matrix.h

00001 /*************************************************************************
00002  *                                                                       *
00003  * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
00004  * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
00005  *                                                                       *
00006  * This library is free software; you can redistribute it and/or         *
00007  * modify it under the terms of EITHER:                                  *
00008  *   (1) The GNU Lesser General Public License as published by the Free  *
00009  *       Software Foundation; either version 2.1 of the License, or (at  *
00010  *       your option) any later version. The text of the GNU Lesser      *
00011  *       General Public License is included with this library in the     *
00012  *       file LICENSE.TXT.                                               *
00013  *   (2) The BSD-style license that is included with this library in     *
00014  *       the file LICENSE-BSD.TXT.                                       *
00015  *                                                                       *
00016  * This library is distributed in the hope that it will be useful,       *
00017  * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
00018  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
00019  * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
00020  *                                                                       *
00021  *************************************************************************/
00022 
00023 /* optimized and unoptimized vector and matrix functions */
00024 
00025 #ifndef _ODE_MATRIX_H_
00026 #define _ODE_MATRIX_H_
00027 
00028 #include <ode/common.h>
00029 
00030 
00031 #ifdef __cplusplus
00032 extern "C" {
00033 #endif
00034 
00035 
00036 /* set a vector/matrix of size n to all zeros, or to a specific value. */
00037 
00038 ODE_API void dSetZero (dReal *a, int n);
00039 ODE_API void dSetValue (dReal *a, int n, dReal value);
00040 
00041 
00042 /* get the dot product of two n*1 vectors. if n <= 0 then
00043  * zero will be returned (in which case a and b need not be valid).
00044  */
00045 
00046 ODE_API dReal dDot (const dReal *a, const dReal *b, int n);
00047 
00048 
00049 /* get the dot products of (a0,b), (a1,b), etc and return them in outsum.
00050  * all vectors are n*1. if n <= 0 then zeroes will be returned (in which case
00051  * the input vectors need not be valid). this function is somewhat faster
00052  * than calling dDot() for all of the combinations separately.
00053  */
00054 
00055 /* NOT INCLUDED in the library for now.
00056 void dMultidot2 (const dReal *a0, const dReal *a1,
00057        const dReal *b, dReal *outsum, int n);
00058 */
00059 
00060 
00061 /* matrix multiplication. all matrices are stored in standard row format.
00062  * the digit refers to the argument that is transposed:
00063  *   0:   A = B  * C   (sizes: A:p*r B:p*q C:q*r)
00064  *   1:   A = B' * C   (sizes: A:p*r B:q*p C:q*r)
00065  *   2:   A = B  * C'  (sizes: A:p*r B:p*q C:r*q)
00066  * case 1,2 are equivalent to saying that the operation is A=B*C but
00067  * B or C are stored in standard column format.
00068  */
00069 
00070 ODE_API void dMultiply0 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
00071 ODE_API void dMultiply1 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
00072 ODE_API void dMultiply2 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
00073 
00074 
00075 /* do an in-place cholesky decomposition on the lower triangle of the n*n
00076  * symmetric matrix A (which is stored by rows). the resulting lower triangle
00077  * will be such that L*L'=A. return 1 on success and 0 on failure (on failure
00078  * the matrix is not positive definite).
00079  */
00080 
00081 ODE_API int dFactorCholesky (dReal *A, int n);
00082 
00083 
00084 /* solve for x: L*L'*x = b, and put the result back into x.
00085  * L is size n*n, b is size n*1. only the lower triangle of L is considered.
00086  */
00087 
00088 ODE_API void dSolveCholesky (const dReal *L, dReal *b, int n);
00089 
00090 
00091 /* compute the inverse of the n*n positive definite matrix A and put it in
00092  * Ainv. this is not especially fast. this returns 1 on success (A was
00093  * positive definite) or 0 on failure (not PD).
00094  */
00095 
00096 ODE_API int dInvertPDMatrix (const dReal *A, dReal *Ainv, int n);
00097 
00098 
00099 /* check whether an n*n matrix A is positive definite, return 1/0 (yes/no).
00100  * positive definite means that x'*A*x > 0 for any x. this performs a
00101  * cholesky decomposition of A. if the decomposition fails then the matrix
00102  * is not positive definite. A is stored by rows. A is not altered.
00103  */
00104 
00105 ODE_API int dIsPositiveDefinite (const dReal *A, int n);
00106 
00107 
00108 /* factorize a matrix A into L*D*L', where L is lower triangular with ones on
00109  * the diagonal, and D is diagonal.
00110  * A is an n*n matrix stored by rows, with a leading dimension of n rounded
00111  * up to 4. L is written into the strict lower triangle of A (the ones are not
00112  * written) and the reciprocal of the diagonal elements of D are written into
00113  * d.
00114  */
00115 ODE_API void dFactorLDLT (dReal *A, dReal *d, int n, int nskip);
00116 
00117 
00118 /* solve L*x=b, where L is n*n lower triangular with ones on the diagonal,
00119  * and x,b are n*1. b is overwritten with x.
00120  * the leading dimension of L is `nskip'.
00121  */
00122 ODE_API void dSolveL1 (const dReal *L, dReal *b, int n, int nskip);
00123 
00124 
00125 /* solve L'*x=b, where L is n*n lower triangular with ones on the diagonal,
00126  * and x,b are n*1. b is overwritten with x.
00127  * the leading dimension of L is `nskip'.
00128  */
00129 ODE_API void dSolveL1T (const dReal *L, dReal *b, int n, int nskip);
00130 
00131 
00132 /* in matlab syntax: a(1:n) = a(1:n) .* d(1:n) */
00133 
00134 ODE_API void dVectorScale (dReal *a, const dReal *d, int n);
00135 
00136 
00137 /* given `L', a n*n lower triangular matrix with ones on the diagonal,
00138  * and `d', a n*1 vector of the reciprocal diagonal elements of an n*n matrix
00139  * D, solve L*D*L'*x=b where x,b are n*1. x overwrites b.
00140  * the leading dimension of L is `nskip'.
00141  */
00142 
00143 ODE_API void dSolveLDLT (const dReal *L, const dReal *d, dReal *b, int n, int nskip);
00144 
00145 
00146 /* given an L*D*L' factorization of an n*n matrix A, return the updated
00147  * factorization L2*D2*L2' of A plus the following "top left" matrix:
00148  *
00149  *    [ b a' ]     <-- b is a[0]
00150  *    [ a 0  ]     <-- a is a[1..n-1]
00151  *
00152  *   - L has size n*n, its leading dimension is nskip. L is lower triangular
00153  *     with ones on the diagonal. only the lower triangle of L is referenced.
00154  *   - d has size n. d contains the reciprocal diagonal elements of D.
00155  *   - a has size n.
00156  * the result is written into L, except that the left column of L and d[0]
00157  * are not actually modified. see ldltaddTL.m for further comments. 
00158  */
00159 ODE_API void dLDLTAddTL (dReal *L, dReal *d, const dReal *a, int n, int nskip);
00160 
00161 
00162 /* given an L*D*L' factorization of a permuted matrix A, produce a new
00163  * factorization for row and column `r' removed.
00164  *   - A has size n1*n1, its leading dimension in nskip. A is symmetric and
00165  *     positive definite. only the lower triangle of A is referenced.
00166  *     A itself may actually be an array of row pointers.
00167  *   - L has size n2*n2, its leading dimension in nskip. L is lower triangular
00168  *     with ones on the diagonal. only the lower triangle of L is referenced.
00169  *   - d has size n2. d contains the reciprocal diagonal elements of D.
00170  *   - p is a permutation vector. it contains n2 indexes into A. each index
00171  *     must be in the range 0..n1-1.
00172  *   - r is the row/column of L to remove.
00173  * the new L will be written within the old L, i.e. will have the same leading
00174  * dimension. the last row and column of L, and the last element of d, are
00175  * undefined on exit.
00176  *
00177  * a fast O(n^2) algorithm is used. see ldltremove.m for further comments.
00178  */
00179 ODE_API void dLDLTRemove (dReal **A, const int *p, dReal *L, dReal *d,
00180         int n1, int n2, int r, int nskip);
00181 
00182 
00183 /* given an n*n matrix A (with leading dimension nskip), remove the r'th row
00184  * and column by moving elements. the new matrix will have the same leading
00185  * dimension. the last row and column of A are untouched on exit.
00186  */
00187 ODE_API void dRemoveRowCol (dReal *A, int n, int nskip, int r);
00188 
00189 
00190 #ifdef __cplusplus
00191 }
00192 #endif
00193 
00194 #endif

Generated on Fri Oct 12 08:36:51 2007 for Open Dynamics Engine by  doxygen 1.5.3