aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
blob: e4e3edc32fa42f82a2068209ac9a0c6b61d729a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
/*
 * Copyright (c) Contributors, http://opensimulator.org/
 * See CONTRIBUTORS.TXT for a full list of copyright holders.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the OpenSimulator Project nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The quotations from http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial
 * are Copyright (c) 2009 Linden Research, Inc and are used under their license
 * of Creative Commons Attribution-Share Alike 3.0
 * (http://creativecommons.org/licenses/by-sa/3.0/).
 */

using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using OpenMetaverse;
using OpenSim.Region.Physics.Manager;

namespace OpenSim.Region.Physics.BulletSPlugin
{
    public sealed class BSDynamics
    {
        private static string LogHeader = "[BULLETSIM VEHICLE]";

        private BSScene PhysicsScene { get; set; }
        // the prim this dynamic controller belongs to
        private BSPrim Prim { get; set; }

        // mass of the vehicle fetched each time we're calles
        private float m_vehicleMass;

        // Vehicle properties
        public Vehicle Type { get; set; }

        // private Quaternion m_referenceFrame = Quaternion.Identity;   // Axis modifier
        private VehicleFlag m_flags = (VehicleFlag) 0;                  // Boolean settings:
                                                                        // HOVER_TERRAIN_ONLY
                                                                        // HOVER_GLOBAL_HEIGHT
                                                                        // NO_DEFLECTION_UP
                                                                        // HOVER_WATER_ONLY
                                                                        // HOVER_UP_ONLY
                                                                        // LIMIT_MOTOR_UP
                                                                        // LIMIT_ROLL_ONLY
        private Vector3 m_BlockingEndPoint = Vector3.Zero;
        private Quaternion m_RollreferenceFrame = Quaternion.Identity;
        private Quaternion m_referenceFrame = Quaternion.Identity;

        // Linear properties
        private BSVMotor m_linearMotor = new BSVMotor("LinearMotor");
        private Vector3 m_linearMotorDirection = Vector3.Zero;          // velocity requested by LSL, decayed by time
        private Vector3 m_linearMotorOffset = Vector3.Zero;             // the point of force can be offset from the center
        private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero;   // velocity requested by LSL
        private Vector3 m_linearFrictionTimescale = Vector3.Zero;
        private float m_linearMotorDecayTimescale = 0;
        private float m_linearMotorTimescale = 0;
        private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
        private Vector3 m_lastPositionVector = Vector3.Zero;
        // private bool m_LinearMotorSetLastFrame = false;
        // private Vector3 m_linearMotorOffset = Vector3.Zero;

        //Angular properties
        private BSVMotor m_angularMotor = new BSVMotor("AngularMotor");
        private Vector3 m_angularMotorDirection = Vector3.Zero;         // angular velocity requested by LSL motor
        // private int m_angularMotorApply = 0;                            // application frame counter
        private Vector3 m_angularMotorVelocity = Vector3.Zero;          // current angular motor velocity
        private float m_angularMotorTimescale = 0;                      // motor angular velocity ramp up rate
        private float m_angularMotorDecayTimescale = 0;                 // motor angular velocity decay rate
        private Vector3 m_angularFrictionTimescale = Vector3.Zero;      // body angular velocity  decay rate
        private Vector3 m_lastAngularVelocity = Vector3.Zero;
        private Vector3 m_lastVertAttractor = Vector3.Zero;             // what VA was last applied to body

        //Deflection properties
        private BSVMotor m_angularDeflectionMotor = new BSVMotor("AngularDeflection");
        private float m_angularDeflectionEfficiency = 0;
        private float m_angularDeflectionTimescale = 0;
        private float m_linearDeflectionEfficiency = 0;
        private float m_linearDeflectionTimescale = 0;

        //Banking properties
        private float m_bankingEfficiency = 0;
        private float m_bankingMix = 0;
        private float m_bankingTimescale = 0;

        //Hover and Buoyancy properties
        private BSVMotor m_hoverMotor = new BSVMotor("Hover");
        private float m_VhoverHeight = 0f;
        private float m_VhoverEfficiency = 0f;
        private float m_VhoverTimescale = 0f;
        private float m_VhoverTargetHeight = -1.0f;     // if <0 then no hover, else its the current target height
        private float m_VehicleBuoyancy = 0f;           //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
                    // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
                    // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
                    // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.

        //Attractor properties
        private BSVMotor m_verticalAttractionMotor = new BSVMotor("VerticalAttraction");
        private float m_verticalAttractionEfficiency = 1.0f; // damped
        private float m_verticalAttractionCutoff = 500f;     // per the documentation
        // Timescale > cutoff  means no vert attractor.
        private float m_verticalAttractionTimescale = 510f;

        // Just some recomputed constants:
        static readonly float PIOverFour = ((float)Math.PI) / 4f;
        static readonly float PIOverTwo = ((float)Math.PI) / 2f;

        public BSDynamics(BSScene myScene, BSPrim myPrim)
        {
            PhysicsScene = myScene;
            Prim = myPrim;
            Type = Vehicle.TYPE_NONE;
        }

        // Return 'true' if this vehicle is doing vehicle things
        public bool IsActive
        {
            get { return Type != Vehicle.TYPE_NONE && Prim.IsPhysical; }
        }

        internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
        {
            VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
            switch (pParam)
            {
                case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
                    m_angularDeflectionEfficiency = Math.Max(pValue, 0.01f);
                    break;
                case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
                    m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
                    break;
                case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
                    m_angularMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
                    m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale;
                    break;
                case Vehicle.ANGULAR_MOTOR_TIMESCALE:
                    m_angularMotorTimescale = Math.Max(pValue, 0.01f);
                    m_angularMotor.TimeScale = m_angularMotorTimescale;
                    break;
                case Vehicle.BANKING_EFFICIENCY:
                    m_bankingEfficiency = ClampInRange(-1f, pValue, 1f);
                    break;
                case Vehicle.BANKING_MIX:
                    m_bankingMix = Math.Max(pValue, 0.01f);
                    break;
                case Vehicle.BANKING_TIMESCALE:
                    m_bankingTimescale = Math.Max(pValue, 0.01f);
                    break;
                case Vehicle.BUOYANCY:
                    m_VehicleBuoyancy = ClampInRange(-1f, pValue, 1f);
                    break;
                case Vehicle.HOVER_EFFICIENCY:
                    m_VhoverEfficiency = ClampInRange(0f, pValue, 1f);
                    break;
                case Vehicle.HOVER_HEIGHT:
                    m_VhoverHeight = pValue;
                    break;
                case Vehicle.HOVER_TIMESCALE:
                    m_VhoverTimescale = Math.Max(pValue, 0.01f);
                    break;
                case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
                    m_linearDeflectionEfficiency = Math.Max(pValue, 0.01f);
                    break;
                case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
                    m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
                    break;
                case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
                    m_linearMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
                    m_linearMotor.TargetValueDecayTimeScale = m_linearMotorDecayTimescale;
                    break;
                case Vehicle.LINEAR_MOTOR_TIMESCALE:
                    m_linearMotorTimescale = Math.Max(pValue, 0.01f);
                    m_linearMotor.TimeScale = m_linearMotorTimescale;
                    break;
                case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
                    m_verticalAttractionEfficiency = ClampInRange(0.1f, pValue, 1f);
                    m_verticalAttractionMotor.Efficiency = m_verticalAttractionEfficiency;
                    break;
                case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
                    m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
                    m_verticalAttractionMotor.TimeScale = m_verticalAttractionTimescale;
                    break;

                // These are vector properties but the engine lets you use a single float value to
                // set all of the components to the same value
                case Vehicle.ANGULAR_FRICTION_TIMESCALE:
                    m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
                    m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
                    break;
                case Vehicle.ANGULAR_MOTOR_DIRECTION:
                    m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
                    m_angularMotor.SetTarget(m_angularMotorDirection);
                    break;
                case Vehicle.LINEAR_FRICTION_TIMESCALE:
                    m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
                    m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
                    break;
                case Vehicle.LINEAR_MOTOR_DIRECTION:
                    m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
                    m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
                    m_linearMotor.SetTarget(m_linearMotorDirection);
                    break;
                case Vehicle.LINEAR_MOTOR_OFFSET:
                    m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
                    break;

            }
        }//end ProcessFloatVehicleParam

        internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
        {
            VDetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
            switch (pParam)
            {
                case Vehicle.ANGULAR_FRICTION_TIMESCALE:
                    m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
                    break;
                case Vehicle.ANGULAR_MOTOR_DIRECTION:
                    // Limit requested angular speed to 2 rps= 4 pi rads/sec
                    pValue.X = ClampInRange(-12.56f, pValue.X, 12.56f);
                    pValue.Y = ClampInRange(-12.56f, pValue.Y, 12.56f);
                    pValue.Z = ClampInRange(-12.56f, pValue.Z, 12.56f);
                    m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    m_angularMotor.SetTarget(m_angularMotorDirection);
                    break;
                case Vehicle.LINEAR_FRICTION_TIMESCALE:
                    m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
                    break;
                case Vehicle.LINEAR_MOTOR_DIRECTION:
                    m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    m_linearMotor.SetTarget(m_linearMotorDirection);
                    break;
                case Vehicle.LINEAR_MOTOR_OFFSET:
                    m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    break;
                case Vehicle.BLOCK_EXIT:
                    m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
                    break;
            }
        }//end ProcessVectorVehicleParam

        internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
        {
            VDetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
            switch (pParam)
            {
                case Vehicle.REFERENCE_FRAME:
                    m_referenceFrame = pValue;
                    break;
                case Vehicle.ROLL_FRAME:
                    m_RollreferenceFrame = pValue;
                    break;
            }
        }//end ProcessRotationVehicleParam

        internal void ProcessVehicleFlags(int pParam, bool remove)
        {
            VDetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", Prim.LocalID, pParam, remove);
            VehicleFlag parm = (VehicleFlag)pParam;
            if (pParam == -1)
                m_flags = (VehicleFlag)0;
            else
            {
                if (remove)
                    m_flags &= ~parm;
                else
                    m_flags |= parm;
            }
        }

        internal void ProcessTypeChange(Vehicle pType)
        {
            VDetailLog("{0},ProcessTypeChange,type={1}", Prim.LocalID, pType);
            // Set Defaults For Type
            Type = pType;
            switch (pType)
            {
                case Vehicle.TYPE_NONE:
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 0;
                    m_linearMotorDecayTimescale = 0;
                    m_linearFrictionTimescale = new Vector3(0, 0, 0);

                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorDecayTimescale = 0;
                    m_angularMotorTimescale = 0;
                    m_angularFrictionTimescale = new Vector3(0, 0, 0);

                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0;
                    m_VhoverTimescale = 0;
                    m_VehicleBuoyancy = 0;

                    m_linearDeflectionEfficiency = 1;
                    m_linearDeflectionTimescale = 1;

                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 1000;

                    m_verticalAttractionEfficiency = 0;
                    m_verticalAttractionTimescale = 0;

                    m_bankingEfficiency = 0;
                    m_bankingTimescale = 1000;
                    m_bankingMix = 1;

                    m_referenceFrame = Quaternion.Identity;
                    m_flags = (VehicleFlag)0;

                    break;

                case Vehicle.TYPE_SLED:
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 1000;
                    m_linearMotorDecayTimescale = 120;
                    m_linearFrictionTimescale = new Vector3(30, 1, 1000);

                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 1000;
                    m_angularMotorDecayTimescale = 120;
                    m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);

                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 10;    // TODO: this looks wrong!!
                    m_VhoverTimescale = 10;
                    m_VehicleBuoyancy = 0;

                    m_linearDeflectionEfficiency = 1;
                    m_linearDeflectionTimescale = 1;

                    m_angularDeflectionEfficiency = 1;
                    m_angularDeflectionTimescale = 1000;

                    m_verticalAttractionEfficiency = 0;
                    m_verticalAttractionTimescale = 0;

                    m_bankingEfficiency = 0;
                    m_bankingTimescale = 10;
                    m_bankingMix = 1;

                    m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
                                | VehicleFlag.HOVER_TERRAIN_ONLY
                                | VehicleFlag.HOVER_GLOBAL_HEIGHT
                                | VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP
                            | VehicleFlag.LIMIT_ROLL_ONLY
                            | VehicleFlag.LIMIT_MOTOR_UP);

                    break;
                case Vehicle.TYPE_CAR:
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 1;
                    m_linearMotorDecayTimescale = 60;
                    m_linearFrictionTimescale = new Vector3(100, 2, 1000);

                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 1;
                    m_angularMotorDecayTimescale = 0.8f;
                    m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);

                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0;
                    m_VhoverTimescale = 1000;
                    m_VehicleBuoyancy = 0;

                    m_linearDeflectionEfficiency = 1;
                    m_linearDeflectionTimescale = 2;

                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 10;

                    m_verticalAttractionEfficiency = 1f;
                    m_verticalAttractionTimescale = 10f;

                    m_bankingEfficiency = -0.2f;
                    m_bankingMix = 1;
                    m_bankingTimescale = 1;

                    m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
                                | VehicleFlag.HOVER_TERRAIN_ONLY
                                | VehicleFlag.HOVER_GLOBAL_HEIGHT);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP
                                | VehicleFlag.LIMIT_ROLL_ONLY
                                | VehicleFlag.LIMIT_MOTOR_UP
                                | VehicleFlag.HOVER_UP_ONLY);
                    break;
                case Vehicle.TYPE_BOAT:
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 5;
                    m_linearMotorDecayTimescale = 60;
                    m_linearFrictionTimescale = new Vector3(10, 3, 2);

                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 4;
                    m_angularMotorDecayTimescale = 4;
                    m_angularFrictionTimescale = new Vector3(10,10,10);

                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0.5f;
                    m_VhoverTimescale = 2;
                    m_VehicleBuoyancy = 1;

                    m_linearDeflectionEfficiency = 0.5f;
                    m_linearDeflectionTimescale = 3;

                    m_angularDeflectionEfficiency = 0.5f;
                    m_angularDeflectionTimescale = 5;

                    m_verticalAttractionEfficiency = 0.5f;
                    m_verticalAttractionTimescale = 5f;

                    m_bankingEfficiency = -0.3f;
                    m_bankingMix = 0.8f;
                    m_bankingTimescale = 1;

                    m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY
                                    | VehicleFlag.HOVER_GLOBAL_HEIGHT
                                    | VehicleFlag.LIMIT_ROLL_ONLY
                                    | VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP
                                    | VehicleFlag.LIMIT_MOTOR_UP
                                    | VehicleFlag.HOVER_WATER_ONLY);
                    break;
                case Vehicle.TYPE_AIRPLANE:
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 2;
                    m_linearMotorDecayTimescale = 60;
                    m_linearFrictionTimescale = new Vector3(200, 10, 5);

                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 4;
                    m_angularMotorDecayTimescale = 4;
                    m_angularFrictionTimescale = new Vector3(20, 20, 20);

                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0.5f;
                    m_VhoverTimescale = 1000;
                    m_VehicleBuoyancy = 0;

                    m_linearDeflectionEfficiency = 0.5f;
                    m_linearDeflectionTimescale = 3;

                    m_angularDeflectionEfficiency = 1;
                    m_angularDeflectionTimescale = 2;

                    m_verticalAttractionEfficiency = 0.9f;
                    m_verticalAttractionTimescale = 2f;

                    m_bankingEfficiency = 1;
                    m_bankingMix = 0.7f;
                    m_bankingTimescale = 2;

                    m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
                                    | VehicleFlag.HOVER_TERRAIN_ONLY
                                    | VehicleFlag.HOVER_GLOBAL_HEIGHT
                                    | VehicleFlag.HOVER_UP_ONLY
                                    | VehicleFlag.NO_DEFLECTION_UP
                                    | VehicleFlag.LIMIT_MOTOR_UP);
                    m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
                    break;
                case Vehicle.TYPE_BALLOON:
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 5;
                    m_linearFrictionTimescale = new Vector3(5, 5, 5);
                    m_linearMotorDecayTimescale = 60;

                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 6;
                    m_angularFrictionTimescale = new Vector3(10, 10, 10);
                    m_angularMotorDecayTimescale = 10;

                    m_VhoverHeight = 5;
                    m_VhoverEfficiency = 0.8f;
                    m_VhoverTimescale = 10;
                    m_VehicleBuoyancy = 1;

                    m_linearDeflectionEfficiency = 0;
                    m_linearDeflectionTimescale = 5;

                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 5;

                    m_verticalAttractionEfficiency = 1f;
                    m_verticalAttractionTimescale = 100f;

                    m_bankingEfficiency = 0;
                    m_bankingMix = 0.7f;
                    m_bankingTimescale = 5;

                    m_referenceFrame = Quaternion.Identity;

                    m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
                                    | VehicleFlag.HOVER_TERRAIN_ONLY
                                    | VehicleFlag.HOVER_UP_ONLY
                                    | VehicleFlag.NO_DEFLECTION_UP
                                    | VehicleFlag.LIMIT_MOTOR_UP);
                    m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY
                                    | VehicleFlag.HOVER_GLOBAL_HEIGHT);
                    break;
            }

            // Update any physical parameters based on this type.
            Refresh();

            m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale,
                                m_linearMotorDecayTimescale, m_linearFrictionTimescale,
                                1f);
            m_linearMotor.PhysicsScene = PhysicsScene;  // DEBUG DEBUG DEBUG (enables detail logging)

            m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale,
                                m_angularMotorDecayTimescale, m_angularFrictionTimescale,
                                1f);
            m_angularMotor.PhysicsScene = PhysicsScene;  // DEBUG DEBUG DEBUG (enables detail logging)

            m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale,
                                BSMotor.Infinite, BSMotor.InfiniteVector,
                                m_verticalAttractionEfficiency);
            // Z goes away and we keep X and Y
            m_verticalAttractionMotor.FrictionTimescale = new Vector3(BSMotor.Infinite, BSMotor.Infinite, 0.1f);
            m_verticalAttractionMotor.PhysicsScene = PhysicsScene;  // DEBUG DEBUG DEBUG (enables detail logging)
        }

        // Some of the properties of this prim may have changed.
        // Do any updating needed for a vehicle
        public void Refresh()
        {
            if (IsActive)
            {
                // Remember the mass so we don't have to fetch it every step
                m_vehicleMass = Prim.Linkset.LinksetMass;

                // Friction affects are handled by this vehicle code
                float friction = 0f;
                PhysicsScene.PE.SetFriction(Prim.PhysBody, friction);

                // Moderate angular movement introduced by Bullet.
                // TODO: possibly set AngularFactor and LinearFactor for the type of vehicle.
                //     Maybe compute linear and angular factor and damping from params.
                float angularDamping = BSParam.VehicleAngularDamping;
                PhysicsScene.PE.SetAngularDamping(Prim.PhysBody, angularDamping);

                // Vehicles report collision events so we know when it's on the ground
                PhysicsScene.PE.AddToCollisionFlags(Prim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);

                Vector3 localInertia = PhysicsScene.PE.CalculateLocalInertia(Prim.PhysShape, m_vehicleMass);
                PhysicsScene.PE.SetMassProps(Prim.PhysBody, m_vehicleMass, localInertia);
                PhysicsScene.PE.UpdateInertiaTensor(Prim.PhysBody);

                Vector3 grav = PhysicsScene.DefaultGravity * (1f - Prim.Buoyancy);
                PhysicsScene.PE.SetGravity(Prim.PhysBody, grav);

                VDetailLog("{0},BSDynamics.Refresh,mass={1},frict={2},inert={3},aDamp={4}",
                                Prim.LocalID, m_vehicleMass, friction, localInertia, angularDamping);
            }
            else
            {
                PhysicsScene.PE.RemoveFromCollisionFlags(Prim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
            }
        }

        public bool RemoveBodyDependencies(BSPhysObject prim)
        {
            // If active, we need to add our properties back when the body is rebuilt.
            return IsActive;
        }

        public void RestoreBodyDependencies(BSPhysObject prim)
        {
            if (Prim.LocalID != prim.LocalID)
            {
                // The call should be on us by our prim. Error if not.
                PhysicsScene.Logger.ErrorFormat("{0} RestoreBodyDependencies: called by not my prim. passedLocalID={1}, vehiclePrimLocalID={2}",
                                LogHeader, prim.LocalID, Prim.LocalID);
                return;
            }
            Refresh();
        }

        #region Known vehicle value functions
        // Vehicle physical parameters that we buffer from constant getting and setting.
        // The "m_known*" values are unknown until they are fetched and the m_knownHas flag is set.
        //      Changing is remembered and the parameter is stored back into the physics engine only if updated.
        //      This does two things: 1) saves continuious calls into unmanaged code, and
        //      2) signals when a physics property update must happen back to the simulator
        //      to update values modified for the vehicle.
        private int m_knownChanged;
        private int m_knownHas;
        private float m_knownTerrainHeight;
        private float m_knownWaterLevel;
        private Vector3 m_knownPosition;
        private Vector3 m_knownVelocity;
        private Vector3 m_knownForce;
        private Quaternion m_knownOrientation;
        private Vector3 m_knownRotationalVelocity;
        private Vector3 m_knownRotationalForce;
        private Vector3 m_knownForwardVelocity;    // vehicle relative forward speed

        private const int m_knownChangedPosition           = 1 << 0;
        private const int m_knownChangedVelocity           = 1 << 1;
        private const int m_knownChangedForce              = 1 << 2;
        private const int m_knownChangedOrientation        = 1 << 3;
        private const int m_knownChangedRotationalVelocity = 1 << 4;
        private const int m_knownChangedRotationalForce    = 1 << 5;
        private const int m_knownChangedTerrainHeight      = 1 << 6;
        private const int m_knownChangedWaterLevel         = 1 << 7;
        private const int m_knownChangedForwardVelocity    = 1 << 8;

        private void ForgetKnownVehicleProperties()
        {
            m_knownHas = 0;
            m_knownChanged = 0;
        }
        // Push all the changed values back into the physics engine
        private void PushKnownChanged()
        {
            if (m_knownChanged != 0)
            {
                if ((m_knownChanged & m_knownChangedPosition) != 0)
                    Prim.ForcePosition = m_knownPosition;

                if ((m_knownChanged & m_knownChangedOrientation) != 0)
                    Prim.ForceOrientation = m_knownOrientation;

                if ((m_knownChanged & m_knownChangedVelocity) != 0)
                {
                    Prim.ForceVelocity = m_knownVelocity;
                    PhysicsScene.PE.SetInterpolationLinearVelocity(Prim.PhysBody, VehicleVelocity);
                }

                if ((m_knownChanged & m_knownChangedForce) != 0)
                    Prim.AddForce((Vector3)m_knownForce, false, true);

                if ((m_knownChanged & m_knownChangedRotationalVelocity) != 0)
                {
                    Prim.ForceRotationalVelocity = m_knownRotationalVelocity;
                    // Fake out Bullet by making it think the velocity is the same as last time.
                    PhysicsScene.PE.SetInterpolationAngularVelocity(Prim.PhysBody, m_knownRotationalVelocity);
                }

                if ((m_knownChanged & m_knownChangedRotationalForce) != 0)
                    Prim.AddAngularForce((Vector3)m_knownRotationalForce, false, true);

                // If we set one of the values (ie, the physics engine didn't do it) we must force
                //      an UpdateProperties event to send the changes up to the simulator.
                PhysicsScene.PE.PushUpdate(Prim.PhysBody);
            }
            m_knownChanged = 0;
        }

        // Since the computation of terrain height can be a little involved, this routine
        //    is used to fetch the height only once for each vehicle simulation step.
        private float GetTerrainHeight(Vector3 pos)
        {
            if ((m_knownHas & m_knownChangedTerrainHeight) == 0)
            {
                m_knownTerrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
                m_knownHas |= m_knownChangedTerrainHeight;
            }
            return m_knownTerrainHeight;
        }

        // Since the computation of water level can be a little involved, this routine
        //    is used ot fetch the level only once for each vehicle simulation step.
        private float GetWaterLevel(Vector3 pos)
        {
            if ((m_knownHas & m_knownChangedWaterLevel) == 0)
            {
                m_knownWaterLevel = Prim.PhysicsScene.TerrainManager.GetWaterLevelAtXYZ(pos);
                m_knownHas |= m_knownChangedWaterLevel;
            }
            return (float)m_knownWaterLevel;
        }

        private Vector3 VehiclePosition
        {
            get
            {
                if ((m_knownHas & m_knownChangedPosition) == 0)
                {
                    m_knownPosition = Prim.ForcePosition;
                    m_knownHas |= m_knownChangedPosition;
                }
                return m_knownPosition;
            }
            set
            {
                m_knownPosition = value;
                m_knownChanged |= m_knownChangedPosition;
                m_knownHas |= m_knownChangedPosition;
            }
        }

        private Quaternion VehicleOrientation
        {
            get
            {
                if ((m_knownHas & m_knownChangedOrientation) == 0)
                {
                    m_knownOrientation = Prim.ForceOrientation;
                    m_knownHas |= m_knownChangedOrientation;
                }
                return m_knownOrientation;
            }
            set
            {
                m_knownOrientation = value;
                m_knownChanged |= m_knownChangedOrientation;
                m_knownHas |= m_knownChangedOrientation;
            }
        }

        private Vector3 VehicleVelocity
        {
            get
            {
                if ((m_knownHas & m_knownChangedVelocity) == 0)
                {
                    m_knownVelocity = Prim.ForceVelocity;
                    m_knownHas |= m_knownChangedVelocity;
                }
                return (Vector3)m_knownVelocity;
            }
            set
            {
                m_knownVelocity = value;
                m_knownChanged |= m_knownChangedVelocity;
                m_knownHas |= m_knownChangedVelocity;
            }
        }

        private void VehicleAddForce(Vector3 aForce)
        {
            if ((m_knownHas & m_knownChangedForce) == 0)
            {
                m_knownForce = Vector3.Zero;
            }
            m_knownForce += aForce;
            m_knownChanged |= m_knownChangedForce;
            m_knownHas |= m_knownChangedForce;
        }

        private Vector3 VehicleRotationalVelocity
        {
            get
            {
                if ((m_knownHas & m_knownChangedRotationalVelocity) == 0)
                {
                    m_knownRotationalVelocity = Prim.ForceRotationalVelocity;
                    m_knownHas |= m_knownChangedRotationalVelocity;
                }
                return (Vector3)m_knownRotationalVelocity;
            }
            set
            {
                m_knownRotationalVelocity = value;
                m_knownChanged |= m_knownChangedRotationalVelocity;
                m_knownHas |= m_knownChangedRotationalVelocity;
            }
        }
        private void VehicleAddAngularForce(Vector3 aForce)
        {
            if ((m_knownHas & m_knownChangedRotationalForce) == 0)
            {
                m_knownRotationalForce = Vector3.Zero;
            }
            m_knownRotationalForce += aForce;
            m_knownChanged |= m_knownChangedRotationalForce;
            m_knownHas |= m_knownChangedRotationalForce;
        }
        // Vehicle relative forward velocity
        private Vector3 VehicleForwardVelocity
        {
            get
            {
                if ((m_knownHas & m_knownChangedForwardVelocity) == 0)
                {
                    m_knownForwardVelocity = VehicleVelocity * Quaternion.Inverse(Quaternion.Normalize(VehicleOrientation));
                    m_knownHas |= m_knownChangedForwardVelocity;
                }
                return m_knownForwardVelocity;
            }
        }
        private float VehicleForwardSpeed
        {
            get
            {
                return VehicleForwardVelocity.X;
            }
        }

        #endregion // Known vehicle value functions

        // One step of the vehicle properties for the next 'pTimestep' seconds.
        internal void Step(float pTimestep)
        {
            if (!IsActive) return;

            if (PhysicsScene.VehiclePhysicalLoggingEnabled)
                BulletSimAPI.DumpRigidBody2(PhysicsScene.World.ptr, Prim.PhysBody.ptr);

            ForgetKnownVehicleProperties();

            MoveLinear(pTimestep);
            MoveAngular(pTimestep);

            LimitRotation(pTimestep);

            // remember the position so next step we can limit absolute movement effects
            m_lastPositionVector = VehiclePosition;

            // If we forced the changing of some vehicle parameters, update the values and
            //      for the physics engine to note the changes so an UpdateProperties event will happen.
            PushKnownChanged();

            if (PhysicsScene.VehiclePhysicalLoggingEnabled)
                BulletSimAPI.DumpRigidBody2(PhysicsScene.World.ptr, Prim.PhysBody.ptr);

            VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}",
                    Prim.LocalID, VehiclePosition, Prim.Force, VehicleVelocity, VehicleRotationalVelocity);
        }

        // Apply the effect of the linear motor and other linear motions (like hover and float).
        private void MoveLinear(float pTimestep)
        {
            Vector3 linearMotorContribution = m_linearMotor.Step(pTimestep);

            // The movement computed in the linear motor is relative to the vehicle
            //     coordinates. Rotate the movement to world coordinates.
            linearMotorContribution *= VehicleOrientation;

            // ==================================================================
            // Buoyancy: force to overcome gravity.
            // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
            // So, if zero, don't change anything (let gravity happen). If one, negate the effect of gravity.
            Vector3 buoyancyContribution =  Prim.PhysicsScene.DefaultGravity * m_VehicleBuoyancy;

            Vector3 terrainHeightContribution = ComputeLinearTerrainHeightCorrection(pTimestep);

            Vector3 hoverContribution = ComputeLinearHover(pTimestep);

            ComputeLinearBlockingEndPoint(pTimestep);

            Vector3 limitMotorUpContribution = ComputeLinearMotorUp(pTimestep);

            // ==================================================================
            Vector3 newVelocity = linearMotorContribution
                            + terrainHeightContribution
                            + hoverContribution
                            + limitMotorUpContribution;

            Vector3 newForce = buoyancyContribution;

            // If not changing some axis, reduce out velocity
            if ((m_flags & (VehicleFlag.NO_X)) != 0)
                newVelocity.X = 0;
            if ((m_flags & (VehicleFlag.NO_Y)) != 0)
                newVelocity.Y = 0;
            if ((m_flags & (VehicleFlag.NO_Z)) != 0)
                newVelocity.Z = 0;

            // ==================================================================
            // Clamp high or low velocities
            float newVelocityLengthSq = newVelocity.LengthSquared();
            if (newVelocityLengthSq > 1000f)
            {
                newVelocity /= newVelocity.Length();
                newVelocity *= 1000f;
            }
            else if (newVelocityLengthSq < 0.001f)
                newVelocity = Vector3.Zero;

            // ==================================================================
            // Stuff new linear velocity into the vehicle.
            // Since the velocity is just being set, it is not scaled by pTimeStep. Bullet will do that for us.
            VehicleVelocity = newVelocity;

            // Other linear forces are applied as forces.
            Vector3 totalDownForce = newForce * m_vehicleMass;
            if (!totalDownForce.ApproxEquals(Vector3.Zero, 0.01f))
            {
                VehicleAddForce(totalDownForce);
            }

            VDetailLog("{0},  MoveLinear,done,newVel={1},totDown={2},IsColliding={3}",
                                Prim.LocalID, newVelocity, totalDownForce, Prim.IsColliding);
            VDetailLog("{0},  MoveLinear,done,linContrib={1},terrContrib={2},hoverContrib={3},limitContrib={4},buoyContrib={5}",
                                Prim.LocalID,
                                linearMotorContribution, terrainHeightContribution, hoverContribution, 
                                limitMotorUpContribution, buoyancyContribution
            );

        } // end MoveLinear()

        public Vector3 ComputeLinearTerrainHeightCorrection(float pTimestep)
        {
            Vector3 ret = Vector3.Zero;
            // If below the terrain, move us above the ground a little.
            // TODO: Consider taking the rotated size of the object or possibly casting a ray.
            if (VehiclePosition.Z < GetTerrainHeight(VehiclePosition))
            {
                // TODO: correct position by applying force rather than forcing position.
                Vector3 newPosition = VehiclePosition;
                newPosition.Z = GetTerrainHeight(VehiclePosition) + 1f;
                VehiclePosition = newPosition;
                VDetailLog("{0},  MoveLinear,terrainHeight,terrainHeight={1},pos={2}",
                        Prim.LocalID, GetTerrainHeight(VehiclePosition), VehiclePosition);
            }
            return ret;
        }

        public Vector3 ComputeLinearHover(float pTimestep)
        {
            Vector3 ret = Vector3.Zero;

            // m_VhoverEfficiency: 0=bouncy, 1=totally damped
            // m_VhoverTimescale: time to achieve height
            if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
            {
                // We should hover, get the target height
                if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
                {
                    m_VhoverTargetHeight = GetWaterLevel(VehiclePosition) + m_VhoverHeight;
                }
                if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
                {
                    m_VhoverTargetHeight = GetTerrainHeight(VehiclePosition) + m_VhoverHeight;
                }
                if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
                {
                    m_VhoverTargetHeight = m_VhoverHeight;
                }

                if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
                {
                    // If body is already heigher, use its height as target height
                    if (VehiclePosition.Z > m_VhoverTargetHeight)
                        m_VhoverTargetHeight = VehiclePosition.Z;
                }
                
                if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
                {
                    if (Math.Abs(VehiclePosition.Z - m_VhoverTargetHeight) > 0.2f)
                    {
                        Vector3 pos = VehiclePosition;
                        pos.Z = m_VhoverTargetHeight;
                        VehiclePosition = pos;
                    }
                }
                else
                {
                    // Error is positive if below the target and negative if above.
                    float verticalError = m_VhoverTargetHeight - VehiclePosition.Z;
                    float verticalCorrectionVelocity = verticalError / m_VhoverTimescale;

                    // TODO: implement m_VhoverEfficiency correctly
                    if (Math.Abs(verticalError) > m_VhoverEfficiency)
                    {
                        ret = new Vector3(0f, 0f, verticalCorrectionVelocity);
                    }
                }

                VDetailLog("{0},  MoveLinear,hover,pos={1},ret={2},hoverTS={3},height={4},target={5}",
                                Prim.LocalID, VehiclePosition, ret, m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight);
            }

            return ret;
        }

        public bool ComputeLinearBlockingEndPoint(float pTimestep)
        {
            bool changed = false;

            Vector3 pos = VehiclePosition;
            Vector3 posChange = pos - m_lastPositionVector;
            if (m_BlockingEndPoint != Vector3.Zero)
            {
                if (pos.X >= (m_BlockingEndPoint.X - (float)1))
                {
                    pos.X -= posChange.X + 1;
                    changed = true;
                }
                if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
                {
                    pos.Y -= posChange.Y + 1;
                    changed = true;
                }
                if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
                {
                    pos.Z -= posChange.Z + 1;
                    changed = true;
                }
                if (pos.X <= 0)
                {
                    pos.X += posChange.X + 1;
                    changed = true;
                }
                if (pos.Y <= 0)
                {
                    pos.Y += posChange.Y + 1;
                    changed = true;
                }
                if (changed)
                {
                    VehiclePosition = pos;
                    VDetailLog("{0},  MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
                                Prim.LocalID, m_BlockingEndPoint, posChange, pos);
                }
            }
            return changed;
        }

        // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
        //    Prevent ground vehicles from motoring into the sky. This flag has a subtle effect when
        //    used with conjunction with banking: the strength of the banking will decay when the
        //    vehicle no longer experiences collisions. The decay timescale is the same as
        //    VEHICLE_BANKING_TIMESCALE. This is to help prevent ground vehicles from steering
        //    when they are in mid jump. 
        // TODO: this code is wrong. Also, what should it do for boats (height from water)?
        //    This is just using the ground and a general collision check. Should really be using
        //    a downward raycast to find what is below.
        public Vector3 ComputeLinearMotorUp(float pTimestep)
        {
            Vector3 ret = Vector3.Zero;
            float distanceAboveGround = 0f;

            if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
            {
                float targetHeight = Type == Vehicle.TYPE_BOAT ? GetWaterLevel(VehiclePosition) : GetTerrainHeight(VehiclePosition);
                distanceAboveGround = VehiclePosition.Z - targetHeight;
                // Not colliding if the vehicle is off the ground
                if (!Prim.IsColliding)
                {
                    // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
                    ret = new Vector3(0, 0, -distanceAboveGround);
                }
                // TODO: this calculation is wrong. From the description at
                //     (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
                //     has a decay factor. This says this force should
                //     be computed with a motor.
                // TODO: add interaction with banking.
            }
            VDetailLog("{0},  MoveLinear,limitMotorUp,distAbove={1},colliding={2},ret={3}",
                                Prim.LocalID, distanceAboveGround, Prim.IsColliding, ret);
            return ret;
        }

        // =======================================================================
        // =======================================================================
        // Apply the effect of the angular motor.
        // The 'contribution' is how much angular correction velocity each function wants.
        //     All the contributions are added together and the resulting velocity is
        //     set directly on the vehicle.
        private void MoveAngular(float pTimestep)
        {
            // The user wants this many radians per second angular change?
            Vector3 angularMotorContribution = m_angularMotor.Step(pTimestep);

            // ==================================================================
            // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
            //    This flag prevents linear deflection parallel to world z-axis. This is useful
            //    for preventing ground vehicles with large linear deflection, like bumper cars,
            //    from climbing their linear deflection into the sky. 
            // That is, NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
            if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
            {
                angularMotorContribution.X = 0f;
                angularMotorContribution.Y = 0f;
                VDetailLog("{0},  MoveAngular,noDeflectionUp,angularMotorContrib={1}", Prim.LocalID, angularMotorContribution);
            }

            Vector3 verticalAttractionContribution = ComputeAngularVerticalAttraction();

            Vector3 deflectionContribution = ComputeAngularDeflection();

            Vector3 bankingContribution = ComputeAngularBanking();

            // ==================================================================
            m_lastVertAttractor = verticalAttractionContribution;

            m_lastAngularVelocity = angularMotorContribution
                                    + verticalAttractionContribution
                                    + deflectionContribution
                                    + bankingContribution;

            // ==================================================================
            // Apply the correction velocity.
            // TODO: Should this be applied as an angular force (torque)?
            if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
            {
                VehicleRotationalVelocity = m_lastAngularVelocity;

                VDetailLog("{0},  MoveAngular,done,nonZero,angMotorContrib={1},vertAttrContrib={2},bankContrib={3},deflectContrib={4},totalContrib={5}",
                                    Prim.LocalID,
                                    angularMotorContribution, verticalAttractionContribution,
                                    bankingContribution, deflectionContribution,
                                    m_lastAngularVelocity
                                    );
            }
            else
            {
                // The vehicle is not adding anything angular wise.
                VehicleRotationalVelocity = Vector3.Zero;
                VDetailLog("{0},  MoveAngular,done,zero", Prim.LocalID);
            }

            // ==================================================================
            //Offset section
            if (m_linearMotorOffset != Vector3.Zero)
            {
                //Offset of linear velocity doesn't change the linear velocity,
                //   but causes a torque to be applied, for example...
                //
                //      IIIII     >>>   IIIII
                //      IIIII     >>>    IIIII
                //      IIIII     >>>     IIIII
                //          ^
                //          |  Applying a force at the arrow will cause the object to move forward, but also rotate
                //
                //
                // The torque created is the linear velocity crossed with the offset

                // TODO: this computation should be in the linear section
                //    because that is where we know the impulse being applied.
                Vector3 torqueFromOffset = Vector3.Zero;
                // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
                if (float.IsNaN(torqueFromOffset.X))
                    torqueFromOffset.X = 0;
                if (float.IsNaN(torqueFromOffset.Y))
                    torqueFromOffset.Y = 0;
                if (float.IsNaN(torqueFromOffset.Z))
                    torqueFromOffset.Z = 0;

                VehicleAddAngularForce(torqueFromOffset * m_vehicleMass);
                VDetailLog("{0},  BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
            }

        }
        // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
        //      Some vehicles, like boats, should always keep their up-side up. This can be done by
        //      enabling the "vertical attractor" behavior that springs the vehicle's local z-axis to
        //      the world z-axis (a.k.a. "up"). To take advantage of this feature you would set the
        //      VEHICLE_VERTICAL_ATTRACTION_TIMESCALE to control the period of the spring frequency,
        //      and then set the VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY to control the damping. An
        //      efficiency of 0.0 will cause the spring to wobble around its equilibrium, while an
        //      efficiency of 1.0 will cause the spring to reach its equilibrium with exponential decay.
        public Vector3 ComputeAngularVerticalAttraction()
        {
            Vector3 ret = Vector3.Zero;

            // If vertical attaction timescale is reasonable
            if (m_verticalAttractionTimescale < m_verticalAttractionCutoff)
            {
                // Take a vector pointing up and convert it from world to vehicle relative coords.
                Vector3 verticalError = Vector3.UnitZ * VehicleOrientation;

                // If vertical attraction correction is needed, the vector that was pointing up (UnitZ)
                //    is now:
                //    leaning to one side: rotated around the X axis with the Y value going
                //        from zero (nearly straight up) to one (completely to the side)) or
                //    leaning front-to-back: rotated around the Y axis with the value of X being between
                //         zero and one.
                // The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees.

                // Y error means needed rotation around X axis and visa versa.
                // Since the error goes from zero to one, the asin is the corresponding angle.
                ret.X = (float)Math.Asin(verticalError.Y);
                // (Tilt forward (positive X) needs to tilt back (rotate negative) around Y axis.)
                ret.Y = -(float)Math.Asin(verticalError.X);

                // If verticalError.Z is negative, the vehicle is upside down. Add additional push.
                if (verticalError.Z < 0f)
                {
                    ret.X += PIOverFour;
                    ret.Y += PIOverFour;
                }

                // 'ret' is now the necessary velocity to correct tilt in one second.
                //     Correction happens over a number of seconds.
                Vector3 unscaledContrib = ret;
                ret /= m_verticalAttractionTimescale;

                VDetailLog("{0},  MoveAngular,verticalAttraction,,verticalError={1},unscaled={2},eff={3},ts={4},vertAttr={5}",
                                Prim.LocalID, verticalError, unscaledContrib, m_verticalAttractionEfficiency, m_verticalAttractionTimescale, ret);
            }
            return ret;
        }

        // Return the angular correction to correct the direction the vehicle is pointing to be
        //      the direction is should want to be pointing.
        // The vehicle is moving in some direction and correct its orientation to it is pointing
        //     in that direction.
        // TODO: implement reference frame.
        public Vector3 ComputeAngularDeflection()
        {
            Vector3 ret = Vector3.Zero;
            return ret;         // DEBUG DEBUG DEBUG
            // Disable angular deflection for the moment.
            // Since angularMotorUp and angularDeflection are computed independently, they will calculate
            //     approximately the same X or Y correction. When added together (when contributions are combined)
            //     this creates an over-correction and then wabbling as the target is overshot.
            // TODO: rethink how the different correction computations inter-relate.

            if (m_angularDeflectionEfficiency != 0)
            {
                // The direction the vehicle is moving
                Vector3 movingDirection = VehicleVelocity;
                movingDirection.Normalize();

                // The direction the vehicle is pointing
                Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
                pointingDirection.Normalize();

                // The difference between what is and what should be.
                Vector3 deflectionError = movingDirection - pointingDirection;

                // Don't try to correct very large errors (not our job)
                if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = 0f;
                if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = 0f;
                if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = 0f;

                // ret = m_angularDeflectionCorrectionMotor(1f, deflectionError);

                // Scale the correction by recovery timescale and efficiency
                ret = (-deflectionError) * m_angularDeflectionEfficiency;
                ret /= m_angularDeflectionTimescale;

                VDetailLog("{0},  MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}",
                    Prim.LocalID, movingDirection, pointingDirection, deflectionError, ret);
                VDetailLog("{0},  MoveAngular,Deflection,fwdSpd={1},defEff={2},defTS={3}",
                    Prim.LocalID, VehicleForwardSpeed, m_angularDeflectionEfficiency, m_angularDeflectionTimescale);
            }
            return ret;
        }

        // Return an angular change to rotate the vehicle around the Z axis when the vehicle
        //     is tipped around the X axis.
        // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
        //      The vertical attractor feature must be enabled in order for the banking behavior to
        //      function. The way banking works is this: a rotation around the vehicle's roll-axis will
        //      produce a angular velocity around the yaw-axis, causing the vehicle to turn. The magnitude
        //      of the yaw effect will be proportional to the
        //          VEHICLE_BANKING_EFFICIENCY, the angle of the roll rotation, and sometimes the vehicle's
        //                 velocity along its preferred axis of motion. 
        //          The VEHICLE_BANKING_EFFICIENCY can vary between -1 and +1. When it is positive then any
        //                  positive rotation (by the right-hand rule) about the roll-axis will effect a
        //                  (negative) torque around the yaw-axis, making it turn to the right--that is the
        //                  vehicle will lean into the turn, which is how real airplanes and motorcycle's work.
        //                  Negating the banking coefficient will make it so that the vehicle leans to the
        //                  outside of the turn (not very "physical" but might allow interesting vehicles so why not?). 
        //           The VEHICLE_BANKING_MIX is a fake (i.e. non-physical) parameter that is useful for making
        //                  banking vehicles do what you want rather than what the laws of physics allow.
        //                  For example, consider a real motorcycle...it must be moving forward in order for
        //                  it to turn while banking, however video-game motorcycles are often configured
        //                  to turn in place when at a dead stop--because they are often easier to control
        //                  that way using the limited interface of the keyboard or game controller. The
        //                  VEHICLE_BANKING_MIX enables combinations of both realistic and non-realistic
        //                  banking by functioning as a slider between a banking that is correspondingly
        //                  totally static (0.0) and totally dynamic (1.0). By "static" we mean that the
        //                  banking effect depends only on the vehicle's rotation about its roll-axis compared
        //                  to "dynamic" where the banking is also proportional to its velocity along its
        //                  roll-axis. Finding the best value of the "mixture" will probably require trial and error. 
        //      The time it takes for the banking behavior to defeat a preexisting angular velocity about the
        //      world z-axis is determined by the VEHICLE_BANKING_TIMESCALE. So if you want the vehicle to
        //      bank quickly then give it a banking timescale of about a second or less, otherwise you can
        //      make a sluggish vehicle by giving it a timescale of several seconds. 
        public Vector3 ComputeAngularBanking()
        {
            Vector3 ret = Vector3.Zero;

            if (m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
            {
                // This works by rotating a unit vector to the orientation of the vehicle. The
                //    roll (tilt) will be Y component of a tilting Z vector (zero for no tilt
                //    up to one for full over).
                Vector3 rollComponents = Vector3.UnitZ * VehicleOrientation;

                // Figure out the yaw value for this much roll.
                float turnComponent = rollComponents.Y * rollComponents.Y * m_bankingEfficiency;
                // Keep the sign
                if (rollComponents.Y < 0f)
                    turnComponent = -turnComponent;

                // TODO: there must be a better computation of the banking force.
                float bankingTurnForce = turnComponent;

                //        actual error  =       static turn error            +           dynamic turn error
                float mixedBankingError = bankingTurnForce * (1f - m_bankingMix) + bankingTurnForce * m_bankingMix * VehicleForwardSpeed;
                // TODO: the banking effect should not go to infinity but what to limit it to?
                mixedBankingError = ClampInRange(-20f, mixedBankingError, 20f);

                // Build the force vector to change rotation from what it is to what it should be
                ret.Z = -mixedBankingError;

                // Don't do it all at once.
                ret /= m_bankingTimescale;

                VDetailLog("{0},  MoveAngular,Banking,rollComp={1},speed={2},turnComp={3},bankErr={4},mixedBankErr={5},ret={6}",
                            Prim.LocalID, rollComponents, VehicleForwardSpeed, turnComponent, bankingTurnForce, mixedBankingError, ret);
            }
            return ret;
        }

        // This is from previous instantiations of XXXDynamics.cs.
        // Applies roll reference frame.
        // TODO: is this the right way to separate the code to do this operation?
        //    Should this be in MoveAngular()?
        internal void LimitRotation(float timestep)
        {
            Quaternion rotq = VehicleOrientation;
            Quaternion m_rot = rotq;
            if (m_RollreferenceFrame != Quaternion.Identity)
            {
                if (rotq.X >= m_RollreferenceFrame.X)
                {
                    m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
                }
                if (rotq.Y >= m_RollreferenceFrame.Y)
                {
                    m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
                }
                if (rotq.X <= -m_RollreferenceFrame.X)
                {
                    m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
                }
                if (rotq.Y <= -m_RollreferenceFrame.Y)
                {
                    m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
                }
            }
            if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
            {
                m_rot.X = 0;
                m_rot.Y = 0;
            }
            if (rotq != m_rot)
            {
                VehicleOrientation = m_rot;
                VDetailLog("{0},  LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot);
            }

        }

        private float ClampInRange(float low, float val, float high)
        {
            return Math.Max(low, Math.Min(val, high));
            // return Utils.Clamp(val, low, high);
        }

        // Invoke the detailed logger and output something if it's enabled.
        private void VDetailLog(string msg, params Object[] args)
        {
            if (Prim.PhysicsScene.VehicleLoggingEnabled)
                Prim.PhysicsScene.DetailLog(msg, args);
        }
    }
}