -= m_angularMotorVelocity /  (m_angularMotorDecayTimescale / pTimestep);
			} // end motor section
			

            // Vertical attractor section
			Vector3 vertattr = Vector3.Zero;
            
			if(m_verticalAttractionTimescale < 300)
			{
	            float VAservo = 0.0167f / (m_verticalAttractionTimescale * pTimestep);
	    	    // get present body rotation
	    	    d.Quaternion rot = d.BodyGetQuaternion(Body);
	    	    Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
	    	    // make a vector pointing up
				Vector3 verterr = Vector3.Zero;
				verterr.Z = 1.0f;
				// rotate it to Body Angle
				verterr = verterr * rotq;
				// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
				// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
				// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
				if (verterr.Z < 0.0f)
				{
					verterr.X = 2.0f - verterr.X;
					verterr.Y = 2.0f - verterr.Y;
				}
				// Error is 0 (no error) to +/- 2 (max error)
				// scale it by VAservo
				verterr = verterr * VAservo;
//if(frcount == 0) Console.WriteLine("VAerr=" + verterr);	

				// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so 
				// Change  Body angular velocity  X based on Y, and Y based on X. Z is not changed.
				vertattr.X =    verterr.Y;
				vertattr.Y =  - verterr.X;
				vertattr.Z = 0f;
				
									// scaling appears better usingsquare-law
				float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);  
				vertattr.X += bounce * angularVelocity.X;
				vertattr.Y += bounce * angularVelocity.Y;
				
			} // else vertical attractor is off
			
	//		m_lastVertAttractor = vertattr;
				
			// Bank section tba
			// Deflection section tba
			
			// Sum velocities
			m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // tba: + bank + deflection
			
        	if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
            {
				if(!d.BodyIsEnabled (Body))  d.BodyEnable (Body);
			}
			else
			{
				m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
			}
			
 			// apply friction
            Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
	        m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;   	
	        		
			// Apply to the body
			d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
				
	    } //end MoveAngular
	}
}