/* * Copyright (c) Contributors, http://www.openmetaverse.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSim Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ using System; using System.Collections.Generic; using System.Text; namespace libTerrain { partial class Channel { // Navier Stokes Algorithms ported from // "Real-Time Fluid Dynamics for Games" by Jos Stam. // presented at GDC 2003. // Poorly ported from C++. (I gave up making it properly native somewhere after nsSetBnd) private static int nsIX(int i, int j, int N) { return ((i) + (N + 2) * (j)); } private static void nsSwap(ref double x0, ref double x) { double tmp = x0; x0 = x; x = tmp; } private static void nsSwap(ref double[] x0, ref double[] x) { double[] tmp = x0; x0 = x; x = tmp; } private void nsAddSource(int N, ref double[] x, ref double[] s, double dt) { int i; int size = (N + 2) * (N + 2); for (i = 0; i < size; i++) { x[i] += dt * s[i]; } } private void nsSetBnd(int N, int b, ref double[] x) { int i; for (i = 0; i <= N; i++) { x[nsIX(0, i, N)] = b == 1 ? -x[nsIX(1, i, N)] : x[nsIX(1, i, N)]; x[nsIX(0, N + 1, N)] = b == 1 ? -x[nsIX(N, i, N)] : x[nsIX(N, i, N)]; x[nsIX(i, 0, N)] = b == 2 ? -x[nsIX(i, 1, N)] : x[nsIX(i, 1, N)]; x[nsIX(i, N + 1, N)] = b == 2 ? -x[nsIX(i, N, N)] : x[nsIX(i, N, N)]; } x[nsIX(0, 0, N)] = 0.5f * (x[nsIX(1, 0, N)] + x[nsIX(0, 1, N)]); x[nsIX(0, N + 1, N)] = 0.5f * (x[nsIX(1, N + 1, N)] + x[nsIX(0, N, N)]); x[nsIX(N + 1, 0, N)] = 0.5f * (x[nsIX(N, 0, N)] + x[nsIX(N + 1, 1, N)]); x[nsIX(N + 1, N + 1, N)] = 0.5f * (x[nsIX(N, N + 1, N)] + x[nsIX(N + 1, N, N)]); } private void nsLinSolve(int N, int b, ref double[] x, ref double[] x0, double a, double c) { int i, j; for (i = 1; i <= N; i++) { for (j = 1; j <= N; j++) { x[nsIX(i, j, N)] = (x0[nsIX(i, j, N)] + a * (x[nsIX(i - 1, j, N)] + x[nsIX(i + 1, j, N)] + x[nsIX(i, j - 1, N)] + x[nsIX(i, j + 1, N)]) ) / c; } } nsSetBnd(N, b, ref x); } private void nsDiffuse(int N, int b, ref double[] x, ref double[] x0, double diff, double dt) { double a = dt * diff * N * N; nsLinSolve(N, b, ref x, ref x0, a, 1 + 4 * a); } private void nsAdvect(int N, int b, ref double[] d, ref double[] d0, ref double[] u, ref double[] v, double dt) { int i, j, i0, j0, i1, j1; double x, y, s0, t0, s1, t1, dt0; dt0 = dt * N; for (i = 1; i <= N; i++) { for (j = 1; j <= N; j++) { x = i - dt0 * u[nsIX(i, j, N)]; y = j - dt0 * v[nsIX(i, j, N)]; if (x < 0.5) x = 0.5; if (x > N + 0.5) x = N + 0.5; i0 = (int)x; i1 = i0 + 1; if (y < 0.5) y = 0.5; if (y > N + 0.5) y = N + 0.5; j0 = (int)y; j1 = j0 + 1; s1 = x - i0; s0 = 1 - s1; t1 = y - j0; t0 = 1 - t1; d[nsIX(i, j, N)] = s0 * (t0 * d0[nsIX(i0, j0, N)] + t1 * d0[nsIX(i0, j1, N)]) + s1 * (t0 * d0[nsIX(i1, j0, N)] + t1 * d0[nsIX(i1, j1, N)]); } } nsSetBnd(N, b, ref d); } public void nsProject(int N, ref double[] u, ref double[] v, ref double[] p, ref double[] div) { int i, j; for (i = 1; i <= N; i++) { for (j = 1; j <= N; j++) { div[nsIX(i, j, N)] = -0.5 * (u[nsIX(i + 1, j, N)] - u[nsIX(i - 1, j, N)] + v[nsIX(i, j + 1, N)] - v[nsIX(i, j - 1, N)]) / N; p[nsIX(i, j, N)] = 0; } } nsSetBnd(N, 0, ref div); nsSetBnd(N, 0, ref p); nsLinSolve(N, 0, ref p, ref div, 1, 4); for (i = 1; i <= N; i++) { for (j = 1; j <= N; j++) { u[nsIX(i, j, N)] -= 0.5 * N * (p[nsIX(i + 1, j, N)] - p[nsIX(i - 1, j, N)]); v[nsIX(i, j, N)] -= 0.5 * N * (p[nsIX(i, j + 1, N)] - p[nsIX(i, j - 1, N)]); } } nsSetBnd(N, 1, ref u); nsSetBnd(N, 2, ref v); } private void nsDensStep(int N, ref double[] x, ref double[] x0, ref double[] u, ref double[] v, double diff, double dt) { nsAddSource(N, ref x, ref x0, dt); nsSwap(ref x0, ref x); nsDiffuse(N, 0, ref x, ref x0, diff, dt); nsSwap(ref x0, ref x); nsAdvect(N, 0, ref x, ref x0, ref u, ref v, dt); } private void nsVelStep(int N, ref double[] u, ref double[] v, ref double[] u0, ref double[] v0, double visc, double dt) { nsAddSource(N, ref u, ref u0, dt); nsAddSource(N, ref v, ref v0, dt); nsSwap(ref u0, ref u); nsDiffuse(N, 1, ref u, ref u0, visc, dt); nsSwap(ref v0, ref v); nsDiffuse(N, 2, ref v, ref v0, visc, dt); nsProject(N, ref u, ref v, ref u0, ref v0); nsSwap(ref u0, ref u); nsSwap(ref v0, ref v); nsAdvect(N, 1, ref u, ref u0, ref u0, ref v0, dt); nsAdvect(N, 2, ref v, ref v0, ref u0, ref v0, dt); nsProject(N, ref u, ref v, ref u0, ref v0); } private void nsBufferToDoubles(ref double[] dens, int N, ref double[,] doubles) { int i; int j; for (i = 0; i <= N; i++) { for (j = 0; j <= N; j++) { doubles[i, j] = dens[nsIX(i, j, N)]; } } } private void nsSimulate(int N, int rounds, double dt, double diff, double visc) { int size = (N * 2) * (N * 2); double[] u = new double[size]; // Force, X axis double[] v = new double[size]; // Force, Y axis double[] u_prev = new double[size]; double[] v_prev = new double[size]; double[] dens = (double[])map.Clone(); double[] dens_prev = (double[])map.Clone(); for (int i = 0; i < rounds; i++) { u_prev = u; v_prev = v; dens_prev = dens; nsVelStep(N, ref u, ref v, ref u_prev, ref v_prev, visc, dt); nsDensStep(N, ref dens, ref dens_prev, ref u, ref v, diff, dt); } nsBufferToDoubles(ref dens, N, ref this.map); } /// /// Performs computational fluid dynamics on a channel /// /// The number of steps to perform (Recommended: 20) /// Delta Time - The time between steps /// Fluid diffusion rate /// Fluid viscosity public void navierStokes(int rounds, double dt, double diff, double visc) { nsSimulate(this.h, rounds, dt, diff, visc); } } }