1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
using System;
using System.Collections.Generic;
using System.Text;
using OpenMetaverse;
namespace OpenSim.Region.Physics.BulletSPlugin
{
public abstract class BSMotor
{
// Timescales and other things can be turned off by setting them to 'infinite'.
public const float Infinite = 12345f;
public readonly static Vector3 InfiniteVector = new Vector3(BSMotor.Infinite, BSMotor.Infinite, BSMotor.Infinite);
public BSMotor(string useName)
{
UseName = useName;
PhysicsScene = null;
}
public virtual void Reset() { }
public virtual void Zero() { }
// A name passed at motor creation for easily identifyable debugging messages.
public string UseName { get; private set; }
// Used only for outputting debug information. Might not be set so check for null.
public BSScene PhysicsScene { get; set; }
protected void MDetailLog(string msg, params Object[] parms)
{
if (PhysicsScene != null)
{
if (PhysicsScene.VehicleLoggingEnabled)
{
PhysicsScene.DetailLog(msg, parms);
}
}
}
}
// Can all the incremental stepping be replaced with motor classes?
// Motor which moves CurrentValue to TargetValue over TimeScale seconds.
// The TargetValue decays in TargetValueDecayTimeScale and
// the CurrentValue will be held back by FrictionTimeScale.
// TimeScale and TargetDelayTimeScale may be 'infinite' which means go decay.
// For instance, if something is moving at speed X and the desired speed is Y,
// CurrentValue is X and TargetValue is Y. As the motor is stepped, new
// values of CurrentValue are returned that approach the TargetValue.
// The feature of decaying TargetValue is so vehicles will eventually
// come to a stop rather than run forever. This can be disabled by
// setting TargetValueDecayTimescale to 'infinite'.
// The change from CurrentValue to TargetValue is linear over TimeScale seconds.
public class BSVMotor : BSMotor
{
// public Vector3 FrameOfReference { get; set; }
// public Vector3 Offset { get; set; }
public float TimeScale { get; set; }
public float TargetValueDecayTimeScale { get; set; }
public Vector3 FrictionTimescale { get; set; }
public float Efficiency { get; set; }
public Vector3 TargetValue { get; private set; }
public Vector3 CurrentValue { get; private set; }
public BSVMotor(string useName)
: base(useName)
{
TimeScale = TargetValueDecayTimeScale = BSMotor.Infinite;
Efficiency = 1f;
FrictionTimescale = BSMotor.InfiniteVector;
CurrentValue = TargetValue = Vector3.Zero;
}
public BSVMotor(string useName, float timeScale, float decayTimeScale, Vector3 frictionTimeScale, float efficiency)
: this(useName)
{
TimeScale = timeScale;
TargetValueDecayTimeScale = decayTimeScale;
FrictionTimescale = frictionTimeScale;
Efficiency = efficiency;
CurrentValue = TargetValue = Vector3.Zero;
}
public void SetCurrent(Vector3 current)
{
CurrentValue = current;
}
public void SetTarget(Vector3 target)
{
TargetValue = target;
}
// A form of stepping that does not take the time quantum into account.
// The caller must do the right thing later.
public Vector3 Step()
{
return Step(1f);
}
public Vector3 Step(float timeStep)
{
Vector3 returnCurrent = Vector3.Zero;
if (!CurrentValue.ApproxEquals(TargetValue, 0.01f))
{
Vector3 origTarget = TargetValue; // DEBUG
Vector3 origCurrVal = CurrentValue; // DEBUG
// Addition = (desiredVector - currentAppliedVector) / secondsItShouldTakeToComplete
Vector3 addAmount = (TargetValue - CurrentValue)/TimeScale * timeStep;
CurrentValue += addAmount;
// The desired value reduces to zero which also reduces the difference with current.
// If the decay time is infinite, don't decay at all.
float decayFactor = 0f;
if (TargetValueDecayTimeScale != BSMotor.Infinite)
{
decayFactor = (1.0f / TargetValueDecayTimeScale) * timeStep;
TargetValue *= (1f - decayFactor);
}
Vector3 frictionFactor = Vector3.Zero;
if (FrictionTimescale != BSMotor.InfiniteVector)
{
// frictionFactor = (Vector3.One / FrictionTimescale) * timeStep;
// Individual friction components can be 'infinite' so compute each separately.
frictionFactor.X = FrictionTimescale.X == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.X) * timeStep;
frictionFactor.Y = FrictionTimescale.Y == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.Y) * timeStep;
frictionFactor.Z = FrictionTimescale.Z == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.Z) * timeStep;
CurrentValue *= (Vector3.One - frictionFactor);
}
returnCurrent = CurrentValue;
MDetailLog("{0}, BSVMotor.Step,nonZero,{1},origCurr={2},origTarget={3},timeStep={4},timeScale={5},addAmnt={6},targetDecay={7},decayFact={8},fricTS={9},frictFact={10}",
BSScene.DetailLogZero, UseName, origCurrVal, origTarget,
timeStep, TimeScale, addAmount,
TargetValueDecayTimeScale, decayFactor,
FrictionTimescale, frictionFactor);
MDetailLog("{0}, BSVMotor.Step,nonZero,{1},curr={2},target={3},add={4},decay={5},frict={6},ret={7}",
BSScene.DetailLogZero, UseName, CurrentValue, TargetValue,
addAmount, decayFactor, frictionFactor, returnCurrent);
}
else
{
// Difference between what we have and target is small. Motor is done.
CurrentValue = Vector3.Zero;
TargetValue = Vector3.Zero;
MDetailLog("{0}, BSVMotor.Step,zero,{1},curr={2},target={3},ret={4}",
BSScene.DetailLogZero, UseName, TargetValue, CurrentValue, returnCurrent);
}
return returnCurrent;
}
public override string ToString()
{
return String.Format("<{0},curr={1},targ={2},decayTS={3},frictTS={4}>",
UseName, CurrentValue, TargetValue, TargetValueDecayTimeScale, FrictionTimescale);
}
}
public class BSFMotor : BSMotor
{
public float TimeScale { get; set; }
public float DecayTimeScale { get; set; }
public float Friction { get; set; }
public float Efficiency { get; set; }
public float Target { get; private set; }
public float CurrentValue { get; private set; }
public BSFMotor(string useName, float timeScale, float decayTimescale, float friction, float efficiency)
: base(useName)
{
}
public void SetCurrent(float target)
{
}
public void SetTarget(float target)
{
}
public float Step(float timeStep)
{
return 0f;
}
}
public class BSPIDMotor : BSMotor
{
// TODO: write and use this one
public BSPIDMotor(string useName)
: base(useName)
{
}
}
}
|