1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
|
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Net;
using System.Threading;
using log4net;
using OpenSim.Framework;
using OpenSim.Framework.Monitoring;
using OpenMetaverse;
using OpenMetaverse.Packets;
using TokenBucket = OpenSim.Region.ClientStack.LindenUDP.TokenBucket;
namespace OpenSim.Region.ClientStack.LindenUDP
{
#region Delegates
/// <summary>
/// Fired when updated networking stats are produced for this client
/// </summary>
/// <param name="inPackets">Number of incoming packets received since this
/// event was last fired</param>
/// <param name="outPackets">Number of outgoing packets sent since this
/// event was last fired</param>
/// <param name="unAckedBytes">Current total number of bytes in packets we
/// are waiting on ACKs for</param>
public delegate void PacketStats(int inPackets, int outPackets, int unAckedBytes);
/// <summary>
/// Fired when the queue for one or more packet categories is empty. This
/// event can be hooked to put more data on the empty queues
/// </summary>
/// <param name="category">Categories of the packet queues that are empty</param>
public delegate void QueueEmpty(ThrottleOutPacketTypeFlags categories);
#endregion Delegates
/// <summary>
/// Tracks state for a client UDP connection and provides client-specific methods
/// </summary>
public sealed class LLUDPClient
{
// TODO: Make this a config setting
/// <summary>Percentage of the task throttle category that is allocated to avatar and prim
/// state updates</summary>
const float STATE_TASK_PERCENTAGE = 0.8f;
private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
/// <summary>The number of packet categories to throttle on. If a throttle category is added
/// or removed, this number must also change</summary>
const int THROTTLE_CATEGORY_COUNT = 8;
/// <summary>Fired when updated networking stats are produced for this client</summary>
public event PacketStats OnPacketStats;
/// <summary>Fired when the queue for a packet category is empty. This event can be
/// hooked to put more data on the empty queue</summary>
public event QueueEmpty OnQueueEmpty;
public event Func<ThrottleOutPacketTypeFlags, bool> HasUpdates;
/// <summary>AgentID for this client</summary>
public readonly UUID AgentID;
/// <summary>The remote address of the connected client</summary>
public readonly IPEndPoint RemoteEndPoint;
/// <summary>Circuit code that this client is connected on</summary>
public readonly uint CircuitCode;
/// <summary>Sequence numbers of packets we've received (for duplicate checking)</summary>
public readonly IncomingPacketHistoryCollection PacketArchive = new IncomingPacketHistoryCollection(200);
/// <summary>Packets we have sent that need to be ACKed by the client</summary>
public readonly UnackedPacketCollection NeedAcks = new UnackedPacketCollection();
/// <summary>ACKs that are queued up, waiting to be sent to the client</summary>
public readonly DoubleLocklessQueue<uint> PendingAcks = new DoubleLocklessQueue<uint>();
/// <summary>Current packet sequence number</summary>
public int CurrentSequence;
/// <summary>Current ping sequence number</summary>
public byte CurrentPingSequence;
/// <summary>True when this connection is alive, otherwise false</summary>
public bool IsConnected = true;
/// <summary>True when this connection is paused, otherwise false</summary>
public bool IsPaused;
/// <summary>Environment.TickCount when the last packet was received for this client</summary>
public int TickLastPacketReceived;
/// <summary>Smoothed round-trip time. A smoothed average of the round-trip time for sending a
/// reliable packet to the client and receiving an ACK</summary>
public float SRTT;
/// <summary>Round-trip time variance. Measures the consistency of round-trip times</summary>
public float RTTVAR;
/// <summary>Retransmission timeout. Packets that have not been acknowledged in this number of
/// milliseconds or longer will be resent</summary>
/// <remarks>Calculated from <seealso cref="SRTT"/> and <seealso cref="RTTVAR"/> using the
/// guidelines in RFC 2988</remarks>
public int RTO;
/// <summary>Number of bytes received since the last acknowledgement was sent out. This is used
/// to loosely follow the TCP delayed ACK algorithm in RFC 1122 (4.2.3.2)</summary>
public int BytesSinceLastACK;
/// <summary>Number of packets received from this client</summary>
public int PacketsReceived;
/// <summary>Number of packets sent to this client</summary>
public int PacketsSent;
/// <summary>Number of packets resent to this client</summary>
public int PacketsResent;
/// <summary>Total byte count of unacked packets sent to this client</summary>
public int UnackedBytes;
/// <summary>Total number of received packets that we have reported to the OnPacketStats event(s)</summary>
private int m_packetsReceivedReported;
/// <summary>Total number of sent packets that we have reported to the OnPacketStats event(s)</summary>
private int m_packetsSentReported;
/// <summary>Holds the Environment.TickCount value of when the next OnQueueEmpty can be fired</summary>
private int m_nextOnQueueEmpty = 1;
/// <summary>Throttle bucket for this agent's connection</summary>
private readonly AdaptiveTokenBucket m_throttleClient;
public AdaptiveTokenBucket FlowThrottle
{
get { return m_throttleClient; }
}
/// <summary>Throttle bucket for this agent's connection</summary>
private readonly TokenBucket m_throttleCategory;
/// <summary>Throttle buckets for each packet category</summary>
private readonly TokenBucket[] m_throttleCategories;
/// <summary>Outgoing queues for throttled packets</summary>
private readonly DoubleLocklessQueue<OutgoingPacket>[] m_packetOutboxes = new DoubleLocklessQueue<OutgoingPacket>[THROTTLE_CATEGORY_COUNT];
/// <summary>A container that can hold one packet for each outbox, used to store
/// dequeued packets that are being held for throttling</summary>
private readonly OutgoingPacket[] m_nextPackets = new OutgoingPacket[THROTTLE_CATEGORY_COUNT];
/// <summary>A reference to the LLUDPServer that is managing this client</summary>
private readonly LLUDPServer m_udpServer;
/// <summary>Caches packed throttle information</summary>
private byte[] m_packedThrottles;
private int m_defaultRTO = 1000; // 1sec is the recommendation in the RFC
private int m_maxRTO = 60000;
public bool m_deliverPackets = true;
public int m_lastStartpingTimeMS;
public int m_pingMS;
public int PingTimeMS
{
get
{
if (m_pingMS < 10)
return 10;
if(m_pingMS > 2000)
return 2000;
return m_pingMS;
}
}
/// <summary>
/// This is the percentage of the udp texture queue to add to the task queue since
/// textures are now generally handled through http.
/// </summary>
private double m_cannibalrate = 0.0;
private ClientInfo m_info = new ClientInfo();
/// <summary>
/// Default constructor
/// </summary>
/// <param name="server">Reference to the UDP server this client is connected to</param>
/// <param name="rates">Default throttling rates and maximum throttle limits</param>
/// <param name="parentThrottle">Parent HTB (hierarchical token bucket)
/// that the child throttles will be governed by</param>
/// <param name="circuitCode">Circuit code for this connection</param>
/// <param name="agentID">AgentID for the connected agent</param>
/// <param name="remoteEndPoint">Remote endpoint for this connection</param>
/// <param name="defaultRTO">
/// Default retransmission timeout for unacked packets. The RTO will never drop
/// beyond this number.
/// </param>
/// <param name="maxRTO">
/// The maximum retransmission timeout for unacked packets. The RTO will never exceed this number.
/// </param>
public LLUDPClient(
LLUDPServer server, ThrottleRates rates, TokenBucket parentThrottle, uint circuitCode, UUID agentID,
IPEndPoint remoteEndPoint, int defaultRTO, int maxRTO)
{
AgentID = agentID;
RemoteEndPoint = remoteEndPoint;
CircuitCode = circuitCode;
m_udpServer = server;
if (defaultRTO != 0)
m_defaultRTO = defaultRTO;
if (maxRTO != 0)
m_maxRTO = maxRTO;
// Create a token bucket throttle for this client that has the scene token bucket as a parent
m_throttleClient = new AdaptiveTokenBucket(parentThrottle, rates.Total, rates.AdaptiveThrottlesEnabled);
// Create a token bucket throttle for the total categary with the client bucket as a throttle
m_throttleCategory = new TokenBucket(m_throttleClient, 0);
// Create an array of token buckets for this clients different throttle categories
m_throttleCategories = new TokenBucket[THROTTLE_CATEGORY_COUNT];
m_cannibalrate = rates.CannibalizeTextureRate;
long totalrate = 0;
long catrate = 0;
for (int i = 0; i < THROTTLE_CATEGORY_COUNT; i++)
{
ThrottleOutPacketType type = (ThrottleOutPacketType)i;
// Initialize the packet outboxes, where packets sit while they are waiting for tokens
m_packetOutboxes[i] = new DoubleLocklessQueue<OutgoingPacket>();
// Initialize the token buckets that control the throttling for each category
catrate = rates.GetRate(type);
totalrate += catrate;
m_throttleCategories[i] = new TokenBucket(m_throttleCategory, catrate);
}
m_throttleCategory.RequestedDripRate = totalrate;
// Default the retransmission timeout to one second
RTO = m_defaultRTO;
// Initialize this to a sane value to prevent early disconnects
TickLastPacketReceived = Environment.TickCount & Int32.MaxValue;
m_pingMS = (int)(3.0 * server.TickCountResolution); // so filter doesnt start at 0;
}
/// <summary>
/// Shuts down this client connection
/// </summary>
public void Shutdown()
{
IsConnected = false;
for (int i = 0; i < THROTTLE_CATEGORY_COUNT; i++)
{
m_packetOutboxes[i].Clear();
m_nextPackets[i] = null;
}
// pull the throttle out of the scene throttle
m_throttleClient.Parent.UnregisterRequest(m_throttleClient);
OnPacketStats = null;
OnQueueEmpty = null;
}
/// <summary>
/// Gets information about this client connection
/// </summary>
/// <returns>Information about the client connection</returns>
public ClientInfo GetClientInfo()
{
// TODO: This data structure is wrong in so many ways. Locking and copying the entire lists
// of pending and needed ACKs for every client every time some method wants information about
// this connection is a recipe for poor performance
m_info.resendThrottle = (int)m_throttleCategories[(int)ThrottleOutPacketType.Resend].DripRate;
m_info.landThrottle = (int)m_throttleCategories[(int)ThrottleOutPacketType.Land].DripRate;
m_info.windThrottle = (int)m_throttleCategories[(int)ThrottleOutPacketType.Wind].DripRate;
m_info.cloudThrottle = (int)m_throttleCategories[(int)ThrottleOutPacketType.Cloud].DripRate;
m_info.taskThrottle = (int)m_throttleCategories[(int)ThrottleOutPacketType.Task].DripRate;
m_info.assetThrottle = (int)m_throttleCategories[(int)ThrottleOutPacketType.Asset].DripRate;
m_info.textureThrottle = (int)m_throttleCategories[(int)ThrottleOutPacketType.Texture].DripRate;
m_info.totalThrottle = (int)m_throttleCategory.DripRate;
return m_info;
}
/// <summary>
/// Modifies the UDP throttles
/// </summary>
/// <param name="info">New throttling values</param>
public void SetClientInfo(ClientInfo info)
{
// TODO: Allowing throttles to be manually set from this function seems like a reasonable
// idea. On the other hand, letting external code manipulate our ACK accounting is not
// going to happen
throw new NotImplementedException();
}
/// <summary>
/// Return statistics information about client packet queues.
/// </summary>
/// <remarks>
/// FIXME: This should really be done in a more sensible manner rather than sending back a formatted string.
/// </remarks>
/// <returns></returns>
public string GetStats()
{
return string.Format(
"{0,7} {1,7} {2,7} {3,9} {4,7} {5,7} {6,7} {7,7} {8,7} {9,8} {10,7} {11,7}",
Util.EnvironmentTickCountSubtract(TickLastPacketReceived),
PacketsReceived,
PacketsSent,
PacketsResent,
UnackedBytes,
m_packetOutboxes[(int)ThrottleOutPacketType.Resend].Count,
m_packetOutboxes[(int)ThrottleOutPacketType.Land].Count,
m_packetOutboxes[(int)ThrottleOutPacketType.Wind].Count,
m_packetOutboxes[(int)ThrottleOutPacketType.Cloud].Count,
m_packetOutboxes[(int)ThrottleOutPacketType.Task].Count,
m_packetOutboxes[(int)ThrottleOutPacketType.Texture].Count,
m_packetOutboxes[(int)ThrottleOutPacketType.Asset].Count);
}
public void SendPacketStats()
{
PacketStats callback = OnPacketStats;
if (callback != null)
{
int newPacketsReceived = PacketsReceived - m_packetsReceivedReported;
int newPacketsSent = PacketsSent - m_packetsSentReported;
callback(newPacketsReceived, newPacketsSent, UnackedBytes);
m_packetsReceivedReported += newPacketsReceived;
m_packetsSentReported += newPacketsSent;
}
}
public void SetThrottles(byte[] throttleData)
{
byte[] adjData;
int pos = 0;
if (!BitConverter.IsLittleEndian)
{
byte[] newData = new byte[7 * 4];
Buffer.BlockCopy(throttleData, 0, newData, 0, 7 * 4);
for (int i = 0; i < 7; i++)
Array.Reverse(newData, i * 4, 4);
adjData = newData;
}
else
{
adjData = throttleData;
}
// 0.125f converts from bits to bytes
int resend = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int land = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int wind = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int cloud = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int task = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int texture = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int asset = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f);
// Make sure none of the throttles are set below our packet MTU,
// otherwise a throttle could become permanently clogged
resend = Math.Max(resend, LLUDPServer.MTU);
land = Math.Max(land, LLUDPServer.MTU);
wind = Math.Max(wind, LLUDPServer.MTU);
cloud = Math.Max(cloud, LLUDPServer.MTU);
task = Math.Max(task, LLUDPServer.MTU);
texture = Math.Max(texture, LLUDPServer.MTU);
asset = Math.Max(asset, LLUDPServer.MTU);
// Since most textures are now delivered through http, make it possible
// to cannibalize some of the bw from the texture throttle to use for
// the task queue (e.g. object updates)
task = task + (int)(m_cannibalrate * texture);
texture = (int)((1 - m_cannibalrate) * texture);
int total = resend + land + wind + cloud + task + texture + asset;
//m_log.DebugFormat("[LLUDPCLIENT]: {0} is setting throttles. Resend={1}, Land={2}, Wind={3}, Cloud={4}, Task={5}, Texture={6}, Asset={7}, Total={8}",
// AgentID, resend, land, wind, cloud, task, texture, asset, total);
// Update the token buckets with new throttle values
TokenBucket bucket;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Resend];
bucket.RequestedDripRate = resend;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Land];
bucket.RequestedDripRate = land;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Wind];
bucket.RequestedDripRate = wind;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Cloud];
bucket.RequestedDripRate = cloud;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Asset];
bucket.RequestedDripRate = asset;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Task];
bucket.RequestedDripRate = task;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Texture];
bucket.RequestedDripRate = texture;
m_throttleCategory.RequestedDripRate = total;
// Reset the packed throttles cached data
m_packedThrottles = null;
}
public byte[] GetThrottlesPacked(float multiplier)
{
byte[] data = m_packedThrottles;
if (data == null)
{
float rate;
data = new byte[7 * 4];
int i = 0;
// multiply by 8 to convert bytes back to bits
multiplier *= 8;
rate = (float)m_throttleCategories[(int)ThrottleOutPacketType.Resend].RequestedDripRate * multiplier;
Buffer.BlockCopy(Utils.FloatToBytes(rate), 0, data, i, 4); i += 4;
rate = (float)m_throttleCategories[(int)ThrottleOutPacketType.Land].RequestedDripRate * multiplier;
Buffer.BlockCopy(Utils.FloatToBytes(rate), 0, data, i, 4); i += 4;
rate = (float)m_throttleCategories[(int)ThrottleOutPacketType.Wind].RequestedDripRate * multiplier;
Buffer.BlockCopy(Utils.FloatToBytes(rate), 0, data, i, 4); i += 4;
rate = (float)m_throttleCategories[(int)ThrottleOutPacketType.Cloud].RequestedDripRate * multiplier;
Buffer.BlockCopy(Utils.FloatToBytes(rate), 0, data, i, 4); i += 4;
rate = (float)m_throttleCategories[(int)ThrottleOutPacketType.Task].RequestedDripRate * multiplier;
Buffer.BlockCopy(Utils.FloatToBytes(rate), 0, data, i, 4); i += 4;
rate = (float)m_throttleCategories[(int)ThrottleOutPacketType.Texture].RequestedDripRate * multiplier;
Buffer.BlockCopy(Utils.FloatToBytes(rate), 0, data, i, 4); i += 4;
rate = (float)m_throttleCategories[(int)ThrottleOutPacketType.Asset].RequestedDripRate * multiplier;
Buffer.BlockCopy(Utils.FloatToBytes(rate), 0, data, i, 4); i += 4;
m_packedThrottles = data;
}
return data;
}
public int GetCatBytesCanSend(ThrottleOutPacketType cat, int timeMS)
{
TokenBucket bucket = m_throttleCategories[(int)cat];
int bytes = timeMS * (int)(bucket.RequestedDripRate / 1000);
bytes += (int)bucket.CurrentTokenCount();
return bytes;
}
/// <summary>
/// Queue an outgoing packet if appropriate.
/// </summary>
/// <param name="packet"></param>
/// <param name="forceQueue">Always queue the packet if at all possible.</param>
/// <returns>
/// true if the packet has been queued,
/// false if the packet has not been queued and should be sent immediately.
/// </returns>
public bool EnqueueOutgoing(OutgoingPacket packet, bool forceQueue)
{
return EnqueueOutgoing(packet, forceQueue, false);
}
public bool EnqueueOutgoing(OutgoingPacket packet, bool forceQueue, bool highPriority)
{
int category = (int)packet.Category;
if (category >= 0 && category < m_packetOutboxes.Length)
{
DoubleLocklessQueue<OutgoingPacket> queue = m_packetOutboxes[category];
if (m_deliverPackets == false)
{
queue.Enqueue(packet, highPriority);
return true;
}
TokenBucket bucket = m_throttleCategories[category];
// Don't send this packet if queue is not empty
if (queue.Count > 0 || m_nextPackets[category] != null)
{
queue.Enqueue(packet, highPriority);
return true;
}
if (!forceQueue && bucket.RemoveTokens(packet.Buffer.DataLength))
{
// enough tokens so it can be sent imediatly by caller
return false;
}
else
{
// Force queue specified or not enough tokens in the bucket, queue this packet
queue.Enqueue(packet, highPriority);
return true;
}
}
else
{
// We don't have a token bucket for this category, so it will not be queued
return false;
}
}
/// <summary>
/// Loops through all of the packet queues for this client and tries to send
/// an outgoing packet from each, obeying the throttling bucket limits
/// </summary>
///
/// <remarks>
/// Packet queues are inspected in ascending numerical order starting from 0. Therefore, queues with a lower
/// ThrottleOutPacketType number will see their packet get sent first (e.g. if both Land and Wind queues have
/// packets, then the packet at the front of the Land queue will be sent before the packet at the front of the
/// wind queue).
///
/// This function is only called from a synchronous loop in the
/// UDPServer so we don't need to bother making this thread safe
/// </remarks>
///
/// <returns>True if any packets were sent, otherwise false</returns>
public bool DequeueOutgoing()
{
// if (m_deliverPackets == false) return false;
OutgoingPacket packet = null;
DoubleLocklessQueue<OutgoingPacket> queue;
TokenBucket bucket;
bool packetSent = false;
ThrottleOutPacketTypeFlags emptyCategories = 0;
//string queueDebugOutput = String.Empty; // Serious debug business
for (int i = 0; i < THROTTLE_CATEGORY_COUNT; i++)
{
bucket = m_throttleCategories[i];
//queueDebugOutput += m_packetOutboxes[i].Count + " "; // Serious debug business
if (m_nextPackets[i] != null)
{
// This bucket was empty the last time we tried to send a packet,
// leaving a dequeued packet still waiting to be sent out. Try to
// send it again
OutgoingPacket nextPacket = m_nextPackets[i];
if (bucket.RemoveTokens(nextPacket.Buffer.DataLength))
{
// Send the packet
m_udpServer.SendPacketFinal(nextPacket);
m_nextPackets[i] = null;
packetSent = true;
}
}
else
{
// No dequeued packet waiting to be sent, try to pull one off
// this queue
queue = m_packetOutboxes[i];
if (queue != null)
{
bool success = false;
try
{
success = queue.Dequeue(out packet);
}
catch
{
m_packetOutboxes[i] = new DoubleLocklessQueue<OutgoingPacket>();
}
if (success)
{
// A packet was pulled off the queue. See if we have
// enough tokens in the bucket to send it out
if (bucket.RemoveTokens(packet.Buffer.DataLength))
{
// Send the packet
m_udpServer.SendPacketFinal(packet);
packetSent = true;
}
else
{
// Save the dequeued packet for the next iteration
m_nextPackets[i] = packet;
}
// If the queue is empty after this dequeue, fire the queue
// empty callback now so it has a chance to fill before we
// get back here
if (queue.Count == 0)
emptyCategories |= CategoryToFlag(i);
}
else
{
// No packets in this queue. Fire the queue empty callback
// if it has not been called recently
emptyCategories |= CategoryToFlag(i);
}
}
else
{
m_packetOutboxes[i] = new DoubleLocklessQueue<OutgoingPacket>();
emptyCategories |= CategoryToFlag(i);
}
}
}
if (emptyCategories != 0)
BeginFireQueueEmpty(emptyCategories);
//m_log.Info("[LLUDPCLIENT]: Queues: " + queueDebugOutput); // Serious debug business
return packetSent;
}
/// <summary>
/// Called when an ACK packet is received and a round-trip time for a
/// packet is calculated. This is used to calculate the smoothed
/// round-trip time, round trip time variance, and finally the
/// retransmission timeout
/// </summary>
/// <param name="r">Round-trip time of a single packet and its
/// acknowledgement</param>
public void UpdateRoundTrip(float r)
{
const float ALPHA = 0.125f;
const float BETA = 0.25f;
const float K = 4.0f;
if (RTTVAR == 0.0f)
{
// First RTT measurement
SRTT = r;
RTTVAR = r * 0.5f;
}
else
{
// Subsequence RTT measurement
RTTVAR = (1.0f - BETA) * RTTVAR + BETA * Math.Abs(SRTT - r);
SRTT = (1.0f - ALPHA) * SRTT + ALPHA * r;
}
int rto = (int)(SRTT + Math.Max(m_udpServer.TickCountResolution, K * RTTVAR));
// Clamp the retransmission timeout to manageable values
rto = Utils.Clamp(rto, m_defaultRTO, m_maxRTO);
RTO = rto;
//if (RTO != rto)
// m_log.Debug("[LLUDPCLIENT]: Setting RTO to " + RTO + "ms from " + rto + "ms with an RTTVAR of " +
//RTTVAR + " based on new RTT of " + r + "ms");
}
/// <summary>
/// Exponential backoff of the retransmission timeout, per section 5.5
/// of RFC 2988
/// </summary>
public void BackoffRTO()
{
// Reset SRTT and RTTVAR, we assume they are bogus since things
// didn't work out and we're backing off the timeout
SRTT = 0.0f;
RTTVAR = 0.0f;
// Double the retransmission timeout
RTO = Math.Min(RTO * 2, m_maxRTO);
}
const int MIN_CALLBACK_MS = 30;
/// <summary>
/// Does an early check to see if this queue empty callback is already
/// running, then asynchronously firing the event
/// </summary>
/// <param name="categories">Throttle categories to fire the callback for</param>
private void BeginFireQueueEmpty(ThrottleOutPacketTypeFlags categories)
{
if (!m_isQueueEmptyRunning)
{
int start = Environment.TickCount & Int32.MaxValue;
if (start < m_nextOnQueueEmpty)
return;
m_isQueueEmptyRunning = true;
m_nextOnQueueEmpty = start + MIN_CALLBACK_MS;
if (m_nextOnQueueEmpty == 0)
m_nextOnQueueEmpty = 1;
if (HasUpdates(categories))
{
// Asynchronously run the callback
Util.FireAndForget(FireQueueEmpty, categories);
}
else
{
m_isQueueEmptyRunning = false;
}
}
}
private bool m_isQueueEmptyRunning;
/// <summary>
/// Fires the OnQueueEmpty callback and sets the minimum time that it
/// can be called again
/// </summary>
/// <param name="o">Throttle categories to fire the callback for,
/// stored as an object to match the WaitCallback delegate
/// signature</param>
private void FireQueueEmpty(object o)
{
ThrottleOutPacketTypeFlags categories = (ThrottleOutPacketTypeFlags)o;
QueueEmpty callback = OnQueueEmpty;
if (callback != null)
{
// if (m_udpServer.IsRunningOutbound)
// {
try { callback(categories); }
catch (Exception e) { m_log.Error("[LLUDPCLIENT]: OnQueueEmpty(" + categories + ") threw an exception: " + e.Message, e); }
// }
}
m_isQueueEmptyRunning = false;
}
internal void ForceThrottleSetting(int throttle, int setting)
{
if (throttle > 0 && throttle < THROTTLE_CATEGORY_COUNT)
m_throttleCategories[throttle].RequestedDripRate = Math.Max(setting, LLUDPServer.MTU);
}
internal int GetThrottleSetting(int throttle)
{
if (throttle > 0 && throttle < THROTTLE_CATEGORY_COUNT)
return (int)m_throttleCategories[throttle].RequestedDripRate;
else
return 0;
}
/// <summary>
/// Converts a <seealso cref="ThrottleOutPacketType"/> integer to a
/// flag value
/// </summary>
/// <param name="i">Throttle category to convert</param>
/// <returns>Flag representation of the throttle category</returns>
private static ThrottleOutPacketTypeFlags CategoryToFlag(int i)
{
ThrottleOutPacketType category = (ThrottleOutPacketType)i;
/*
* Land = 1,
/// <summary>Wind data</summary>
Wind = 2,
/// <summary>Cloud data</summary>
Cloud = 3,
/// <summary>Any packets that do not fit into the other throttles</summary>
Task = 4,
/// <summary>Texture assets</summary>
Texture = 5,
/// <summary>Non-texture assets</summary>
Asset = 6,
*/
switch (category)
{
case ThrottleOutPacketType.Land:
return ThrottleOutPacketTypeFlags.Land;
case ThrottleOutPacketType.Wind:
return ThrottleOutPacketTypeFlags.Wind;
case ThrottleOutPacketType.Cloud:
return ThrottleOutPacketTypeFlags.Cloud;
case ThrottleOutPacketType.Task:
return ThrottleOutPacketTypeFlags.Task;
case ThrottleOutPacketType.Texture:
return ThrottleOutPacketTypeFlags.Texture;
case ThrottleOutPacketType.Asset:
return ThrottleOutPacketTypeFlags.Asset;
default:
return 0;
}
}
}
public class DoubleLocklessQueue<T> : OpenSim.Framework.LocklessQueue<T>
{
OpenSim.Framework.LocklessQueue<T> highQueue = new OpenSim.Framework.LocklessQueue<T>();
public override int Count
{
get
{
return base.Count + highQueue.Count;
}
}
public override bool Dequeue(out T item)
{
if (highQueue.Dequeue(out item))
return true;
return base.Dequeue(out item);
}
public void Enqueue(T item, bool highPriority)
{
if (highPriority)
highQueue.Enqueue(item);
else
Enqueue(item);
}
}
}
|