1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
|
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to
* call the BulletSim system.
*/
/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.BulletSPlugin
{
public class BSDynamics
{
private BSScene PhysicsScene { get; set; }
// the prim this dynamic controller belongs to
private BSPrim Prim { get; set; }
// Vehicle properties
public Vehicle Type { get; set; }
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
// HOVER_TERRAIN_ONLY
// HOVER_GLOBAL_HEIGHT
// NO_DEFLECTION_UP
// HOVER_WATER_ONLY
// HOVER_UP_ONLY
// LIMIT_MOTOR_UP
// LIMIT_ROLL_ONLY
private Vector3 m_BlockingEndPoint = Vector3.Zero;
private Quaternion m_RollreferenceFrame = Quaternion.Identity;
// Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
private float m_linearMotorDecayTimescale = 0;
private float m_linearMotorTimescale = 0;
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
private Vector3 m_lastPositionVector = Vector3.Zero;
// private bool m_LinearMotorSetLastFrame = false;
// private Vector3 m_linearMotorOffset = Vector3.Zero;
//Angular properties
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
private int m_angularMotorApply = 0; // application frame counter
private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
// private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
//Deflection properties
// private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0;
// private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0;
//Banking properties
// private float m_bankingEfficiency = 0;
// private float m_bankingMix = 0;
// private float m_bankingTimescale = 0;
//Hover and Buoyancy properties
private float m_VhoverHeight = 0f;
// private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 0f;
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
//Attractor properties
private float m_verticalAttractionEfficiency = 1.0f; // damped
private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
public BSDynamics(BSScene myScene, BSPrim myPrim)
{
PhysicsScene = myScene;
Prim = myPrim;
Type = Vehicle.TYPE_NONE;
}
// Return 'true' if this vehicle is doing vehicle things
public bool IsActive
{
get { return Type != Vehicle.TYPE_NONE; }
}
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
{
VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
switch (pParam)
{
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
// m_angularDeflectionEfficiency = Math.Max(pValue, 0.01f);
break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
// m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
m_angularMotorTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.BANKING_EFFICIENCY:
// m_bankingEfficiency = Math.Max(pValue, 0.01f);
break;
case Vehicle.BANKING_MIX:
// m_bankingMix = Math.Max(pValue, 0.01f);
break;
case Vehicle.BANKING_TIMESCALE:
// m_bankingTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.BUOYANCY:
m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f));
break;
// case Vehicle.HOVER_EFFICIENCY:
// m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f));
// break;
case Vehicle.HOVER_HEIGHT:
m_VhoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
m_VhoverTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
// m_linearDeflectionEfficiency = Math.Max(pValue, 0.01f);
break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
// m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
m_linearMotorTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f));
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
break;
// These are vector properties but the engine lets you use a single float value to
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
m_angularMotorApply = 10;
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
break;
}
}//end ProcessFloatVehicleParam
internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
{
VDetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
switch (pParam)
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
// Limit requested angular speed to 2 rps= 4 pi rads/sec
if (m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f;
if (m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f;
if (m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f;
if (m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f;
if (m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f;
if (m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
m_angularMotorApply = 10;
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.BLOCK_EXIT:
m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
}//end ProcessVectorVehicleParam
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
VDetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
switch (pParam)
{
case Vehicle.REFERENCE_FRAME:
// m_referenceFrame = pValue;
break;
case Vehicle.ROLL_FRAME:
m_RollreferenceFrame = pValue;
break;
}
}//end ProcessRotationVehicleParam
internal void ProcessVehicleFlags(int pParam, bool remove)
{
VDetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", Prim.LocalID, pParam, remove);
VehicleFlag parm = (VehicleFlag)pParam;
if (remove)
{
if (pParam == -1)
{
m_flags = (VehicleFlag)0;
}
else
{
m_flags &= ~parm;
}
}
else {
m_flags |= parm;
}
}//end ProcessVehicleFlags
internal void ProcessTypeChange(Vehicle pType)
{
VDetailLog("{0},ProcessTypeChange,type={1}", Prim.LocalID, pType);
// Set Defaults For Type
Type = pType;
switch (pType)
{
case Vehicle.TYPE_NONE:
m_linearFrictionTimescale = new Vector3(0, 0, 0);
m_angularFrictionTimescale = new Vector3(0, 0, 0);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 0;
m_linearMotorDecayTimescale = 0;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 0;
m_angularMotorDecayTimescale = 0;
m_VhoverHeight = 0;
m_VhoverTimescale = 0;
m_VehicleBuoyancy = 0;
m_flags = (VehicleFlag)0;
break;
case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 1;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 1;
// m_linearDeflectionTimescale = 1;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 1000;
// m_bankingEfficiency = 0;
// m_bankingMix = 1;
// m_bankingTimescale = 10;
// m_referenceFrame = Quaternion.Identity;
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
break;
case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// // m_linearDeflectionEfficiency = 1;
// // m_linearDeflectionTimescale = 2;
// // m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 10f;
// m_bankingEfficiency = -0.2f;
// m_bankingMix = 1;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.HOVER_UP_ONLY);
break;
case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10,10,10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 0.5f;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5f;
// m_bankingEfficiency = -0.3f;
// m_bankingMix = 0.8f;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP |
VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.HOVER_WATER_ONLY);
break;
case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2f;
// m_bankingEfficiency = 1;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 2;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break;
case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10;
m_VhoverHeight = 5;
// m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0;
// m_linearDeflectionTimescale = 5;
// m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 100f;
// m_bankingEfficiency = 0;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 5;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_UP_ONLY);
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
m_flags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
}//end SetDefaultsForType
// Some of the properties of this prim may have changed.
// Do any updating needed for a vehicle
public void Refresh()
{
if (Type == Vehicle.TYPE_NONE) return;
// Set the prim's inertia to zero. The vehicle code handles that and this
// removes the torque action introduced by Bullet.
Vector3 inertia = Vector3.Zero;
BulletSimAPI.SetMassProps2(Prim.BSBody.ptr, Prim.MassRaw, inertia);
BulletSimAPI.UpdateInertiaTensor2(Prim.BSBody.ptr);
}
// One step of the vehicle properties for the next 'pTimestep' seconds.
internal void Step(float pTimestep)
{
if (!IsActive) return;
MoveLinear(pTimestep);
MoveAngular(pTimestep);
LimitRotation(pTimestep);
// remember the position so next step we can limit absolute movement effects
m_lastPositionVector = Prim.Position;
VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}",
Prim.LocalID, Prim.Position, Prim.Force, Prim.Velocity, Prim.RotationalVelocity);
}// end Step
// Apply the effect of the linear motor.
// Also does hover and float.
private void MoveLinear(float pTimestep)
{
// m_linearMotorDirection is the direction we are moving relative to the vehicle coordinates
// m_lastLinearVelocityVector is the speed we are moving in that direction
if (m_linearMotorDirection.LengthSquared() > 0.001f)
{
Vector3 origDir = m_linearMotorDirection;
Vector3 origVel = m_lastLinearVelocityVector;
// add drive to body
// Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale / pTimestep);
Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale / pTimestep);
// lastLinearVelocityVector is the current body velocity vector
// RA: Not sure what the *10 is for. A correction for pTimestep?
// m_lastLinearVelocityVector += (addAmount*10);
m_lastLinearVelocityVector += addAmount;
// Limit the velocity vector to less than the last set linear motor direction
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
/*
// decay applied velocity
Vector3 decayfraction = Vector3.One/(m_linearMotorDecayTimescale / pTimestep);
// (RA: do not know where the 0.5f comes from)
m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f;
*/
float keepfraction = 1.0f - (1.0f / (m_linearMotorDecayTimescale / pTimestep));
m_linearMotorDirection *= keepfraction;
VDetailLog("{0},MoveLinear,nonZero,origdir={1},origvel={2},add={3},notDecay={4},dir={5},vel={6}",
Prim.LocalID, origDir, origVel, addAmount, keepfraction, m_linearMotorDirection, m_lastLinearVelocityVector);
}
else
{
// if what remains of direction is very small, zero it.
m_linearMotorDirection = Vector3.Zero;
m_lastLinearVelocityVector = Vector3.Zero;
VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID);
}
// convert requested object velocity to object relative vector
Quaternion rotq = Prim.Orientation;
m_newVelocity = m_lastLinearVelocityVector * rotq;
// Add the various forces into m_dir which will be our new direction vector (velocity)
// add Gravity and Buoyancy
// There is some gravity, make a gravity force vector that is applied after object velocity.
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
Vector3 grav = Prim.PhysicsScene.DefaultGravity * (Prim.Mass * (1f - m_VehicleBuoyancy));
/*
* RA: Not sure why one would do this
// Preserve the current Z velocity
Vector3 vel_now = m_prim.Velocity;
m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
*/
Vector3 pos = Prim.Position;
// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f);
// If below the terrain, move us above the ground a little.
float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
// Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset.
// Need to add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass.
// Vector3 rotatedSize = m_prim.Size * m_prim.Orientation;
// if (rotatedSize.Z < terrainHeight)
if (pos.Z < terrainHeight)
{
pos.Z = terrainHeight + 2;
Prim.Position = pos;
VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos);
}
// Check if hovering
if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
{
// We should hover, get the target height
if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
{
m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight;
}
if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
{
m_VhoverTargetHeight = terrainHeight + m_VhoverHeight;
}
if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
{
m_VhoverTargetHeight = m_VhoverHeight;
}
if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
{
// If body is aready heigher, use its height as target height
if (pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
}
if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
{
if ((pos.Z - m_VhoverTargetHeight) > .2 || (pos.Z - m_VhoverTargetHeight) < -.2)
{
Prim.Position = pos;
}
}
else
{
float herr0 = pos.Z - m_VhoverTargetHeight;
// Replace Vertical speed with correction figure if significant
if (Math.Abs(herr0) > 0.01f)
{
m_newVelocity.Z = -((herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
//KF: m_VhoverEfficiency is not yet implemented
}
else
{
m_newVelocity.Z = 0f;
}
}
VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", Prim.LocalID, pos, m_newVelocity, m_VhoverHeight, m_VhoverTargetHeight);
}
Vector3 posChange = pos - m_lastPositionVector;
if (m_BlockingEndPoint != Vector3.Zero)
{
bool changed = false;
if (pos.X >= (m_BlockingEndPoint.X - (float)1))
{
pos.X -= posChange.X + 1;
changed = true;
}
if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
{
pos.Y -= posChange.Y + 1;
changed = true;
}
if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
{
pos.Z -= posChange.Z + 1;
changed = true;
}
if (pos.X <= 0)
{
pos.X += posChange.X + 1;
changed = true;
}
if (pos.Y <= 0)
{
pos.Y += posChange.Y + 1;
changed = true;
}
if (changed)
{
Prim.Position = pos;
VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
Prim.LocalID, m_BlockingEndPoint, posChange, pos);
}
}
float Zchange = Math.Abs(posChange.Z);
if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
{
if (Zchange > .3)
grav.Z = (float)(grav.Z * 3);
if (Zchange > .15)
grav.Z = (float)(grav.Z * 2);
if (Zchange > .75)
grav.Z = (float)(grav.Z * 1.5);
if (Zchange > .05)
grav.Z = (float)(grav.Z * 1.25);
if (Zchange > .025)
grav.Z = (float)(grav.Z * 1.125);
float postemp = (pos.Z - terrainHeight);
if (postemp > 2.5f)
grav.Z = (float)(grav.Z * 1.037125);
VDetailLog("{0},MoveLinear,limitMotorUp,grav={1}", Prim.LocalID, grav);
}
if ((m_flags & (VehicleFlag.NO_X)) != 0)
m_newVelocity.X = 0;
if ((m_flags & (VehicleFlag.NO_Y)) != 0)
m_newVelocity.Y = 0;
if ((m_flags & (VehicleFlag.NO_Z)) != 0)
m_newVelocity.Z = 0;
// Apply velocity
Prim.Velocity = m_newVelocity;
// apply gravity force
// Why is this set here? The physics engine already does gravity.
// m_prim.AddForce(grav, false);
// Apply friction
Vector3 keepFraction = Vector3.One - (Vector3.One / (m_linearFrictionTimescale / pTimestep));
m_lastLinearVelocityVector *= keepFraction;
VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},grav={4},1Mdecay={5}",
Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, grav, keepFraction);
} // end MoveLinear()
// Apply the effect of the angular motor.
private void MoveAngular(float pTimestep)
{
// m_angularMotorDirection // angular velocity requested by LSL motor
// m_angularMotorApply // application frame counter
// m_angularMotorVelocity // current angular motor velocity (ramps up and down)
// m_angularMotorTimescale // motor angular velocity ramp up rate
// m_angularMotorDecayTimescale // motor angular velocity decay rate
// m_angularFrictionTimescale // body angular velocity decay rate
// m_lastAngularVelocity // what was last applied to body
// Get what the body is doing, this includes 'external' influences
Vector3 angularVelocity = Prim.RotationalVelocity;
if (m_angularMotorApply > 0)
{
// Rather than snapping the angular motor velocity from the old value to
// a newly set velocity, this routine steps the value from the previous
// value (m_angularMotorVelocity) to the requested value (m_angularMotorDirection).
// There are m_angularMotorApply steps.
Vector3 origAngularVelocity = m_angularMotorVelocity;
// ramp up to new value
// current velocity += error / ( time to get there / step interval)
// requested speed - last motor speed
m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep);
m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep);
m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep);
VDetailLog("{0},MoveAngular,angularMotorApply,apply={1},angTScale={2},timeStep={3},origvel={4},dir={5},vel={6}",
Prim.LocalID, m_angularMotorApply, m_angularMotorTimescale, pTimestep, origAngularVelocity, m_angularMotorDirection, m_angularMotorVelocity);
// This is done so that if script request rate is less than phys frame rate the expected
// velocity may still be acheived.
m_angularMotorApply--;
}
else
{
// No motor recently applied, keep the body velocity
// and decay the velocity
m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep);
if (m_angularMotorVelocity.LengthSquared() < 0.00001)
m_angularMotorVelocity = Vector3.Zero;
} // end motor section
// Vertical attractor section
Vector3 vertattr = Vector3.Zero;
if (m_verticalAttractionTimescale < 300)
{
float VAservo = 0.2f / (m_verticalAttractionTimescale / pTimestep);
// get present body rotation
Quaternion rotq = Prim.Orientation;
// make a vector pointing up
Vector3 verterr = Vector3.Zero;
verterr.Z = 1.0f;
// rotate it to Body Angle
verterr = verterr * rotq;
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
if (verterr.Z < 0.0f)
{
verterr.X = 2.0f - verterr.X;
verterr.Y = 2.0f - verterr.Y;
}
// Error is 0 (no error) to +/- 2 (max error)
// scale it by VAservo
verterr = verterr * VAservo;
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
vertattr.X = verterr.Y;
vertattr.Y = - verterr.X;
vertattr.Z = 0f;
// scaling appears better usingsquare-law
float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
vertattr.X += bounce * angularVelocity.X;
vertattr.Y += bounce * angularVelocity.Y;
VDetailLog("{0},MoveAngular,verticalAttraction,verterr={1},bounce={2},vertattr={3}",
Prim.LocalID, verterr, bounce, vertattr);
} // else vertical attractor is off
// m_lastVertAttractor = vertattr;
// Bank section tba
// Deflection section tba
// Sum velocities
m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection
if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
{
m_lastAngularVelocity.X = 0;
m_lastAngularVelocity.Y = 0;
VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity);
}
if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
{
m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
VDetailLog("{0},MoveAngular,zeroSmallValues,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity);
}
// apply friction
Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;
// Apply to the body
Prim.RotationalVelocity = m_lastAngularVelocity;
VDetailLog("{0},MoveAngular,done,decay={1},lastAngular={2}", Prim.LocalID, decayamount, m_lastAngularVelocity);
} //end MoveAngular
internal void LimitRotation(float timestep)
{
Quaternion rotq = Prim.Orientation;
Quaternion m_rot = rotq;
bool changed = false;
if (m_RollreferenceFrame != Quaternion.Identity)
{
if (rotq.X >= m_RollreferenceFrame.X)
{
m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
changed = true;
}
if (rotq.Y >= m_RollreferenceFrame.Y)
{
m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
changed = true;
}
if (rotq.X <= -m_RollreferenceFrame.X)
{
m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
changed = true;
}
if (rotq.Y <= -m_RollreferenceFrame.Y)
{
m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
changed = true;
}
changed = true;
}
if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
{
m_rot.X = 0;
m_rot.Y = 0;
changed = true;
}
if (changed)
{
Prim.Orientation = m_rot;
VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot);
}
}
// Invoke the detailed logger and output something if it's enabled.
private void VDetailLog(string msg, params Object[] args)
{
if (Prim.PhysicsScene.VehicleLoggingEnabled)
Prim.PhysicsScene.PhysicsLogging.Write(msg, args);
}
}
}
|