1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
|
/*
* Copyright (c) Contributors, http://www.openmetaverse.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSim Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file includes content derived from Obviex.
* Copyright (C) 2002 Obviex(TM). All rights reserved.
* http://www.obviex.com/samples/Encryption.aspx
*/
using System;
using System.Collections.Generic;
using System.IO;
using System.Reflection;
using System.Security.Cryptography;
using System.Text;
using System.Xml.Serialization;
using log4net;
using OpenSim.Framework.Servers;
namespace OpenSim.Framework.Communications.Cache
{
public class CryptoGridAssetClient : AssetServerBase
{
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
private string _assetServerUrl;
private bool m_encryptOnUpload;
private RjinKeyfile m_encryptKey;
private readonly Dictionary<string,RjinKeyfile> m_keyfiles = new Dictionary<string, RjinKeyfile>();
#region IPlugin
public override string Name
{
get { return "Crypto"; }
}
public override string Version
{
get { return "1.0"; }
}
public override void Initialise(ConfigSettings p_set, string p_url, string p_dir, bool p_t)
{
m_log.Debug("[CRYPTOGRID] Plugin configured initialisation");
Initialise(p_url, p_dir, p_t);
}
#endregion
#region Keyfile Classes
[Serializable]
public class RjinKeyfile
{
public string Secret;
public string AlsoKnownAs;
public int Keysize;
public string IVBytes;
public string Description = "OpenSim Key";
private static string SHA1Hash(byte[] bytes)
{
SHA1 sha1 = SHA1CryptoServiceProvider.Create();
byte[] dataMd5 = sha1.ComputeHash(bytes);
StringBuilder sb = new StringBuilder();
for (int i = 0; i < dataMd5.Length; i++)
sb.AppendFormat("{0:x2}", dataMd5[i]);
return sb.ToString();
}
public void GenerateRandom()
{
RNGCryptoServiceProvider Gen = new RNGCryptoServiceProvider();
byte[] genSec = new byte[32];
byte[] genAKA = new byte[32];
byte[] genIV = new byte[32];
Gen.GetBytes(genSec);
Gen.GetBytes(genAKA);
Gen.GetBytes(genIV);
Secret = SHA1Hash(genSec);
AlsoKnownAs = SHA1Hash(genAKA);
IVBytes = SHA1Hash(genIV).Substring(0, 16);
Keysize = 256;
}
}
#endregion
#region Rjindael
/// <summary>
/// This class uses a symmetric key algorithm (Rijndael/AES) to encrypt and
/// decrypt data. As long as encryption and decryption routines use the same
/// parameters to generate the keys, the keys are guaranteed to be the same.
/// The class uses static functions with duplicate code to make it easier to
/// demonstrate encryption and decryption logic. In a real-life application,
/// this may not be the most efficient way of handling encryption, so - as
/// soon as you feel comfortable with it - you may want to redesign this class.
/// </summary>
public class UtilRijndael
{
/// <summary>
/// Encrypts specified plaintext using Rijndael symmetric key algorithm
/// and returns a base64-encoded result.
/// </summary>
/// <param name="plainText">
/// Plaintext value to be encrypted.
/// </param>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
/// </param>
/// <param name="saltValue">
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
/// </param>
/// <param name="hashAlgorithm">
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
/// </param>
/// <param name="passwordIterations">
/// Number of iterations used to generate password. One or two iterations
/// should be enough.
/// </param>
/// <param name="initVector">
/// Initialization vector (or IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long.
/// </param>
/// <param name="keySize">
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
/// </param>
/// <returns>
/// Encrypted value formatted as a base64-encoded string.
/// </returns>
public static byte[] Encrypt(byte[] plainText,
string passPhrase,
string saltValue,
string hashAlgorithm,
int passwordIterations,
string initVector,
int keySize)
{
// Convert strings into byte arrays.
// Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);
// Convert our plaintext into a byte array.
// Let us assume that plaintext contains UTF8-encoded characters.
byte[] plainTextBytes = plainText;
// First, we must create a password, from which the key will be derived.
// This password will be generated from the specified passphrase and
// salt value. The password will be created using the specified hash
// algorithm. Password creation can be done in several iterations.
PasswordDeriveBytes password = new PasswordDeriveBytes(
passPhrase,
saltValueBytes,
hashAlgorithm,
passwordIterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead
// of bits).
#pragma warning disable 0618
byte[] keyBytes = password.GetBytes(keySize / 8);
#pragma warning restore 0618
// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = new RijndaelManaged();
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;
// Generate encryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform encryptor = symmetricKey.CreateEncryptor(
keyBytes,
initVectorBytes);
// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = new MemoryStream();
// Define cryptographic stream (always use Write mode for encryption).
CryptoStream cryptoStream = new CryptoStream(memoryStream,
encryptor,
CryptoStreamMode.Write);
// Start encrypting.
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
// Finish encrypting.
cryptoStream.FlushFinalBlock();
// Convert our encrypted data from a memory stream into a byte array.
byte[] cipherTextBytes = memoryStream.ToArray();
// Close both streams.
memoryStream.Close();
cryptoStream.Close();
// Return encrypted string.
return cipherTextBytes;
}
/// <summary>
/// Decrypts specified ciphertext using Rijndael symmetric key algorithm.
/// </summary>
/// <param name="cipherText">
/// Base64-formatted ciphertext value.
/// </param>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
/// </param>
/// <param name="saltValue">
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
/// </param>
/// <param name="hashAlgorithm">
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
/// </param>
/// <param name="passwordIterations">
/// Number of iterations used to generate password. One or two iterations
/// should be enough.
/// </param>
/// <param name="initVector">
/// Initialization vector (or IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long.
/// </param>
/// <param name="keySize">
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
/// </param>
/// <returns>
/// Decrypted string value.
/// </returns>
/// <remarks>
/// Most of the logic in this function is similar to the Encrypt
/// logic. In order for decryption to work, all parameters of this function
/// - except cipherText value - must match the corresponding parameters of
/// the Encrypt function which was called to generate the
/// ciphertext.
/// </remarks>
public static byte[] Decrypt(byte[] cipherText,
string passPhrase,
string saltValue,
string hashAlgorithm,
int passwordIterations,
string initVector,
int keySize)
{
// Convert strings defining encryption key characteristics into byte
// arrays. Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);
// Convert our ciphertext into a byte array.
byte[] cipherTextBytes = cipherText;
// First, we must create a password, from which the key will be
// derived. This password will be generated from the specified
// passphrase and salt value. The password will be created using
// the specified hash algorithm. Password creation can be done in
// several iterations.
PasswordDeriveBytes password = new PasswordDeriveBytes(passPhrase,
saltValueBytes,
hashAlgorithm,
passwordIterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead
// of bits).
#pragma warning disable 0618
byte[] keyBytes = password.GetBytes(keySize / 8);
#pragma warning restore 0618
// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = new RijndaelManaged();
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;
// Generate decryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform decryptor = symmetricKey.CreateDecryptor(
keyBytes,
initVectorBytes);
// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = new MemoryStream(cipherTextBytes);
// Define cryptographic stream (always use Read mode for encryption).
CryptoStream cryptoStream = new CryptoStream(memoryStream,
decryptor,
CryptoStreamMode.Read);
// Since at this point we don't know what the size of decrypted data
// will be, allocate the buffer long enough to hold ciphertext;
// plaintext is never longer than ciphertext.
byte[] plainTextBytes = new byte[cipherTextBytes.Length];
// Start decrypting.
int decryptedByteCount = cryptoStream.Read(plainTextBytes,
0,
plainTextBytes.Length);
// Close both streams.
memoryStream.Close();
cryptoStream.Close();
byte[] plainText = new byte[decryptedByteCount];
int i;
for (i = 0; i < decryptedByteCount; i++)
plainText[i] = plainTextBytes[i];
// Return decrypted string.
return plainText;
}
}
#endregion
public CryptoGridAssetClient() {}
public CryptoGridAssetClient(string serverUrl, string keydir, bool decOnly)
{
m_log.Debug("[CRYPTOGRID] Direct constructor");
Initialise(serverUrl, keydir, decOnly);
}
public void Initialise(string serverUrl, string keydir, bool decOnly)
{
m_log.Debug("[CRYPTOGRID] Common constructor");
_assetServerUrl = serverUrl;
string[] keys = Directory.GetFiles(keydir, "*.deckey");
foreach (string key in keys)
{
XmlSerializer xs = new XmlSerializer(typeof (RjinKeyfile));
FileStream file = new FileStream(key, FileMode.Open, FileAccess.Read);
RjinKeyfile rjkey = (RjinKeyfile) xs.Deserialize(file);
file.Close();
m_keyfiles.Add(rjkey.AlsoKnownAs, rjkey);
}
keys = Directory.GetFiles(keydir, "*.enckey");
if (keys.Length == 1)
{
string Ekey = keys[0];
XmlSerializer Exs = new XmlSerializer(typeof (RjinKeyfile));
FileStream Efile = new FileStream(Ekey, FileMode.Open, FileAccess.Read);
RjinKeyfile Erjkey = (RjinKeyfile) Exs.Deserialize(Efile);
Efile.Close();
m_keyfiles.Add(Erjkey.AlsoKnownAs, Erjkey);
m_encryptKey = Erjkey;
} else
{
if (keys.Length > 1)
throw new Exception(
"You have more than one asset *encryption* key. (You should never have more than one)," +
"If you downloaded this key from someone, rename it to <filename>.deckey to convert it to" +
"a decryption-only key.");
m_log.Warn("No encryption key found, generating a new one for you...");
RjinKeyfile encKey = new RjinKeyfile();
encKey.GenerateRandom();
m_encryptKey = encKey;
FileStream encExportFile = new FileStream("mysecretkey_rename_me.enckey",FileMode.CreateNew);
XmlSerializer xs = new XmlSerializer(typeof(RjinKeyfile));
xs.Serialize(encExportFile, encKey);
encExportFile.Flush();
encExportFile.Close();
m_log.Info(
"Encryption file generated, please rename 'mysecretkey_rename_me.enckey' to something more appropriate (however preserve the file extension).");
}
// If Decrypt-Only, dont encrypt on upload
m_encryptOnUpload = !decOnly;
}
private static void EncryptAssetBase(AssetBase x, RjinKeyfile file)
{
// Make a salt
RNGCryptoServiceProvider RandomGen = new RNGCryptoServiceProvider();
byte[] rand = new byte[32];
RandomGen.GetBytes(rand);
string salt = Convert.ToBase64String(rand);
x.Data = UtilRijndael.Encrypt(x.Data, file.Secret, salt, "SHA1", 2, file.IVBytes, file.Keysize);
x.Metadata.Description = String.Format("ENCASS#:~:#{0}#:~:#{1}#:~:#{2}#:~:#{3}",
"OPENSIM_AES_AF1",
file.AlsoKnownAs,
salt,
x.Metadata.Description);
}
private bool DecryptAssetBase(AssetBase x)
{
// Check it's encrypted first.
if (!x.Metadata.Description.Contains("ENCASS"))
return true;
// ENCASS:ALG:AKA:SALT:Description
// 0 1 2 3 4
string[] splitchars = new string[1];
splitchars[0] = "#:~:#";
string[] meta = x.Metadata.Description.Split(splitchars, StringSplitOptions.None);
if (meta.Length < 5)
{
m_log.Warn("[ENCASSETS] Recieved Encrypted Asset, but header is corrupt");
return false;
}
// Check if we have a matching key
if (m_keyfiles.ContainsKey(meta[2]))
{
RjinKeyfile deckey = m_keyfiles[meta[2]];
x.Metadata.Description = meta[4];
switch (meta[1])
{
case "OPENSIM_AES_AF1":
x.Data = UtilRijndael.Decrypt(x.Data,
deckey.Secret,
meta[3],
"SHA1",
2,
deckey.IVBytes,
deckey.Keysize);
// Decrypted Successfully
return true;
default:
m_log.Warn(
"[ENCASSETS] Recieved Encrypted Asset, but we dont know how to decrypt '" + meta[1] + "'.");
// We dont understand this encryption scheme
return false;
}
}
m_log.Warn("[ENCASSETS] Recieved Encrypted Asset, but we do not have the decryption key.");
return false;
}
#region IAssetServer Members
protected override AssetBase GetAsset(AssetRequest req)
{
#if DEBUG
//m_log.DebugFormat("[GRID ASSET CLIENT]: Querying for {0}", req.AssetID.ToString());
#endif
RestClient rc = new RestClient(_assetServerUrl);
rc.AddResourcePath("assets");
rc.AddResourcePath(req.AssetID.ToString());
if (req.IsTexture)
rc.AddQueryParameter("texture");
rc.RequestMethod = "GET";
Stream s = rc.Request();
if (s == null)
return null;
if (s.Length > 0)
{
XmlSerializer xs = new XmlSerializer(typeof(AssetBase));
AssetBase encAsset = (AssetBase)xs.Deserialize(s);
// Try decrypt it
if (DecryptAssetBase(encAsset))
return encAsset;
}
return null;
}
public override void UpdateAsset(AssetBase asset)
{
throw new Exception("The method or operation is not implemented.");
}
public override void StoreAsset(AssetBase asset)
{
if (m_encryptOnUpload)
EncryptAssetBase(asset, m_encryptKey);
try
{
string assetUrl = _assetServerUrl + "/assets/";
m_log.InfoFormat("[CRYPTO GRID ASSET CLIENT]: Sending store request for asset {0}", asset.Metadata.FullID);
RestObjectPoster.BeginPostObject<AssetBase>(assetUrl, asset);
}
catch (Exception e)
{
m_log.ErrorFormat("[CRYPTO GRID ASSET CLIENT]: {0}", e);
}
}
public override void Close()
{
throw new Exception("The method or operation is not implemented.");
}
#endregion
}
}
|