/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ /* spaces */ #include #include #include #include #include "collision_kernel.h" #include "collision_space_internal.h" #ifdef _MSC_VER #pragma warning(disable:4291) // for VC++, no complaints about "no matching operator delete found" #endif //**************************************************************************** // make the geom dirty by setting the GEOM_DIRTY and GEOM_BAD_AABB flags // and moving it to the front of the space's list. all the parents of a // dirty geom also become dirty. void dGeomMoved (dxGeom *geom) { dAASSERT (geom); // if geom is offset, mark it as needing a calculate if (geom->offset_posr) { geom->gflags |= GEOM_POSR_BAD; } // from the bottom of the space heirarchy up, process all clean geoms // turning them into dirty geoms. dxSpace *parent = geom->parent_space; while (parent && (geom->gflags & GEOM_DIRTY)==0) { CHECK_NOT_LOCKED (parent); geom->gflags |= GEOM_DIRTY | GEOM_AABB_BAD; parent->dirty (geom); geom = parent; parent = parent->parent_space; } // all the remaining dirty geoms must have their AABB_BAD flags set, to // ensure that their AABBs get recomputed while (geom) { geom->gflags |= GEOM_DIRTY | GEOM_AABB_BAD; CHECK_NOT_LOCKED (geom->parent_space); geom = geom->parent_space; } } #define GEOM_ENABLED(g) ((g)->gflags & GEOM_ENABLED) //**************************************************************************** // dxSpace dxSpace::dxSpace (dSpaceID _space) : dxGeom (_space,0) { count = 0; first = 0; cleanup = 1; current_index = 0; current_geom = 0; lock_count = 0; } dxSpace::~dxSpace() { CHECK_NOT_LOCKED (this); if (cleanup) { // note that destroying each geom will call remove() dxGeom *g,*n; for (g = first; g; g=n) { n = g->next; dGeomDestroy (g); } } else { dxGeom *g,*n; for (g = first; g; g=n) { n = g->next; remove (g); } } } void dxSpace::computeAABB() { if (first) { int i; dReal a[6]; a[0] = dInfinity; a[1] = -dInfinity; a[2] = dInfinity; a[3] = -dInfinity; a[4] = dInfinity; a[5] = -dInfinity; for (dxGeom *g=first; g; g=g->next) { g->recomputeAABB(); for (i=0; i<6; i += 2) if (g->aabb[i] < a[i]) a[i] = g->aabb[i]; for (i=1; i<6; i += 2) if (g->aabb[i] > a[i]) a[i] = g->aabb[i]; } memcpy(aabb,a,6*sizeof(dReal)); } else { dSetZero (aabb,6); } } void dxSpace::setCleanup (int mode) { cleanup = (mode != 0); } int dxSpace::getCleanup() { return cleanup; } int dxSpace::query (dxGeom *geom) { dAASSERT (geom); return (geom->parent_space == this); } int dxSpace::getNumGeoms() { return count; } // the dirty geoms are numbered 0..k, the clean geoms are numbered k+1..count-1 dxGeom *dxSpace::getGeom (int i) { dUASSERT (i >= 0 && i < count,"index out of range"); if (current_geom && current_index == i-1) { current_geom = current_geom->next; current_index = i; return current_geom; } else { dxGeom *g=first; for (int j=0; jnext; else return 0; } current_geom = g; current_index = i; return g; } } void dxSpace::add (dxGeom *geom) { CHECK_NOT_LOCKED (this); dAASSERT (geom); dUASSERT (geom->parent_space == 0 && geom->next == 0, "geom is already in a space"); // add geom->parent_space = this; geom->spaceAdd (&first); count++; // enumerator has been invalidated current_geom = 0; // new geoms are added to the front of the list and are always // considered to be dirty. as a consequence, this space and all its // parents are dirty too. geom->gflags |= GEOM_DIRTY | GEOM_AABB_BAD; dGeomMoved (this); } void dxSpace::remove (dxGeom *geom) { CHECK_NOT_LOCKED (this); dAASSERT (geom); dUASSERT (geom->parent_space == this,"object is not in this space"); // remove geom->spaceRemove(); count--; // safeguard geom->next = 0; geom->tome = 0; geom->parent_space = 0; // enumerator has been invalidated current_geom = 0; // the bounding box of this space (and that of all the parents) may have // changed as a consequence of the removal. dGeomMoved (this); } void dxSpace::dirty (dxGeom *geom) { geom->spaceRemove(); geom->spaceAdd (&first); } //**************************************************************************** // simple space - reports all n^2 object intersections struct dxSimpleSpace : public dxSpace { dxSimpleSpace (dSpaceID _space); void cleanGeoms(); void collide (void *data, dNearCallback *callback); void collide2 (void *data, dxGeom *geom, dNearCallback *callback); }; dxSimpleSpace::dxSimpleSpace (dSpaceID _space) : dxSpace (_space) { type = dSimpleSpaceClass; } void dxSimpleSpace::cleanGeoms() { // compute the AABBs of all dirty geoms, and clear the dirty flags lock_count++; for (dxGeom *g=first; g && (g->gflags & GEOM_DIRTY); g=g->next) { if (IS_SPACE(g)) { ((dxSpace*)g)->cleanGeoms(); } g->recomputeAABB(); g->gflags &= (~(GEOM_DIRTY|GEOM_AABB_BAD)); } lock_count--; } void dxSimpleSpace::collide (void *data, dNearCallback *callback) { dAASSERT (callback); lock_count++; cleanGeoms(); // intersect all bounding boxes for (dxGeom *g1=first; g1; g1=g1->next) { if (GEOM_ENABLED(g1)){ for (dxGeom *g2=g1->next; g2; g2=g2->next) { if (GEOM_ENABLED(g2)){ collideAABBs (g1,g2,data,callback); } } } } lock_count--; } void dxSimpleSpace::collide2 (void *data, dxGeom *geom, dNearCallback *callback) { dAASSERT (geom && callback); lock_count++; cleanGeoms(); geom->recomputeAABB(); // intersect bounding boxes for (dxGeom *g=first; g; g=g->next) { if (GEOM_ENABLED(g)){ collideAABBs (g,geom,data,callback); } } lock_count--; } //**************************************************************************** // utility stuff for hash table space // kind of silly, but oh well... #ifndef MAXINT #define MAXINT ((int)((((unsigned int)(-1)) << 1) >> 1)) #endif // prime[i] is the largest prime smaller than 2^i #define NUM_PRIMES 31 static long int prime[NUM_PRIMES] = {1L,2L,3L,7L,13L,31L,61L,127L,251L,509L, 1021L,2039L,4093L,8191L,16381L,32749L,65521L,131071L,262139L, 524287L,1048573L,2097143L,4194301L,8388593L,16777213L,33554393L, 67108859L,134217689L,268435399L,536870909L,1073741789L}; // an axis aligned bounding box in the hash table struct dxAABB { dxAABB *next; // next in the list of all AABBs int level; // the level this is stored in (cell size = 2^level) int dbounds[6]; // AABB bounds, discretized to cell size dxGeom *geom; // corresponding geometry object (AABB stored here) int index; // index of this AABB, starting from 0 }; // a hash table node that represents an AABB that intersects a particular cell // at a particular level struct Node { Node *next; // next node in hash table collision list, 0 if none int x,y,z; // cell position in space, discretized to cell size dxAABB *aabb; // axis aligned bounding box that intersects this cell }; // return the `level' of an AABB. the AABB will be put into cells at this // level - the cell size will be 2^level. the level is chosen to be the // smallest value such that the AABB occupies no more than 8 cells, regardless // of its placement. this means that: // size/2 < q <= size // where q is the maximum AABB dimension. static int findLevel (dReal bounds[6]) { if (bounds[0] <= -dInfinity || bounds[1] >= dInfinity || bounds[2] <= -dInfinity || bounds[3] >= dInfinity || bounds[4] <= -dInfinity || bounds[5] >= dInfinity) { return MAXINT; } // compute q dReal q,q2; q = bounds[1] - bounds[0]; // x bounds q2 = bounds[3] - bounds[2]; // y bounds if (q2 > q) q = q2; q2 = bounds[5] - bounds[4]; // z bounds if (q2 > q) q = q2; // find level such that 0.5 * 2^level < q <= 2^level int level; frexp (q,&level); // q = (0.5 .. 1.0) * 2^level (definition of frexp) return level; } // find a virtual memory address for a cell at the given level and x,y,z // position. // @@@ currently this is not very sophisticated, e.g. the scaling // factors could be better designed to avoid collisions, and they should // probably depend on the hash table physical size. static unsigned long getVirtualAddress (int level, int x, int y, int z) { return level*1000 + x*100 + y*10 + z; } //**************************************************************************** // hash space struct dxHashSpace : public dxSpace { int global_minlevel; // smallest hash table level to put AABBs in int global_maxlevel; // objects that need a level larger than this will be // put in a "big objects" list instead of a hash table dxHashSpace (dSpaceID _space); void setLevels (int minlevel, int maxlevel); void getLevels (int *minlevel, int *maxlevel); void cleanGeoms(); void collide (void *data, dNearCallback *callback); void collide2 (void *data, dxGeom *geom, dNearCallback *callback); }; dxHashSpace::dxHashSpace (dSpaceID _space) : dxSpace (_space) { type = dHashSpaceClass; global_minlevel = -3; global_maxlevel = 10; } void dxHashSpace::setLevels (int minlevel, int maxlevel) { dAASSERT (minlevel <= maxlevel); global_minlevel = minlevel; global_maxlevel = maxlevel; } void dxHashSpace::getLevels (int *minlevel, int *maxlevel) { if (minlevel) *minlevel = global_minlevel; if (maxlevel) *maxlevel = global_maxlevel; } void dxHashSpace::cleanGeoms() { // compute the AABBs of all dirty geoms, and clear the dirty flags lock_count++; for (dxGeom *g=first; g && (g->gflags & GEOM_DIRTY); g=g->next) { if (IS_SPACE(g)) { ((dxSpace*)g)->cleanGeoms(); } g->recomputeAABB(); g->gflags &= (~(GEOM_DIRTY|GEOM_AABB_BAD)); } lock_count--; } void dxHashSpace::collide (void *data, dNearCallback *callback) { dAASSERT(this && callback); dxGeom *geom; dxAABB *aabb; int i,maxlevel; // 0 or 1 geoms can't collide with anything if (count < 2) return; lock_count++; cleanGeoms(); // create a list of auxiliary information for all geom axis aligned bounding // boxes. set the level for all AABBs. put AABBs larger than the space's // global_maxlevel in the big_boxes list, check everything else against // that list at the end. for AABBs that are not too big, record the maximum // level that we need. int n = 0; // number of AABBs in main list dxAABB *first_aabb = 0; // list of AABBs in hash table dxAABB *big_boxes = 0; // list of AABBs too big for hash table maxlevel = global_minlevel - 1; for (geom = first; geom; geom=geom->next) { if (!GEOM_ENABLED(geom)){ continue; } dxAABB *aabb = (dxAABB*) ALLOCA (sizeof(dxAABB)); aabb->geom = geom; // compute level, but prevent cells from getting too small int level = findLevel (geom->aabb); if (level < global_minlevel) level = global_minlevel; if (level <= global_maxlevel) { // aabb goes in main list aabb->next = first_aabb; first_aabb = aabb; aabb->level = level; if (level > maxlevel) maxlevel = level; // cellsize = 2^level dReal cellsize = (dReal) ldexp (1.0,level); // discretize AABB position to cell size for (i=0; i < 6; i++) aabb->dbounds[i] = (int) floor (geom->aabb[i]/cellsize); // set AABB index aabb->index = n; n++; } else { // aabb is too big, put it in the big_boxes list. we don't care about // setting level, dbounds, index, or the maxlevel aabb->next = big_boxes; big_boxes = aabb; } } // for `n' objects, an n*n array of bits is used to record if those objects // have been intersection-tested against each other yet. this array can // grow large with high n, but oh well... int tested_rowsize = (n+7) >> 3; // number of bytes needed for n bits unsigned char *tested = (unsigned char *) ALLOCA (n * tested_rowsize); memset (tested,0,n * tested_rowsize); // create a hash table to store all AABBs. each AABB may take up to 8 cells. // we use chaining to resolve collisions, but we use a relatively large table // to reduce the chance of collisions. // compute hash table size sz to be a prime > 8*n for (i=0; i= (8*n)) break; } if (i >= NUM_PRIMES) i = NUM_PRIMES-1; // probably pointless int sz = prime[i]; // allocate and initialize hash table node pointers Node **table = (Node **) ALLOCA (sizeof(Node*) * sz); for (i=0; inext) { int *dbounds = aabb->dbounds; for (int xi = dbounds[0]; xi <= dbounds[1]; xi++) { for (int yi = dbounds[2]; yi <= dbounds[3]; yi++) { for (int zi = dbounds[4]; zi <= dbounds[5]; zi++) { // get the hash index unsigned long hi = getVirtualAddress (aabb->level,xi,yi,zi) % sz; // add a new node to the hash table Node *node = (Node*) ALLOCA (sizeof (Node)); node->x = xi; node->y = yi; node->z = zi; node->aabb = aabb; node->next = table[hi]; table[hi] = node; } } } } // now that all AABBs are loaded into the hash table, we do the actual // collision detection. for all AABBs, check for other AABBs in the // same cells for collisions, and then check for other AABBs in all // intersecting higher level cells. int db[6]; // discrete bounds at current level for (aabb=first_aabb; aabb; aabb=aabb->next) { // we are searching for collisions with aabb for (i=0; i<6; i++) db[i] = aabb->dbounds[i]; for (int level = aabb->level; level <= maxlevel; level++) { for (int xi = db[0]; xi <= db[1]; xi++) { for (int yi = db[2]; yi <= db[3]; yi++) { for (int zi = db[4]; zi <= db[5]; zi++) { // get the hash index unsigned long hi = getVirtualAddress (level,xi,yi,zi) % sz; // search all nodes at this index Node *node; for (node = table[hi]; node; node=node->next) { // node points to an AABB that may intersect aabb if (node->aabb == aabb) continue; if (node->aabb->level == level && node->x == xi && node->y == yi && node->z == zi) { // see if aabb and node->aabb have already been tested // against each other unsigned char mask; if (aabb->index <= node->aabb->index) { i = (aabb->index * tested_rowsize)+(node->aabb->index >> 3); mask = 1 << (node->aabb->index & 7); } else { i = (node->aabb->index * tested_rowsize)+(aabb->index >> 3); mask = 1 << (aabb->index & 7); } dIASSERT (i >= 0 && i < (tested_rowsize*n)); if ((tested[i] & mask)==0) { collideAABBs (aabb->geom,node->aabb->geom,data,callback); } tested[i] |= mask; } } } } } // get the discrete bounds for the next level up for (i=0; i<6; i++) db[i] >>= 1; } } // every AABB in the normal list must now be intersected against every // AABB in the big_boxes list. so let's hope there are not too many objects // in the big_boxes list. for (aabb=first_aabb; aabb; aabb=aabb->next) { for (dxAABB *aabb2=big_boxes; aabb2; aabb2=aabb2->next) { collideAABBs (aabb->geom,aabb2->geom,data,callback); } } // intersected all AABBs in the big_boxes list together for (aabb=big_boxes; aabb; aabb=aabb->next) { for (dxAABB *aabb2=aabb->next; aabb2; aabb2=aabb2->next) { collideAABBs (aabb->geom,aabb2->geom,data,callback); } } lock_count--; } void dxHashSpace::collide2 (void *data, dxGeom *geom, dNearCallback *callback) { dAASSERT (geom && callback); // this could take advantage of the hash structure to avoid // O(n2) complexity, but it does not yet. lock_count++; cleanGeoms(); geom->recomputeAABB(); // intersect bounding boxes for (dxGeom *g=first; g; g=g->next) { if (GEOM_ENABLED(g)) collideAABBs (g,geom,data,callback); } lock_count--; } //**************************************************************************** // space functions dxSpace *dSimpleSpaceCreate (dxSpace *space) { return new dxSimpleSpace (space); } dxSpace *dHashSpaceCreate (dxSpace *space) { return new dxHashSpace (space); } void dHashSpaceSetLevels (dxSpace *space, int minlevel, int maxlevel) { dAASSERT (space); dUASSERT (minlevel <= maxlevel,"must have minlevel <= maxlevel"); dUASSERT (space->type == dHashSpaceClass,"argument must be a hash space"); dxHashSpace *hspace = (dxHashSpace*) space; hspace->setLevels (minlevel,maxlevel); } void dHashSpaceGetLevels (dxSpace *space, int *minlevel, int *maxlevel) { dAASSERT (space); dUASSERT (space->type == dHashSpaceClass,"argument must be a hash space"); dxHashSpace *hspace = (dxHashSpace*) space; hspace->getLevels (minlevel,maxlevel); } void dSpaceDestroy (dxSpace *space) { dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); dGeomDestroy (space); } void dSpaceSetCleanup (dxSpace *space, int mode) { dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); space->setCleanup (mode); } int dSpaceGetCleanup (dxSpace *space) { dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); return space->getCleanup(); } void dSpaceAdd (dxSpace *space, dxGeom *g) { dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); CHECK_NOT_LOCKED (space); space->add (g); } void dSpaceRemove (dxSpace *space, dxGeom *g) { dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); CHECK_NOT_LOCKED (space); space->remove (g); } int dSpaceQuery (dxSpace *space, dxGeom *g) { dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); return space->query (g); } void dSpaceClean (dxSpace *space){ dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); space->cleanGeoms(); } int dSpaceGetNumGeoms (dxSpace *space) { dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); return space->getNumGeoms(); } dGeomID dSpaceGetGeom (dxSpace *space, int i) { dAASSERT (space); dUASSERT (dGeomIsSpace(space),"argument not a space"); return space->getGeom (i); } void dSpaceCollide (dxSpace *space, void *data, dNearCallback *callback) { dAASSERT (space && callback); dUASSERT (dGeomIsSpace(space),"argument not a space"); space->collide (data,callback); } void dSpaceCollide2 (dxGeom *g1, dxGeom *g2, void *data, dNearCallback *callback) { dAASSERT (g1 && g2 && callback); dxSpace *s1,*s2; // see if either geom is a space if (IS_SPACE(g1)) s1 = (dxSpace*) g1; else s1 = 0; if (IS_SPACE(g2)) s2 = (dxSpace*) g2; else s2 = 0; // handle the four space/geom cases if (s1) { if (s2) { // g1 and g2 are spaces. if (s1==s2) { // collide a space with itself --> interior collision s1->collide (data,callback); } else { // iterate through the space that has the fewest geoms, calling // collide2 in the other space for each one. if (s1->count < s2->count) { for (dxGeom *g = s1->first; g; g=g->next) { s2->collide2 (data,g,callback); } } else { for (dxGeom *g = s2->first; g; g=g->next) { s1->collide2 (data,g,callback); } } } } else { // g1 is a space, g2 is a geom s1->collide2 (data,g2,callback); } } else { if (s2) { // g1 is a geom, g2 is a space s2->collide2 (data,g1,callback); } else { // g1 and g2 are geoms, call the callback directly callback (data,g1,g2); } } }