// Ami Bar
// amibar@gmail.com
//
// Smart thread pool in C#.
// 7 Aug 2004 - Initial release
// 14 Sep 2004 - Bug fixes
// 15 Oct 2004 - Added new features
// - Work items return result.
// - Support waiting synchronization for multiple work items.
// - Work items can be cancelled.
// - Passage of the caller thread’s context to the thread in the pool.
// - Minimal usage of WIN32 handles.
// - Minor bug fixes.
// 26 Dec 2004 - Changes:
// - Removed static constructors.
// - Added finalizers.
// - Changed Exceptions so they are serializable.
// - Fixed the bug in one of the SmartThreadPool constructors.
// - Changed the SmartThreadPool.WaitAll() so it will support any number of waiters.
// The SmartThreadPool.WaitAny() is still limited by the .NET Framework.
// - Added PostExecute with options on which cases to call it.
// - Added option to dispose of the state objects.
// - Added a WaitForIdle() method that waits until the work items queue is empty.
// - Added an STPStartInfo class for the initialization of the thread pool.
// - Changed exception handling so if a work item throws an exception it
// is rethrown at GetResult(), rather then firing an UnhandledException event.
// Note that PostExecute exception are always ignored.
// 25 Mar 2005 - Changes:
// - Fixed lost of work items bug
// 3 Jul 2005: Changes.
// - Fixed bug where Enqueue() throws an exception because PopWaiter() returned null, hardly reconstructed.
// 16 Aug 2005: Changes.
// - Fixed bug where the InUseThreads becomes negative when canceling work items.
//
// 31 Jan 2006 - Changes:
// - Added work items priority
// - Removed support of chained delegates in callbacks and post executes (nobody really use this)
// - Added work items groups
// - Added work items groups idle event
// - Changed SmartThreadPool.WaitAll() behavior so when it gets empty array
// it returns true rather then throwing an exception.
// - Added option to start the STP and the WIG as suspended
// - Exception behavior changed, the real exception is returned by an
// inner exception
// - Added option to keep the Http context of the caller thread. (Thanks to Steven T.)
// - Added performance counters
// - Added priority to the threads in the pool
//
// 13 Feb 2006 - Changes:
// - Added a call to the dispose of the Performance Counter so
// their won't be a Performance Counter leak.
// - Added exception catch in case the Performance Counters cannot
// be created.
using System;
using System.Security;
using System.Threading;
using System.Collections;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using Amib.Threading.Internal;
namespace Amib.Threading
{
#region SmartThreadPool class
///
/// Smart thread pool class.
///
public class SmartThreadPool : IWorkItemsGroup, IDisposable
{
#region Default Constants
///
/// Default minimum number of threads the thread pool contains. (0)
///
public const int DefaultMinWorkerThreads = 0;
///
/// Default maximum number of threads the thread pool contains. (25)
///
public const int DefaultMaxWorkerThreads = 25;
///
/// Default idle timeout in milliseconds. (One minute)
///
public const int DefaultIdleTimeout = 60*1000; // One minute
///
/// Indicate to copy the security context of the caller and then use it in the call. (false)
///
public const bool DefaultUseCallerCallContext = false;
///
/// Indicate to copy the HTTP context of the caller and then use it in the call. (false)
///
public const bool DefaultUseCallerHttpContext = false;
///
/// Indicate to dispose of the state objects if they support the IDispose interface. (false)
///
public const bool DefaultDisposeOfStateObjects = false;
///
/// The default option to run the post execute
///
public const CallToPostExecute DefaultCallToPostExecute = CallToPostExecute.Always;
///
/// The default post execute method to run.
/// When null it means not to call it.
///
public static readonly PostExecuteWorkItemCallback DefaultPostExecuteWorkItemCallback = null;
///
/// The default work item priority
///
public const WorkItemPriority DefaultWorkItemPriority = WorkItemPriority.Normal;
///
/// The default is to work on work items as soon as they arrive
/// and not to wait for the start.
///
public const bool DefaultStartSuspended = false;
///
/// The default is not to use the performance counters
///
public static readonly string DefaultPerformanceCounterInstanceName = null;
public static readonly int DefaultStackSize = 0;
///
/// The default thread priority
///
public const ThreadPriority DefaultThreadPriority = ThreadPriority.Normal;
#endregion
#region Member Variables
///
/// Contains the name of this instance of SmartThreadPool.
/// Can be changed by the user.
///
private string _name = "SmartThreadPool";
///
/// Hashtable of all the threads in the thread pool.
///
private Hashtable _workerThreads = Hashtable.Synchronized(new Hashtable());
///
/// Queue of work items.
///
private WorkItemsQueue _workItemsQueue = new WorkItemsQueue();
///
/// Count the work items handled.
/// Used by the performance counter.
///
private long _workItemsProcessed = 0;
///
/// Number of threads that currently work (not idle).
///
private int _inUseWorkerThreads = 0;
///
/// Start information to use.
/// It is simpler than providing many constructors.
///
private STPStartInfo _stpStartInfo = new STPStartInfo();
///
/// Total number of work items that are stored in the work items queue
/// plus the work items that the threads in the pool are working on.
///
private int _currentWorkItemsCount = 0;
///
/// Signaled when the thread pool is idle, i.e. no thread is busy
/// and the work items queue is empty
///
private ManualResetEvent _isIdleWaitHandle = new ManualResetEvent(true);
///
/// An event to signal all the threads to quit immediately.
///
private ManualResetEvent _shuttingDownEvent = new ManualResetEvent(false);
///
/// A flag to indicate the threads to quit.
///
private bool _shutdown = false;
///
/// Counts the threads created in the pool.
/// It is used to name the threads.
///
private int _threadCounter = 0;
///
/// Indicate that the SmartThreadPool has been disposed
///
private bool _isDisposed = false;
///
/// Event to send that the thread pool is idle
///
private event EventHandler _stpIdle;
///
/// On idle event
///
//private event WorkItemsGroupIdleHandler _onIdle;
///
/// Holds all the WorkItemsGroup instaces that have at least one
/// work item int the SmartThreadPool
/// This variable is used in case of Shutdown
///
private Hashtable _workItemsGroups = Hashtable.Synchronized(new Hashtable());
///
/// A reference from each thread in the thread pool to its SmartThreadPool
/// object container.
/// With this variable a thread can know whatever it belongs to a
/// SmartThreadPool.
///
[ThreadStatic]
private static SmartThreadPool _smartThreadPool;
///
/// A reference to the current work item a thread from the thread pool
/// is executing.
///
[ThreadStatic]
private static WorkItem _currentWorkItem;
///
/// STP performance counters
///
private ISTPInstancePerformanceCounters _pcs = NullSTPInstancePerformanceCounters.Instance;
#endregion
#region Construction and Finalization
///
/// Constructor
///
public SmartThreadPool()
{
Initialize();
}
///
/// Constructor
///
/// Idle timeout in milliseconds
public SmartThreadPool(int idleTimeout)
{
_stpStartInfo.IdleTimeout = idleTimeout;
Initialize();
}
///
/// Constructor
///
/// Idle timeout in milliseconds
/// Upper limit of threads in the pool
public SmartThreadPool(
int idleTimeout,
int maxWorkerThreads)
{
_stpStartInfo.IdleTimeout = idleTimeout;
_stpStartInfo.MaxWorkerThreads = maxWorkerThreads;
Initialize();
}
///
/// Constructor
///
/// Idle timeout in milliseconds
/// Upper limit of threads in the pool
/// Lower limit of threads in the pool
public SmartThreadPool(
int idleTimeout,
int maxWorkerThreads,
int minWorkerThreads)
{
_stpStartInfo.IdleTimeout = idleTimeout;
_stpStartInfo.MaxWorkerThreads = maxWorkerThreads;
_stpStartInfo.MinWorkerThreads = minWorkerThreads;
Initialize();
}
///
/// Constructor
///
public SmartThreadPool(STPStartInfo stpStartInfo)
{
_stpStartInfo = new STPStartInfo(stpStartInfo);
Initialize();
}
private void Initialize()
{
ValidateSTPStartInfo();
if (null != _stpStartInfo.PerformanceCounterInstanceName)
{
try
{
_pcs = new STPInstancePerformanceCounters(_stpStartInfo.PerformanceCounterInstanceName);
}
catch(Exception e)
{
Debug.WriteLine("Unable to create Performance Counters: " + e.ToString());
_pcs = NullSTPInstancePerformanceCounters.Instance;
}
}
StartOptimalNumberOfThreads();
}
private void StartOptimalNumberOfThreads()
{
int threadsCount = Math.Max(_workItemsQueue.Count, _stpStartInfo.MinWorkerThreads);
threadsCount = Math.Min(threadsCount, _stpStartInfo.MaxWorkerThreads);
StartThreads(threadsCount);
}
private void ValidateSTPStartInfo()
{
if (_stpStartInfo.MinWorkerThreads < 0)
{
throw new ArgumentOutOfRangeException(
"MinWorkerThreads", "MinWorkerThreads cannot be negative");
}
if (_stpStartInfo.MaxWorkerThreads <= 0)
{
throw new ArgumentOutOfRangeException(
"MaxWorkerThreads", "MaxWorkerThreads must be greater than zero");
}
if (_stpStartInfo.MinWorkerThreads > _stpStartInfo.MaxWorkerThreads)
{
throw new ArgumentOutOfRangeException(
"MinWorkerThreads, maxWorkerThreads",
"MaxWorkerThreads must be greater or equal to MinWorkerThreads");
}
}
private void ValidateCallback(Delegate callback)
{
if(callback.GetInvocationList().Length > 1)
{
throw new NotSupportedException("SmartThreadPool doesn't support delegates chains");
}
}
#endregion
#region Thread Processing
///
/// Waits on the queue for a work item, shutdown, or timeout.
///
///
/// Returns the WaitingCallback or null in case of timeout or shutdown.
///
private WorkItem Dequeue()
{
WorkItem workItem =
_workItemsQueue.DequeueWorkItem(_stpStartInfo.IdleTimeout, _shuttingDownEvent);
return workItem;
}
///
/// Put a new work item in the queue
///
/// A work item to queue
private void Enqueue(WorkItem workItem)
{
Enqueue(workItem, true);
}
///
/// Put a new work item in the queue
///
/// A work item to queue
internal void Enqueue(WorkItem workItem, bool incrementWorkItems)
{
// Make sure the workItem is not null
Debug.Assert(null != workItem);
if (incrementWorkItems)
{
IncrementWorkItemsCount();
}
_workItemsQueue.EnqueueWorkItem(workItem);
workItem.WorkItemIsQueued();
// If all the threads are busy then try to create a new one
if ((InUseThreads + WaitingCallbacks) > _workerThreads.Count)
{
StartThreads(1);
}
}
private void IncrementWorkItemsCount()
{
_pcs.SampleWorkItems(_workItemsQueue.Count, _workItemsProcessed);
int count = Interlocked.Increment(ref _currentWorkItemsCount);
//Trace.WriteLine("WorkItemsCount = " + _currentWorkItemsCount.ToString());
if (count == 1)
{
//Trace.WriteLine("STP is NOT idle");
_isIdleWaitHandle.Reset();
}
}
private void DecrementWorkItemsCount()
{
++_workItemsProcessed;
// The counter counts even if the work item was cancelled
_pcs.SampleWorkItems(_workItemsQueue.Count, _workItemsProcessed);
int count = Interlocked.Decrement(ref _currentWorkItemsCount);
//Trace.WriteLine("WorkItemsCount = " + _currentWorkItemsCount.ToString());
if (count == 0)
{
//Trace.WriteLine("STP is idle");
_isIdleWaitHandle.Set();
}
}
internal void RegisterWorkItemsGroup(IWorkItemsGroup workItemsGroup)
{
_workItemsGroups[workItemsGroup] = workItemsGroup;
}
internal void UnregisterWorkItemsGroup(IWorkItemsGroup workItemsGroup)
{
if (_workItemsGroups.Contains(workItemsGroup))
{
_workItemsGroups.Remove(workItemsGroup);
}
}
///
/// Inform that the current thread is about to quit or quiting.
/// The same thread may call this method more than once.
///
private void InformCompleted()
{
// There is no need to lock the two methods together
// since only the current thread removes itself
// and the _workerThreads is a synchronized hashtable
if (_workerThreads.Contains(Thread.CurrentThread))
{
_workerThreads.Remove(Thread.CurrentThread);
_pcs.SampleThreads(_workerThreads.Count, _inUseWorkerThreads);
}
}
///
/// Starts new threads
///
/// The number of threads to start
private void StartThreads(int threadsCount)
{
if (_stpStartInfo.StartSuspended)
{
return;
}
lock(_workerThreads.SyncRoot)
{
// Don't start threads on shut down
if (_shutdown)
{
return;
}
for(int i = 0; i < threadsCount; ++i)
{
// Don't create more threads then the upper limit
if (_workerThreads.Count >= _stpStartInfo.MaxWorkerThreads)
{
return;
}
// Create a new thread
Thread workerThread = new Thread(new ThreadStart(ProcessQueuedItems), _stpStartInfo.StackSize);
// Configure the new thread and start it
workerThread.Name = "STP " + Name + " Thread #" + _threadCounter;
workerThread.IsBackground = true;
workerThread.Priority = _stpStartInfo.ThreadPriority;
workerThread.Start();
++_threadCounter;
// Add the new thread to the hashtable and update its creation
// time.
_workerThreads[workerThread] = DateTime.Now;
_pcs.SampleThreads(_workerThreads.Count, _inUseWorkerThreads);
}
}
}
///
/// A worker thread method that processes work items from the work items queue.
///
private void ProcessQueuedItems()
{
// Initialize the _smartThreadPool variable
_smartThreadPool = this;
try
{
bool bInUseWorkerThreadsWasIncremented = false;
// Process until shutdown.
while(!_shutdown)
{
// Update the last time this thread was seen alive.
// It's good for debugging.
_workerThreads[Thread.CurrentThread] = DateTime.Now;
// Wait for a work item, shutdown, or timeout
WorkItem workItem = Dequeue();
// Update the last time this thread was seen alive.
// It's good for debugging.
_workerThreads[Thread.CurrentThread] = DateTime.Now;
// On timeout or shut down.
if (null == workItem)
{
// Double lock for quit.
if (_workerThreads.Count > _stpStartInfo.MinWorkerThreads)
{
lock(_workerThreads.SyncRoot)
{
if (_workerThreads.Count > _stpStartInfo.MinWorkerThreads)
{
// Inform that the thread is quiting and then quit.
// This method must be called within this lock or else
// more threads will quit and the thread pool will go
// below the lower limit.
InformCompleted();
break;
}
}
}
}
// If we didn't quit then skip to the next iteration.
if (null == workItem)
{
continue;
}
try
{
// Initialize the value to false
bInUseWorkerThreadsWasIncremented = false;
// Change the state of the work item to 'in progress' if possible.
// We do it here so if the work item has been canceled we won't
// increment the _inUseWorkerThreads.
// The cancel mechanism doesn't delete items from the queue,
// it marks the work item as canceled, and when the work item
// is dequeued, we just skip it.
// If the post execute of work item is set to always or to
// call when the work item is canceled then the StartingWorkItem()
// will return true, so the post execute can run.
if (!workItem.StartingWorkItem())
{
continue;
}
// Execute the callback. Make sure to accurately
// record how many callbacks are currently executing.
int inUseWorkerThreads = Interlocked.Increment(ref _inUseWorkerThreads);
_pcs.SampleThreads(_workerThreads.Count, inUseWorkerThreads);
// Mark that the _inUseWorkerThreads incremented, so in the finally{}
// statement we will decrement it correctly.
bInUseWorkerThreadsWasIncremented = true;
// Set the _currentWorkItem to the current work item
_currentWorkItem = workItem;
lock(workItem)
{
workItem.currentThread = Thread.CurrentThread;
}
ExecuteWorkItem(workItem);
lock(workItem)
{
workItem.currentThread = null;
}
}
catch(ThreadAbortException ex)
{
lock(workItem)
{
workItem.currentThread = null;
}
ex.GetHashCode();
Thread.ResetAbort();
}
catch(Exception ex)
{
ex.GetHashCode();
// Do nothing
}
finally
{
lock(workItem)
{
workItem.currentThread = null;
}
if (null != workItem)
{
workItem.DisposeOfState();
}
// Set the _currentWorkItem to null, since we
// no longer run user's code.
_currentWorkItem = null;
// Decrement the _inUseWorkerThreads only if we had
// incremented it. Note the cancelled work items don't
// increment _inUseWorkerThreads.
if (bInUseWorkerThreadsWasIncremented)
{
int inUseWorkerThreads = Interlocked.Decrement(ref _inUseWorkerThreads);
_pcs.SampleThreads(_workerThreads.Count, inUseWorkerThreads);
}
// Notify that the work item has been completed.
// WorkItemsGroup may enqueue their next work item.
workItem.FireWorkItemCompleted();
// Decrement the number of work items here so the idle
// ManualResetEvent won't fluctuate.
DecrementWorkItemsCount();
}
}
}
catch(ThreadAbortException tae)
{
tae.GetHashCode();
// Handle the abort exception gracfully.
Thread.ResetAbort();
}
catch(Exception e)
{
Debug.Assert(null != e);
}
finally
{
InformCompleted();
}
}
private void ExecuteWorkItem(WorkItem workItem)
{
_pcs.SampleWorkItemsWaitTime(workItem.WaitingTime);
try
{
workItem.Execute();
}
catch
{
throw;
}
finally
{
_pcs.SampleWorkItemsProcessTime(workItem.ProcessTime);
}
}
#endregion
#region Public Methods
///
/// Queue a work item
///
/// A callback to execute
/// Returns a work item result
public IWorkItemResult QueueWorkItem(WorkItemCallback callback)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, callback);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// A callback to execute
/// The priority of the work item
/// Returns a work item result
public IWorkItemResult QueueWorkItem(WorkItemCallback callback, WorkItemPriority workItemPriority)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, callback, workItemPriority);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// Work item info
/// A callback to execute
/// Returns a work item result
public IWorkItemResult QueueWorkItem(WorkItemInfo workItemInfo, WorkItemCallback callback)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, workItemInfo, callback);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// A callback to execute
///
/// The context object of the work item. Used for passing arguments to the work item.
///
/// Returns a work item result
public IWorkItemResult QueueWorkItem(WorkItemCallback callback, object state)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, callback, state);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// A callback to execute
///
/// The context object of the work item. Used for passing arguments to the work item.
///
/// The work item priority
/// Returns a work item result
public IWorkItemResult QueueWorkItem(WorkItemCallback callback, object state, WorkItemPriority workItemPriority)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, callback, state, workItemPriority);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// Work item information
/// A callback to execute
///
/// The context object of the work item. Used for passing arguments to the work item.
///
/// Returns a work item result
public IWorkItemResult QueueWorkItem(WorkItemInfo workItemInfo, WorkItemCallback callback, object state)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, workItemInfo, callback, state);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// A callback to execute
///
/// The context object of the work item. Used for passing arguments to the work item.
///
///
/// A delegate to call after the callback completion
///
/// Returns a work item result
public IWorkItemResult QueueWorkItem(
WorkItemCallback callback,
object state,
PostExecuteWorkItemCallback postExecuteWorkItemCallback)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, callback, state, postExecuteWorkItemCallback);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// A callback to execute
///
/// The context object of the work item. Used for passing arguments to the work item.
///
///
/// A delegate to call after the callback completion
///
/// The work item priority
/// Returns a work item result
public IWorkItemResult QueueWorkItem(
WorkItemCallback callback,
object state,
PostExecuteWorkItemCallback postExecuteWorkItemCallback,
WorkItemPriority workItemPriority)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, callback, state, postExecuteWorkItemCallback, workItemPriority);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// A callback to execute
///
/// The context object of the work item. Used for passing arguments to the work item.
///
///
/// A delegate to call after the callback completion
///
/// Indicates on which cases to call to the post execute callback
/// Returns a work item result
public IWorkItemResult QueueWorkItem(
WorkItemCallback callback,
object state,
PostExecuteWorkItemCallback postExecuteWorkItemCallback,
CallToPostExecute callToPostExecute)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, callback, state, postExecuteWorkItemCallback, callToPostExecute);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Queue a work item
///
/// A callback to execute
///
/// The context object of the work item. Used for passing arguments to the work item.
///
///
/// A delegate to call after the callback completion
///
/// Indicates on which cases to call to the post execute callback
/// The work item priority
/// Returns a work item result
public IWorkItemResult QueueWorkItem(
WorkItemCallback callback,
object state,
PostExecuteWorkItemCallback postExecuteWorkItemCallback,
CallToPostExecute callToPostExecute,
WorkItemPriority workItemPriority)
{
ValidateNotDisposed();
ValidateCallback(callback);
WorkItem workItem = WorkItemFactory.CreateWorkItem(this, _stpStartInfo, callback, state, postExecuteWorkItemCallback, callToPostExecute, workItemPriority);
Enqueue(workItem);
return workItem.GetWorkItemResult();
}
///
/// Wait for the thread pool to be idle
///
public void WaitForIdle()
{
WaitForIdle(Timeout.Infinite);
}
///
/// Wait for the thread pool to be idle
///
public bool WaitForIdle(TimeSpan timeout)
{
return WaitForIdle((int)timeout.TotalMilliseconds);
}
///
/// Wait for the thread pool to be idle
///
public bool WaitForIdle(int millisecondsTimeout)
{
ValidateWaitForIdle();
return _isIdleWaitHandle.WaitOne(millisecondsTimeout, false);
}
private void ValidateWaitForIdle()
{
if(_smartThreadPool == this)
{
throw new NotSupportedException(
"WaitForIdle cannot be called from a thread on its SmartThreadPool, it will cause may cause a deadlock");
}
}
internal void ValidateWorkItemsGroupWaitForIdle(IWorkItemsGroup workItemsGroup)
{
ValidateWorkItemsGroupWaitForIdleImpl(workItemsGroup, SmartThreadPool._currentWorkItem);
if ((null != workItemsGroup) &&
(null != SmartThreadPool._currentWorkItem) &&
SmartThreadPool._currentWorkItem.WasQueuedBy(workItemsGroup))
{
throw new NotSupportedException("WaitForIdle cannot be called from a thread on its SmartThreadPool, it will cause may cause a deadlock");
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
private void ValidateWorkItemsGroupWaitForIdleImpl(IWorkItemsGroup workItemsGroup, WorkItem workItem)
{
if ((null != workItemsGroup) &&
(null != workItem) &&
workItem.WasQueuedBy(workItemsGroup))
{
throw new NotSupportedException("WaitForIdle cannot be called from a thread on its SmartThreadPool, it will cause may cause a deadlock");
}
}
///
/// Force the SmartThreadPool to shutdown
///
public void Shutdown()
{
Shutdown(true, 0);
}
public void Shutdown(bool forceAbort, TimeSpan timeout)
{
Shutdown(forceAbort, (int)timeout.TotalMilliseconds);
}
///
/// Empties the queue of work items and abort the threads in the pool.
///
public void Shutdown(bool forceAbort, int millisecondsTimeout)
{
ValidateNotDisposed();
ISTPInstancePerformanceCounters pcs = _pcs;
if (NullSTPInstancePerformanceCounters.Instance != _pcs)
{
_pcs.Dispose();
// Set the _pcs to "null" to stop updating the performance
// counters
_pcs = NullSTPInstancePerformanceCounters.Instance;
}
Thread [] threads = null;
lock(_workerThreads.SyncRoot)
{
// Shutdown the work items queue
_workItemsQueue.Dispose();
// Signal the threads to exit
_shutdown = true;
_shuttingDownEvent.Set();
// Make a copy of the threads' references in the pool
threads = new Thread [_workerThreads.Count];
_workerThreads.Keys.CopyTo(threads, 0);
}
int millisecondsLeft = millisecondsTimeout;
DateTime start = DateTime.Now;
bool waitInfinitely = (Timeout.Infinite == millisecondsTimeout);
bool timeout = false;
// Each iteration we update the time left for the timeout.
foreach(Thread thread in threads)
{
// Join don't work with negative numbers
if (!waitInfinitely && (millisecondsLeft < 0))
{
timeout = true;
break;
}
// Wait for the thread to terminate
bool success = thread.Join(millisecondsLeft);
if(!success)
{
timeout = true;
break;
}
if(!waitInfinitely)
{
// Update the time left to wait
TimeSpan ts = DateTime.Now - start;
millisecondsLeft = millisecondsTimeout - (int)ts.TotalMilliseconds;
}
}
if (timeout && forceAbort)
{
// Abort the threads in the pool
foreach(Thread thread in threads)
{
if ((thread != null) && thread.IsAlive)
{
try
{
thread.Abort("Shutdown");
}
catch(SecurityException e)
{
e.GetHashCode();
}
catch(ThreadStateException ex)
{
ex.GetHashCode();
// In case the thread has been terminated
// after the check if it is alive.
}
}
}
}
// Dispose of the performance counters
pcs.Dispose();
}
///
/// Wait for all work items to complete
///
/// Array of work item result objects
///
/// true when every work item in workItemResults has completed; otherwise false.
///
public static bool WaitAll(
IWorkItemResult [] workItemResults)
{
return WaitAll(workItemResults, Timeout.Infinite, true);
}
///
/// Wait for all work items to complete
///
/// Array of work item result objects
/// The number of milliseconds to wait, or a TimeSpan that represents -1 milliseconds to wait indefinitely.
///
/// true to exit the synchronization domain for the context before the wait (if in a synchronized context), and reacquire it; otherwise, false.
///
///
/// true when every work item in workItemResults has completed; otherwise false.
///
public static bool WaitAll(
IWorkItemResult [] workItemResults,
TimeSpan timeout,
bool exitContext)
{
return WaitAll(workItemResults, (int)timeout.TotalMilliseconds, exitContext);
}
///
/// Wait for all work items to complete
///
/// Array of work item result objects
/// The number of milliseconds to wait, or a TimeSpan that represents -1 milliseconds to wait indefinitely.
///
/// true to exit the synchronization domain for the context before the wait (if in a synchronized context), and reacquire it; otherwise, false.
///
/// A cancel wait handle to interrupt the wait if needed
///
/// true when every work item in workItemResults has completed; otherwise false.
///
public static bool WaitAll(
IWorkItemResult [] workItemResults,
TimeSpan timeout,
bool exitContext,
WaitHandle cancelWaitHandle)
{
return WaitAll(workItemResults, (int)timeout.TotalMilliseconds, exitContext, cancelWaitHandle);
}
///
/// Wait for all work items to complete
///
/// Array of work item result objects
/// The number of milliseconds to wait, or Timeout.Infinite (-1) to wait indefinitely.
///
/// true to exit the synchronization domain for the context before the wait (if in a synchronized context), and reacquire it; otherwise, false.
///
///
/// true when every work item in workItemResults has completed; otherwise false.
///
public static bool WaitAll(
IWorkItemResult [] workItemResults,
int millisecondsTimeout,
bool exitContext)
{
return WorkItem.WaitAll(workItemResults, millisecondsTimeout, exitContext, null);
}
///
/// Wait for all work items to complete
///
/// Array of work item result objects
/// The number of milliseconds to wait, or Timeout.Infinite (-1) to wait indefinitely.
///
/// true to exit the synchronization domain for the context before the wait (if in a synchronized context), and reacquire it; otherwise, false.
///
/// A cancel wait handle to interrupt the wait if needed
///
/// true when every work item in workItemResults has completed; otherwise false.
///
public static bool WaitAll(
IWorkItemResult [] workItemResults,
int millisecondsTimeout,
bool exitContext,
WaitHandle cancelWaitHandle)
{
return WorkItem.WaitAll(workItemResults, millisecondsTimeout, exitContext, cancelWaitHandle);
}
///
/// Waits for any of the work items in the specified array to complete, cancel, or timeout
///
/// Array of work item result objects
///
/// The array index of the work item result that satisfied the wait, or WaitTimeout if any of the work items has been canceled.
///
public static int WaitAny(
IWorkItemResult [] workItemResults)
{
return WaitAny(workItemResults, Timeout.Infinite, true);
}
///
/// Waits for any of the work items in the specified array to complete, cancel, or timeout
///
/// Array of work item result objects
/// The number of milliseconds to wait, or a TimeSpan that represents -1 milliseconds to wait indefinitely.
///
/// true to exit the synchronization domain for the context before the wait (if in a synchronized context), and reacquire it; otherwise, false.
///
///
/// The array index of the work item result that satisfied the wait, or WaitTimeout if no work item result satisfied the wait and a time interval equivalent to millisecondsTimeout has passed or the work item has been canceled.
///
public static int WaitAny(
IWorkItemResult [] workItemResults,
TimeSpan timeout,
bool exitContext)
{
return WaitAny(workItemResults, (int)timeout.TotalMilliseconds, exitContext);
}
///
/// Waits for any of the work items in the specified array to complete, cancel, or timeout
///
/// Array of work item result objects
/// The number of milliseconds to wait, or a TimeSpan that represents -1 milliseconds to wait indefinitely.
///
/// true to exit the synchronization domain for the context before the wait (if in a synchronized context), and reacquire it; otherwise, false.
///
/// A cancel wait handle to interrupt the wait if needed
///
/// The array index of the work item result that satisfied the wait, or WaitTimeout if no work item result satisfied the wait and a time interval equivalent to millisecondsTimeout has passed or the work item has been canceled.
///
public static int WaitAny(
IWorkItemResult [] workItemResults,
TimeSpan timeout,
bool exitContext,
WaitHandle cancelWaitHandle)
{
return WaitAny(workItemResults, (int)timeout.TotalMilliseconds, exitContext, cancelWaitHandle);
}
///
/// Waits for any of the work items in the specified array to complete, cancel, or timeout
///
/// Array of work item result objects
/// The number of milliseconds to wait, or Timeout.Infinite (-1) to wait indefinitely.
///
/// true to exit the synchronization domain for the context before the wait (if in a synchronized context), and reacquire it; otherwise, false.
///
///
/// The array index of the work item result that satisfied the wait, or WaitTimeout if no work item result satisfied the wait and a time interval equivalent to millisecondsTimeout has passed or the work item has been canceled.
///
public static int WaitAny(
IWorkItemResult [] workItemResults,
int millisecondsTimeout,
bool exitContext)
{
return WorkItem.WaitAny(workItemResults, millisecondsTimeout, exitContext, null);
}
///
/// Waits for any of the work items in the specified array to complete, cancel, or timeout
///
/// Array of work item result objects
/// The number of milliseconds to wait, or Timeout.Infinite (-1) to wait indefinitely.
///
/// true to exit the synchronization domain for the context before the wait (if in a synchronized context), and reacquire it; otherwise, false.
///
/// A cancel wait handle to interrupt the wait if needed
///
/// The array index of the work item result that satisfied the wait, or WaitTimeout if no work item result satisfied the wait and a time interval equivalent to millisecondsTimeout has passed or the work item has been canceled.
///
public static int WaitAny(
IWorkItemResult [] workItemResults,
int millisecondsTimeout,
bool exitContext,
WaitHandle cancelWaitHandle)
{
return WorkItem.WaitAny(workItemResults, millisecondsTimeout, exitContext, cancelWaitHandle);
}
public IWorkItemsGroup CreateWorkItemsGroup(int concurrency)
{
IWorkItemsGroup workItemsGroup = new WorkItemsGroup(this, concurrency, _stpStartInfo);
return workItemsGroup;
}
public IWorkItemsGroup CreateWorkItemsGroup(int concurrency, WIGStartInfo wigStartInfo)
{
IWorkItemsGroup workItemsGroup = new WorkItemsGroup(this, concurrency, wigStartInfo);
return workItemsGroup;
}
public event WorkItemsGroupIdleHandler OnIdle
{
add
{
throw new NotImplementedException("This event is not implemented in the SmartThreadPool class. Please create a WorkItemsGroup in order to use this feature.");
//_onIdle += value;
}
remove
{
throw new NotImplementedException("This event is not implemented in the SmartThreadPool class. Please create a WorkItemsGroup in order to use this feature.");
//_onIdle -= value;
}
}
public void Cancel()
{
ICollection workItemsGroups = _workItemsGroups.Values;
foreach(WorkItemsGroup workItemsGroup in workItemsGroups)
{
workItemsGroup.Cancel();
}
}
public void Start()
{
lock (this)
{
if (!this._stpStartInfo.StartSuspended)
{
return;
}
_stpStartInfo.StartSuspended = false;
}
ICollection workItemsGroups = _workItemsGroups.Values;
foreach(WorkItemsGroup workItemsGroup in workItemsGroups)
{
workItemsGroup.OnSTPIsStarting();
}
StartOptimalNumberOfThreads();
}
#endregion
#region Properties
///
/// Get/Set the name of the SmartThreadPool instance
///
public string Name
{
get
{
return _name;
}
set
{
_name = value;
}
}
///
/// Get the lower limit of threads in the pool.
///
public int MinThreads
{
get
{
ValidateNotDisposed();
return _stpStartInfo.MinWorkerThreads;
}
}
///
/// Get the upper limit of threads in the pool.
///
public int MaxThreads
{
get
{
ValidateNotDisposed();
return _stpStartInfo.MaxWorkerThreads;
}
}
///
/// Get the number of threads in the thread pool.
/// Should be between the lower and the upper limits.
///
public int ActiveThreads
{
get
{
ValidateNotDisposed();
return _workerThreads.Count;
}
}
///
/// Get the number of busy (not idle) threads in the thread pool.
///
public int InUseThreads
{
get
{
ValidateNotDisposed();
return _inUseWorkerThreads;
}
}
///
/// Get the number of work items in the queue.
///
public int WaitingCallbacks
{
get
{
ValidateNotDisposed();
return _workItemsQueue.Count;
}
}
public event EventHandler Idle
{
add
{
_stpIdle += value;
}
remove
{
_stpIdle -= value;
}
}
#endregion
#region IDisposable Members
// ~SmartThreadPool()
// {
// Dispose();
// }
public void Dispose()
{
if (!_isDisposed)
{
if (!_shutdown)
{
Shutdown();
}
if (null != _shuttingDownEvent)
{
_shuttingDownEvent.Close();
_shuttingDownEvent = null;
}
_workerThreads.Clear();
_isDisposed = true;
GC.SuppressFinalize(this);
}
}
private void ValidateNotDisposed()
{
if(_isDisposed)
{
throw new ObjectDisposedException(GetType().ToString(), "The SmartThreadPool has been shutdown");
}
}
#endregion
}
#endregion
}