aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/BulletSPlugin/BSParam.cs
blob: 6cb74342ac1c277023f530a5e3b3fe6c9d983c0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/*
 * Copyright (c) Contributors, http://opensimulator.org/
 * See CONTRIBUTORS.TXT for a full list of copyright holders.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyrightD
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the OpenSimulator Project nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
using System;
using System.Collections.Generic;
using System.Text;

using OpenSim.Region.Physics.Manager;

using OpenMetaverse;
using Nini.Config;

namespace OpenSim.Region.Physics.BulletSPlugin
{
public static class BSParam
{
    // Level of Detail values kept as float because that's what the Meshmerizer wants
    public static float MeshLOD { get; private set; }
    public static float MeshCircularLOD { get; private set; }
    public static float MeshMegaPrimLOD { get; private set; }
    public static float MeshMegaPrimThreshold { get; private set; }
    public static float SculptLOD { get; private set; }

    public static float MinimumObjectMass { get; private set; }
    public static float MaximumObjectMass { get; private set; }
    public static float MaxLinearVelocity { get; private set; }
    public static float MaxAngularVelocity { get; private set; }
    public static float MaxAddForceMagnitude { get; private set; }

    public static float LinearDamping { get; private set; }
    public static float AngularDamping { get; private set; }
    public static float DeactivationTime { get; private set; }
    public static float LinearSleepingThreshold { get; private set; }
    public static float AngularSleepingThreshold { get; private set; }
	public static float CcdMotionThreshold { get; private set; }
	public static float CcdSweptSphereRadius { get; private set; }
    public static float ContactProcessingThreshold { get; private set; }

    public static bool ShouldMeshSculptedPrim { get; private set; }   // cause scuplted prims to get meshed
    public static bool ShouldForceSimplePrimMeshing { get; private set; }   // if a cube or sphere, let Bullet do internal shapes
    public static bool ShouldUseHullsForPhysicalObjects { get; private set; }   // 'true' if should create hulls for physical objects
    public static bool ShouldRemoveZeroWidthTriangles { get; private set; }

    public static float TerrainImplementation { get; private set; }
    public static float TerrainFriction { get; private set; }
    public static float TerrainHitFraction { get; private set; }
    public static float TerrainRestitution { get; private set; }
    public static float TerrainCollisionMargin { get; private set; }

    public static float DefaultFriction;
    public static float DefaultDensity;
    public static float DefaultRestitution;
    public static float CollisionMargin;
    public static float Gravity;

    // Physics Engine operation
	public static float MaxPersistantManifoldPoolSize;
	public static float MaxCollisionAlgorithmPoolSize;
	public static float ShouldDisableContactPoolDynamicAllocation;
	public static float ShouldForceUpdateAllAabbs;
	public static float ShouldRandomizeSolverOrder;
	public static float ShouldSplitSimulationIslands;
	public static float ShouldEnableFrictionCaching;
	public static float NumberOfSolverIterations;
    public static bool UseSingleSidedMeshes { get { return UseSingleSidedMeshesF != ConfigurationParameters.numericFalse; } }
    public static float UseSingleSidedMeshesF;

    // Avatar parameters
    public static float AvatarFriction { get; private set; }
    public static float AvatarStandingFriction { get; private set; }
    public static float AvatarAlwaysRunFactor { get; private set; }
    public static float AvatarDensity { get; private set; }
    public static float AvatarRestitution { get; private set; }
    public static float AvatarCapsuleWidth { get; private set; }
    public static float AvatarCapsuleDepth { get; private set; }
    public static float AvatarCapsuleHeight { get; private set; }
	public static float AvatarContactProcessingThreshold { get; private set; }
	public static float AvatarStepHeight { get; private set; }
	public static float AvatarStepApproachFactor { get; private set; }
	public static float AvatarStepForceFactor { get; private set; }

    // Vehicle parameters
    public static float VehicleMaxLinearVelocity { get; private set; }
    public static float VehicleMaxLinearVelocitySq { get; private set; }
    public static float VehicleMaxAngularVelocity { get; private set; }
    public static float VehicleMaxAngularVelocitySq { get; private set; }
    public static float VehicleAngularDamping { get; private set; }
    public static float VehicleFriction { get; private set; }
    public static float VehicleRestitution { get; private set; }
    public static float VehicleLinearFactor { get; private set; }
    public static Vector3 VehicleLinearFactorV { get; private set; }
    public static float VehicleAngularFactor { get; private set; }
    public static Vector3 VehicleAngularFactorV { get; private set; }
    public static float VehicleGroundGravityFudge { get; private set; }
    public static float VehicleDebuggingEnabled { get; private set; }

    public static float LinksetImplementation { get; private set; }
    public static float LinkConstraintUseFrameOffset { get; private set; }
    public static float LinkConstraintEnableTransMotor { get; private set; }
    public static float LinkConstraintTransMotorMaxVel { get; private set; }
    public static float LinkConstraintTransMotorMaxForce { get; private set; }
    public static float LinkConstraintERP { get; private set; }
    public static float LinkConstraintCFM { get; private set; }
    public static float LinkConstraintSolverIterations { get; private set; }

    public static float PID_D { get; private set; }    // derivative
    public static float PID_P { get; private set; }    // proportional

    // Various constants that come from that other virtual world that shall not be named.
    public const float MinGravityZ = -1f;
    public const float MaxGravityZ = 28f;
    public const float MinFriction = 0f;
    public const float MaxFriction = 255f;
    public const float MinDensity = 0.01f;
    public const float MaxDensity = 22587f;
    public const float MinRestitution = 0f;
    public const float MaxRestitution = 1f;

    // ===========================================================================
    public delegate void ParamUser(BSScene scene, IConfig conf, string paramName, float val);
    public delegate float ParamGet(BSScene scene);
    public delegate void ParamSet(BSScene scene, string paramName, uint localID, float val);
    public delegate void SetOnObject(BSScene scene, BSPhysObject obj, float val);

    public struct ParameterDefn
    {
        public string name;         // string name of the parameter
        public string desc;         // a short description of what the parameter means
        public float defaultValue;  // default value if not specified anywhere else
        public ParamUser userParam; // get the value from the configuration file
        public ParamGet getter;     // return the current value stored for this parameter
        public ParamSet setter;     // set the current value for this parameter
        public SetOnObject onObject;    // set the value on an object in the physical domain
        public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s)
        {
            name = n;
            desc = d;
            defaultValue = v;
            userParam = u;
            getter = g;
            setter = s;
            onObject = null;
        }
        public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s, SetOnObject o)
        {
            name = n;
            desc = d;
            defaultValue = v;
            userParam = u;
            getter = g;
            setter = s;
            onObject = o;
        }
    }

    // List of all of the externally visible parameters.
    // For each parameter, this table maps a text name to getter and setters.
    // To add a new externally referencable/settable parameter, add the paramter storage
    //    location somewhere in the program and make an entry in this table with the
    //    getters and setters.
    // It is easiest to find an existing definition and copy it.
    // Parameter values are floats. Booleans are converted to a floating value.
    //
    // A ParameterDefn() takes the following parameters:
    //    -- the text name of the parameter. This is used for console input and ini file.
    //    -- a short text description of the parameter. This shows up in the console listing.
    //    -- a default value (float)
    //    -- a delegate for fetching the parameter from the ini file.
    //          Should handle fetching the right type from the ini file and converting it.
    //    -- a delegate for getting the value as a float
    //    -- a delegate for setting the value from a float
    //    -- an optional delegate to update the value in the world. Most often used to
    //          push the new value to an in-world object.
    //
    // The single letter parameters for the delegates are:
    //    s = BSScene
    //    o = BSPhysObject
    //    p = string parameter name
    //    l = localID of referenced object
    //    v = value (float)
    //    cf = parameter configuration class (for fetching values from ini file)
    private static ParameterDefn[] ParameterDefinitions =
    {
        new ParameterDefn("MeshSculptedPrim", "Whether to create meshes for sculpties",
            ConfigurationParameters.numericTrue,
            (s,cf,p,v) => { ShouldMeshSculptedPrim = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
            (s) => { return BSParam.NumericBool(ShouldMeshSculptedPrim); },
            (s,p,l,v) => { ShouldMeshSculptedPrim = BSParam.BoolNumeric(v); } ),
        new ParameterDefn("ForceSimplePrimMeshing", "If true, only use primitive meshes for objects",
            ConfigurationParameters.numericFalse,
            (s,cf,p,v) => { ShouldForceSimplePrimMeshing = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
            (s) => { return BSParam.NumericBool(ShouldForceSimplePrimMeshing); },
            (s,p,l,v) => { ShouldForceSimplePrimMeshing = BSParam.BoolNumeric(v); } ),
        new ParameterDefn("UseHullsForPhysicalObjects", "If true, create hulls for physical objects",
            ConfigurationParameters.numericTrue,
            (s,cf,p,v) => { ShouldUseHullsForPhysicalObjects = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
            (s) => { return BSParam.NumericBool(ShouldUseHullsForPhysicalObjects); },
            (s,p,l,v) => { ShouldUseHullsForPhysicalObjects = BSParam.BoolNumeric(v); } ),
        new ParameterDefn("ShouldRemoveZeroWidthTriangles", "If true, remove degenerate triangles from meshes",
            ConfigurationParameters.numericTrue,
            (s,cf,p,v) => { ShouldRemoveZeroWidthTriangles = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
            (s) => { return BSParam.NumericBool(ShouldRemoveZeroWidthTriangles); },
            (s,p,l,v) => { ShouldRemoveZeroWidthTriangles = BSParam.BoolNumeric(v); } ),

        new ParameterDefn("MeshLevelOfDetail", "Level of detail to render meshes (32, 16, 8 or 4. 32=most detailed)",
            32f,
            (s,cf,p,v) => { MeshLOD = (float)cf.GetInt(p, (int)v); },
            (s) => { return MeshLOD; },
            (s,p,l,v) => { MeshLOD = v; } ),
        new ParameterDefn("MeshLevelOfDetailCircular", "Level of detail for prims with circular cuts or shapes",
            32f,
            (s,cf,p,v) => { MeshCircularLOD = (float)cf.GetInt(p, (int)v); },
            (s) => { return MeshCircularLOD; },
            (s,p,l,v) => { MeshCircularLOD = v; } ),
        new ParameterDefn("MeshLevelOfDetailMegaPrimThreshold", "Size (in meters) of a mesh before using MeshMegaPrimLOD",
            10f,
            (s,cf,p,v) => { MeshMegaPrimThreshold = (float)cf.GetInt(p, (int)v); },
            (s) => { return MeshMegaPrimThreshold; },
            (s,p,l,v) => { MeshMegaPrimThreshold = v; } ),
        new ParameterDefn("MeshLevelOfDetailMegaPrim", "Level of detail to render meshes larger than threshold meters",
            32f,
            (s,cf,p,v) => { MeshMegaPrimLOD = (float)cf.GetInt(p, (int)v); },
            (s) => { return MeshMegaPrimLOD; },
            (s,p,l,v) => { MeshMegaPrimLOD = v; } ),
        new ParameterDefn("SculptLevelOfDetail", "Level of detail to render sculpties (32, 16, 8 or 4. 32=most detailed)",
            32f,
            (s,cf,p,v) => { SculptLOD = (float)cf.GetInt(p, (int)v); },
            (s) => { return SculptLOD; },
            (s,p,l,v) => { SculptLOD = v; } ),

        new ParameterDefn("MaxSubStep", "In simulation step, maximum number of substeps",
            10f,
            (s,cf,p,v) => { s.m_maxSubSteps = cf.GetInt(p, (int)v); },
            (s) => { return (float)s.m_maxSubSteps; },
            (s,p,l,v) => { s.m_maxSubSteps = (int)v; } ),
        new ParameterDefn("FixedTimeStep", "In simulation step, seconds of one substep (1/60)",
            1f / 60f,
            (s,cf,p,v) => { s.m_fixedTimeStep = cf.GetFloat(p, v); },
            (s) => { return (float)s.m_fixedTimeStep; },
            (s,p,l,v) => { s.m_fixedTimeStep = v; } ),
        new ParameterDefn("NominalFrameRate", "The base frame rate we claim",
            55f,
            (s,cf,p,v) => { s.NominalFrameRate = cf.GetInt(p, (int)v); },
            (s) => { return (float)s.NominalFrameRate; },
            (s,p,l,v) => { s.NominalFrameRate = (int)v; } ),
        new ParameterDefn("MaxCollisionsPerFrame", "Max collisions returned at end of each frame",
            2048f,
            (s,cf,p,v) => { s.m_maxCollisionsPerFrame = cf.GetInt(p, (int)v); },
            (s) => { return (float)s.m_maxCollisionsPerFrame; },
            (s,p,l,v) => { s.m_maxCollisionsPerFrame = (int)v; } ),
        new ParameterDefn("MaxUpdatesPerFrame", "Max updates returned at end of each frame",
            8000f,
            (s,cf,p,v) => { s.m_maxUpdatesPerFrame = cf.GetInt(p, (int)v); },
            (s) => { return (float)s.m_maxUpdatesPerFrame; },
            (s,p,l,v) => { s.m_maxUpdatesPerFrame = (int)v; } ),

        new ParameterDefn("MinObjectMass", "Minimum object mass (0.0001)",
            0.0001f,
            (s,cf,p,v) => { MinimumObjectMass = cf.GetFloat(p, v); },
            (s) => { return (float)MinimumObjectMass; },
            (s,p,l,v) => { MinimumObjectMass = v; } ),
        new ParameterDefn("MaxObjectMass", "Maximum object mass (10000.01)",
            10000.01f,
            (s,cf,p,v) => { MaximumObjectMass = cf.GetFloat(p, v); },
            (s) => { return (float)MaximumObjectMass; },
            (s,p,l,v) => { MaximumObjectMass = v; } ),
        new ParameterDefn("MaxLinearVelocity", "Maximum velocity magnitude that can be assigned to an object",
            1000.0f,
            (s,cf,p,v) => { MaxLinearVelocity = cf.GetFloat(p, v); },
            (s) => { return (float)MaxLinearVelocity; },
            (s,p,l,v) => { MaxLinearVelocity = v; } ),
        new ParameterDefn("MaxAngularVelocity", "Maximum rotational velocity magnitude that can be assigned to an object",
            1000.0f,
            (s,cf,p,v) => { MaxAngularVelocity = cf.GetFloat(p, v); },
            (s) => { return (float)MaxAngularVelocity; },
            (s,p,l,v) => { MaxAngularVelocity = v; } ),
        // LL documentation says thie number should be 20f for llApplyImpulse and 200f for llRezObject
        new ParameterDefn("MaxAddForceMagnitude", "Maximum force that can be applied by llApplyImpulse (SL says 20f)",
            20000.0f,
            (s,cf,p,v) => { MaxAddForceMagnitude = cf.GetFloat(p, v); },
            (s) => { return (float)MaxAddForceMagnitude; },
            (s,p,l,v) => { MaxAddForceMagnitude = v; } ),

        new ParameterDefn("PID_D", "Derivitive factor for motion smoothing",
            2200f,
            (s,cf,p,v) => { PID_D = cf.GetFloat(p, v); },
            (s) => { return (float)PID_D; },
            (s,p,l,v) => { PID_D = v; } ),
        new ParameterDefn("PID_P", "Parameteric factor for motion smoothing",
            900f,
            (s,cf,p,v) => { PID_P = cf.GetFloat(p, v); },
            (s) => { return (float)PID_P; },
            (s,p,l,v) => { PID_P = v; } ),

        new ParameterDefn("DefaultFriction", "Friction factor used on new objects",
            0.2f,
            (s,cf,p,v) => { DefaultFriction = cf.GetFloat(p, v); },
            (s) => { return DefaultFriction; },
            (s,p,l,v) => { DefaultFriction = v; s.UnmanagedParams[0].defaultFriction = v; } ),
        new ParameterDefn("DefaultDensity", "Density for new objects" ,
            10.000006836f,  // Aluminum g/cm3
            (s,cf,p,v) => { DefaultDensity = cf.GetFloat(p, v); },
            (s) => { return DefaultDensity; },
            (s,p,l,v) => { DefaultDensity = v; s.UnmanagedParams[0].defaultDensity = v; } ),
        new ParameterDefn("DefaultRestitution", "Bouncyness of an object" ,
            0f,
            (s,cf,p,v) => { DefaultRestitution = cf.GetFloat(p, v); },
            (s) => { return DefaultRestitution; },
            (s,p,l,v) => { DefaultRestitution = v; s.UnmanagedParams[0].defaultRestitution = v; } ),
        new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)",
            0.04f,
            (s,cf,p,v) => { CollisionMargin = cf.GetFloat(p, v); },
            (s) => { return CollisionMargin; },
            (s,p,l,v) => { CollisionMargin = v; s.UnmanagedParams[0].collisionMargin = v; } ),
        new ParameterDefn("Gravity", "Vertical force of gravity (negative means down)",
            -9.80665f,
            (s,cf,p,v) => { Gravity = cf.GetFloat(p, v); },
            (s) => { return Gravity; },
            (s,p,l,v) => { Gravity = v; s.UnmanagedParams[0].gravity = v; },
            (s,o,v) => { s.PE.SetGravity(o.PhysBody, new Vector3(0f,0f,v)); } ),


        new ParameterDefn("LinearDamping", "Factor to damp linear movement per second (0.0 - 1.0)",
            0f,
            (s,cf,p,v) => { LinearDamping = cf.GetFloat(p, v); },
            (s) => { return LinearDamping; },
            (s,p,l,v) => { LinearDamping = v; },
            (s,o,v) => { s.PE.SetDamping(o.PhysBody, v, AngularDamping); } ),
        new ParameterDefn("AngularDamping", "Factor to damp angular movement per second (0.0 - 1.0)",
            0f,
            (s,cf,p,v) => { AngularDamping = cf.GetFloat(p, v); },
            (s) => { return AngularDamping; },
            (s,p,l,v) => { AngularDamping = v; },
            (s,o,v) => { s.PE.SetDamping(o.PhysBody, LinearDamping, v); } ),
        new ParameterDefn("DeactivationTime", "Seconds before considering an object potentially static",
            0.2f,
            (s,cf,p,v) => { DeactivationTime = cf.GetFloat(p, v); },
            (s) => { return DeactivationTime; },
            (s,p,l,v) => { DeactivationTime = v; },
            (s,o,v) => { s.PE.SetDeactivationTime(o.PhysBody, v); } ),
        new ParameterDefn("LinearSleepingThreshold", "Seconds to measure linear movement before considering static",
            0.8f,
            (s,cf,p,v) => { LinearSleepingThreshold = cf.GetFloat(p, v); },
            (s) => { return LinearSleepingThreshold; },
            (s,p,l,v) => { LinearSleepingThreshold = v;},
            (s,o,v) => { s.PE.SetSleepingThresholds(o.PhysBody, v, v); } ),
        new ParameterDefn("AngularSleepingThreshold", "Seconds to measure angular movement before considering static",
            1.0f,
            (s,cf,p,v) => { AngularSleepingThreshold = cf.GetFloat(p, v); },
            (s) => { return AngularSleepingThreshold; },
            (s,p,l,v) => { AngularSleepingThreshold = v;},
            (s,o,v) => { s.PE.SetSleepingThresholds(o.PhysBody, v, v); } ),
        new ParameterDefn("CcdMotionThreshold", "Continuious collision detection threshold (0 means no CCD)" ,
            0.0f,     // set to zero to disable
            (s,cf,p,v) => { CcdMotionThreshold = cf.GetFloat(p, v); },
            (s) => { return CcdMotionThreshold; },
            (s,p,l,v) => { CcdMotionThreshold = v;},
            (s,o,v) => { s.PE.SetCcdMotionThreshold(o.PhysBody, v); } ),
        new ParameterDefn("CcdSweptSphereRadius", "Continuious collision detection test radius" ,
            0.2f,
            (s,cf,p,v) => { CcdSweptSphereRadius = cf.GetFloat(p, v); },
            (s) => { return CcdSweptSphereRadius; },
            (s,p,l,v) => { CcdSweptSphereRadius = v;},
            (s,o,v) => { s.PE.SetCcdSweptSphereRadius(o.PhysBody, v); } ),
        new ParameterDefn("ContactProcessingThreshold", "Distance above which contacts can be discarded (0 means no discard)" ,
            0.0f,
            (s,cf,p,v) => { ContactProcessingThreshold = cf.GetFloat(p, v); },
            (s) => { return ContactProcessingThreshold; },
            (s,p,l,v) => { ContactProcessingThreshold = v;},
            (s,o,v) => { s.PE.SetContactProcessingThreshold(o.PhysBody, v); } ),

	    new ParameterDefn("TerrainImplementation", "Type of shape to use for terrain (0=heightmap, 1=mesh)",
            (float)BSTerrainPhys.TerrainImplementation.Mesh,
            (s,cf,p,v) => { TerrainImplementation = cf.GetFloat(p,v); },
            (s) => { return TerrainImplementation; },
            (s,p,l,v) => { TerrainImplementation = v; } ),
        new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" ,
            0.3f,
            (s,cf,p,v) => { TerrainFriction = cf.GetFloat(p, v); },
            (s) => { return TerrainFriction; },
            (s,p,l,v) => { TerrainFriction = v;  /* TODO: set on real terrain */} ),
        new ParameterDefn("TerrainHitFraction", "Distance to measure hit collisions" ,
            0.8f,
            (s,cf,p,v) => { TerrainHitFraction = cf.GetFloat(p, v); },
            (s) => { return TerrainHitFraction; },
            (s,p,l,v) => { TerrainHitFraction = v; /* TODO: set on real terrain */ } ),
        new ParameterDefn("TerrainRestitution", "Bouncyness" ,
            0f,
            (s,cf,p,v) => { TerrainRestitution = cf.GetFloat(p, v); },
            (s) => { return TerrainRestitution; },
            (s,p,l,v) => { TerrainRestitution = v;  /* TODO: set on real terrain */ } ),
        new ParameterDefn("TerrainCollisionMargin", "Margin where collision checking starts" ,
            0.08f,
            (s,cf,p,v) => { TerrainCollisionMargin = cf.GetFloat(p, v); },
            (s) => { return TerrainCollisionMargin; },
            (s,p,l,v) => { TerrainCollisionMargin = v;  /* TODO: set on real terrain */ } ),

        new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.",
            0.2f,
            (s,cf,p,v) => { AvatarFriction = cf.GetFloat(p, v); },
            (s) => { return AvatarFriction; },
            (s,p,l,v) => { AvatarFriction = v; } ),
        new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.",
            0.95f,
            (s,cf,p,v) => { AvatarStandingFriction = cf.GetFloat(p, v); },
            (s) => { return AvatarStandingFriction; },
            (s,p,l,v) => { AvatarStandingFriction = v; } ),
        new ParameterDefn("AvatarAlwaysRunFactor", "Speed multiplier if avatar is set to always run",
            1.3f,
            (s,cf,p,v) => { AvatarAlwaysRunFactor = cf.GetFloat(p, v); },
            (s) => { return AvatarAlwaysRunFactor; },
            (s,p,l,v) => { AvatarAlwaysRunFactor = v; } ),
        new ParameterDefn("AvatarDensity", "Density of an avatar. Changed on avatar recreation.",
            3.5f,
            (s,cf,p,v) => { AvatarDensity = cf.GetFloat(p, v); },
            (s) => { return AvatarDensity; },
            (s,p,l,v) => { AvatarDensity = v; } ),
        new ParameterDefn("AvatarRestitution", "Bouncyness. Changed on avatar recreation.",
            0f,
            (s,cf,p,v) => { AvatarRestitution = cf.GetFloat(p, v); },
            (s) => { return AvatarRestitution; },
            (s,p,l,v) => { AvatarRestitution = v; } ),
        new ParameterDefn("AvatarCapsuleWidth", "The distance between the sides of the avatar capsule",
            0.6f,
            (s,cf,p,v) => { AvatarCapsuleWidth = cf.GetFloat(p, v); },
            (s) => { return AvatarCapsuleWidth; },
            (s,p,l,v) => { AvatarCapsuleWidth = v; } ),
        new ParameterDefn("AvatarCapsuleDepth", "The distance between the front and back of the avatar capsule",
            0.45f,
            (s,cf,p,v) => { AvatarCapsuleDepth = cf.GetFloat(p, v); },
            (s) => { return AvatarCapsuleDepth; },
            (s,p,l,v) => { AvatarCapsuleDepth = v; } ),
        new ParameterDefn("AvatarCapsuleHeight", "Default height of space around avatar",
            1.5f,
            (s,cf,p,v) => { AvatarCapsuleHeight = cf.GetFloat(p, v); },
            (s) => { return AvatarCapsuleHeight; },
            (s,p,l,v) => { AvatarCapsuleHeight = v; } ),
	    new ParameterDefn("AvatarContactProcessingThreshold", "Distance from capsule to check for collisions",
            0.1f,
            (s,cf,p,v) => { AvatarContactProcessingThreshold = cf.GetFloat(p, v); },
            (s) => { return AvatarContactProcessingThreshold; },
            (s,p,l,v) => { AvatarContactProcessingThreshold = v; } ),
	    new ParameterDefn("AvatarStepHeight", "Height of a step obstacle to consider step correction",
            0.3f,
            (s,cf,p,v) => { AvatarStepHeight = cf.GetFloat(p, v); },
            (s) => { return AvatarStepHeight; },
            (s,p,l,v) => { AvatarStepHeight = v; } ),
	    new ParameterDefn("AvatarStepApproachFactor", "Factor to control angle of approach to step (0=straight on)",
            0.6f,
            (s,cf,p,v) => { AvatarStepApproachFactor = cf.GetFloat(p, v); },
            (s) => { return AvatarStepApproachFactor; },
            (s,p,l,v) => { AvatarStepApproachFactor = v; } ),
	    new ParameterDefn("AvatarStepForceFactor", "Controls the amount of force up applied to step up onto a step",
            2.0f,
            (s,cf,p,v) => { AvatarStepForceFactor = cf.GetFloat(p, v); },
            (s) => { return AvatarStepForceFactor; },
            (s,p,l,v) => { AvatarStepForceFactor = v; } ),

        new ParameterDefn("VehicleMaxLinearVelocity", "Maximum velocity magnitude that can be assigned to a vehicle",
            1000.0f,
            (s,cf,p,v) => { VehicleMaxLinearVelocity = cf.GetFloat(p, v); },
            (s) => { return (float)VehicleMaxLinearVelocity; },
            (s,p,l,v) => { VehicleMaxLinearVelocity = v; VehicleMaxLinearVelocitySq = v * v; } ),
        new ParameterDefn("VehicleMaxAngularVelocity", "Maximum rotational velocity magnitude that can be assigned to a vehicle",
            12.0f,
            (s,cf,p,v) => { VehicleMaxAngularVelocity = cf.GetFloat(p, v); },
            (s) => { return (float)VehicleMaxAngularVelocity; },
            (s,p,l,v) => { VehicleMaxAngularVelocity = v; VehicleMaxAngularVelocitySq = v * v; } ),
        new ParameterDefn("VehicleAngularDamping", "Factor to damp vehicle angular movement per second (0.0 - 1.0)",
            0.0f,
            (s,cf,p,v) => { VehicleAngularDamping = cf.GetFloat(p, v); },
            (s) => { return VehicleAngularDamping; },
            (s,p,l,v) => { VehicleAngularDamping = v; } ),
        new ParameterDefn("VehicleLinearFactor", "Fraction of physical linear changes applied to vehicle (0.0 - 1.0)",
            1.0f,
            (s,cf,p,v) => { VehicleLinearFactor = cf.GetFloat(p, v); },
            (s) => { return VehicleLinearFactor; },
            (s,p,l,v) => { VehicleLinearFactor = v; VehicleLinearFactorV = new Vector3(v, v, v); } ),
        new ParameterDefn("VehicleAngularFactor", "Fraction of physical angular changes applied to vehicle (0.0 - 1.0)",
            1.0f,
            (s,cf,p,v) => { VehicleAngularFactor = cf.GetFloat(p, v); },
            (s) => { return VehicleAngularFactor; },
            (s,p,l,v) => { VehicleAngularFactor = v; VehicleAngularFactorV = new Vector3(v, v, v); } ),
        new ParameterDefn("VehicleFriction", "Friction of vehicle on the ground (0.0 - 1.0)",
            0.0f,
            (s,cf,p,v) => { VehicleFriction = cf.GetFloat(p, v); },
            (s) => { return VehicleFriction; },
            (s,p,l,v) => { VehicleFriction = v; } ),
        new ParameterDefn("VehicleRestitution", "Bouncyness factor for vehicles (0.0 - 1.0)",
            0.0f,
            (s,cf,p,v) => { VehicleRestitution = cf.GetFloat(p, v); },
            (s) => { return VehicleRestitution; },
            (s,p,l,v) => { VehicleRestitution = v; } ),
        new ParameterDefn("VehicleGroundGravityFudge", "Factor to multiple gravity if a ground vehicle is probably on the ground (0.0 - 1.0)",
            0.2f,
            (s,cf,p,v) => { VehicleGroundGravityFudge = cf.GetFloat(p, v); },
            (s) => { return VehicleGroundGravityFudge; },
            (s,p,l,v) => { VehicleGroundGravityFudge = v; } ),
        new ParameterDefn("VehicleDebuggingEnable", "Turn on/off vehicle debugging",
            ConfigurationParameters.numericFalse,
            (s,cf,p,v) => { VehicleDebuggingEnabled = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return VehicleDebuggingEnabled; },
            (s,p,l,v) => { VehicleDebuggingEnabled = v; } ),

	    new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)",
            0f,
            (s,cf,p,v) => { MaxPersistantManifoldPoolSize = cf.GetFloat(p, v); },
            (s) => { return MaxPersistantManifoldPoolSize; },
            (s,p,l,v) => { MaxPersistantManifoldPoolSize = v; s.UnmanagedParams[0].maxPersistantManifoldPoolSize = v; } ),
	    new ParameterDefn("MaxCollisionAlgorithmPoolSize", "Number of collisions pooled (0 means default of 4096)",
            0f,
            (s,cf,p,v) => { MaxCollisionAlgorithmPoolSize = cf.GetFloat(p, v); },
            (s) => { return MaxCollisionAlgorithmPoolSize; },
            (s,p,l,v) => { MaxCollisionAlgorithmPoolSize = v; s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = v; } ),
	    new ParameterDefn("ShouldDisableContactPoolDynamicAllocation", "Enable to allow large changes in object count",
            ConfigurationParameters.numericFalse,
            (s,cf,p,v) => { ShouldDisableContactPoolDynamicAllocation = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return ShouldDisableContactPoolDynamicAllocation; },
            (s,p,l,v) => { ShouldDisableContactPoolDynamicAllocation = v; s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = v; } ),
	    new ParameterDefn("ShouldForceUpdateAllAabbs", "Enable to recomputer AABBs every simulator step",
            ConfigurationParameters.numericFalse,
            (s,cf,p,v) => { ShouldForceUpdateAllAabbs = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return ShouldForceUpdateAllAabbs; },
            (s,p,l,v) => { ShouldForceUpdateAllAabbs = v; s.UnmanagedParams[0].shouldForceUpdateAllAabbs = v; } ),
	    new ParameterDefn("ShouldRandomizeSolverOrder", "Enable for slightly better stacking interaction",
            ConfigurationParameters.numericTrue,
            (s,cf,p,v) => { ShouldRandomizeSolverOrder = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return ShouldRandomizeSolverOrder; },
            (s,p,l,v) => { ShouldRandomizeSolverOrder = v; s.UnmanagedParams[0].shouldRandomizeSolverOrder = v; } ),
	    new ParameterDefn("ShouldSplitSimulationIslands", "Enable splitting active object scanning islands",
            ConfigurationParameters.numericTrue,
            (s,cf,p,v) => { ShouldSplitSimulationIslands = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return ShouldSplitSimulationIslands; },
            (s,p,l,v) => { ShouldSplitSimulationIslands = v; s.UnmanagedParams[0].shouldSplitSimulationIslands = v; } ),
	    new ParameterDefn("ShouldEnableFrictionCaching", "Enable friction computation caching",
            ConfigurationParameters.numericTrue,
            (s,cf,p,v) => { ShouldEnableFrictionCaching = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return ShouldEnableFrictionCaching; },
            (s,p,l,v) => { ShouldEnableFrictionCaching = v; s.UnmanagedParams[0].shouldEnableFrictionCaching = v; } ),
	    new ParameterDefn("NumberOfSolverIterations", "Number of internal iterations (0 means default)",
            0f,     // zero says use Bullet default
            (s,cf,p,v) => { NumberOfSolverIterations = cf.GetFloat(p, v); },
            (s) => { return NumberOfSolverIterations; },
            (s,p,l,v) => { NumberOfSolverIterations = v; s.UnmanagedParams[0].numberOfSolverIterations = v; } ),
	    new ParameterDefn("UseSingleSidedMeshes", "Whether to compute collisions based on single sided meshes.",
            ConfigurationParameters.numericTrue,
            (s,cf,p,v) => { UseSingleSidedMeshesF = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return UseSingleSidedMeshesF; },
            (s,p,l,v) => { UseSingleSidedMeshesF = v; s.UnmanagedParams[0].useSingleSidedMeshes = v; } ),

	    new ParameterDefn("LinksetImplementation", "Type of linkset implementation (0=Constraint, 1=Compound, 2=Manual)",
            (float)BSLinkset.LinksetImplementation.Compound,
            (s,cf,p,v) => { LinksetImplementation = cf.GetFloat(p,v); },
            (s) => { return LinksetImplementation; },
            (s,p,l,v) => { LinksetImplementation = v; } ),
	    new ParameterDefn("LinkConstraintUseFrameOffset", "For linksets built with constraints, enable frame offsetFor linksets built with constraints, enable frame offset.",
            ConfigurationParameters.numericFalse,
            (s,cf,p,v) => { LinkConstraintUseFrameOffset = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return LinkConstraintUseFrameOffset; },
            (s,p,l,v) => { LinkConstraintUseFrameOffset = v; } ),
	    new ParameterDefn("LinkConstraintEnableTransMotor", "Whether to enable translational motor on linkset constraints",
            ConfigurationParameters.numericTrue,
            (s,cf,p,v) => { LinkConstraintEnableTransMotor = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
            (s) => { return LinkConstraintEnableTransMotor; },
            (s,p,l,v) => { LinkConstraintEnableTransMotor = v; } ),
	    new ParameterDefn("LinkConstraintTransMotorMaxVel", "Maximum velocity to be applied by translational motor in linkset constraints",
            5.0f,
            (s,cf,p,v) => { LinkConstraintTransMotorMaxVel = cf.GetFloat(p, v); },
            (s) => { return LinkConstraintTransMotorMaxVel; },
            (s,p,l,v) => { LinkConstraintTransMotorMaxVel = v; } ),
	    new ParameterDefn("LinkConstraintTransMotorMaxForce", "Maximum force to be applied by translational motor in linkset constraints",
            0.1f,
            (s,cf,p,v) => { LinkConstraintTransMotorMaxForce = cf.GetFloat(p, v); },
            (s) => { return LinkConstraintTransMotorMaxForce; },
            (s,p,l,v) => { LinkConstraintTransMotorMaxForce = v; } ),
	    new ParameterDefn("LinkConstraintCFM", "Amount constraint can be violated. 0=no violation, 1=infinite. Default=0.1",
            0.1f,
            (s,cf,p,v) => { LinkConstraintCFM = cf.GetFloat(p, v); },
            (s) => { return LinkConstraintCFM; },
            (s,p,l,v) => { LinkConstraintCFM = v; } ),
	    new ParameterDefn("LinkConstraintERP", "Amount constraint is corrected each tick. 0=none, 1=all. Default = 0.2",
            0.1f,
            (s,cf,p,v) => { LinkConstraintERP = cf.GetFloat(p, v); },
            (s) => { return LinkConstraintERP; },
            (s,p,l,v) => { LinkConstraintERP = v; } ),
	    new ParameterDefn("LinkConstraintSolverIterations", "Number of solver iterations when computing constraint. (0 = Bullet default)",
            40,
            (s,cf,p,v) => { LinkConstraintSolverIterations = cf.GetFloat(p, v); },
            (s) => { return LinkConstraintSolverIterations; },
            (s,p,l,v) => { LinkConstraintSolverIterations = v; } ),

        new ParameterDefn("PhysicsMetricFrames", "Frames between outputting detailed phys metrics. (0 is off)",
            0f,
            (s,cf,p,v) => { s.PhysicsMetricDumpFrames = cf.GetFloat(p, (int)v); },
            (s) => { return (float)s.PhysicsMetricDumpFrames; },
            (s,p,l,v) => { s.PhysicsMetricDumpFrames = (int)v; } ),
        new ParameterDefn("ResetBroadphasePool", "Setting this is any value resets the broadphase collision pool",
            0f,
            (s,cf,p,v) => { ; },
            (s) => { return 0f; },
            (s,p,l,v) => { BSParam.ResetBroadphasePoolTainted(s, v); } ),
        new ParameterDefn("ResetConstraintSolver", "Setting this is any value resets the constraint solver",
            0f,
            (s,cf,p,v) => { ; },
            (s) => { return 0f; },
            (s,p,l,v) => { BSParam.ResetConstraintSolverTainted(s, v); } ),
    };

    // Convert a boolean to our numeric true and false values
    public static float NumericBool(bool b)
    {
        return (b ? ConfigurationParameters.numericTrue : ConfigurationParameters.numericFalse);
    }

    // Convert numeric true and false values to a boolean
    public static bool BoolNumeric(float b)
    {
        return (b == ConfigurationParameters.numericTrue ? true : false);
    }

    // Search through the parameter definitions and return the matching
    //    ParameterDefn structure.
    // Case does not matter as names are compared after converting to lower case.
    // Returns 'false' if the parameter is not found.
    internal static bool TryGetParameter(string paramName, out ParameterDefn defn)
    {
        bool ret = false;
        ParameterDefn foundDefn = new ParameterDefn();
        string pName = paramName.ToLower();

        foreach (ParameterDefn parm in ParameterDefinitions)
        {
            if (pName == parm.name.ToLower())
            {
                foundDefn = parm;
                ret = true;
                break;
            }
        }
        defn = foundDefn;
        return ret;
    }

    // Pass through the settable parameters and set the default values
    internal static void SetParameterDefaultValues(BSScene physicsScene)
    {
        foreach (ParameterDefn parm in ParameterDefinitions)
        {
            parm.setter(physicsScene, parm.name, PhysParameterEntry.APPLY_TO_NONE, parm.defaultValue);
        }
    }

    // Get user set values out of the ini file.
    internal static void SetParameterConfigurationValues(BSScene physicsScene, IConfig cfg)
    {
        foreach (ParameterDefn parm in ParameterDefinitions)
        {
            parm.userParam(physicsScene, cfg, parm.name, parm.defaultValue);
        }
    }

    internal static PhysParameterEntry[] SettableParameters = new PhysParameterEntry[1];

    // This creates an array in the correct format for returning the list of
    //    parameters. This is used by the 'list' option of the 'physics' command.
    internal static void BuildParameterTable()
    {
        if (SettableParameters.Length < ParameterDefinitions.Length)
        {
            List<PhysParameterEntry> entries = new List<PhysParameterEntry>();
            for (int ii = 0; ii < ParameterDefinitions.Length; ii++)
            {
                ParameterDefn pd = ParameterDefinitions[ii];
                entries.Add(new PhysParameterEntry(pd.name, pd.desc));
            }

            // make the list alphabetical for estetic reasons
            entries.Sort((ppe1, ppe2) => { return ppe1.name.CompareTo(ppe2.name); });

            SettableParameters = entries.ToArray();
        }
    }

    private static void ResetBroadphasePoolTainted(BSScene pPhysScene, float v)
    {
        BSScene physScene = pPhysScene;
        physScene.TaintedObject("BSParam.ResetBroadphasePoolTainted", delegate()
        {
            physScene.PE.ResetBroadphasePool(physScene.World);
        });
    }

    private static void ResetConstraintSolverTainted(BSScene pPhysScene, float v)
    {
        BSScene physScene = pPhysScene;
        physScene.TaintedObject("BSParam.ResetConstraintSolver", delegate()
        {
            physScene.PE.ResetConstraintSolver(physScene.World);
        });
    }
}
}