/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: * ODEPrim.cs contains methods dealing with Prim editing, Prim * characteristics and Kinetic motion. * ODEDynamics.cs contains methods dealing with Prim Physical motion * (dynamics) and the associated settings. Old Linear and angular * motors for dynamic motion have been replace with MoveLinear() * and MoveAngular(); 'Physical' is used only to switch ODE dynamic * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_ is to * switch between 'VEHICLE' parameter use and general dynamics * settings use. */ using System; using System.Collections.Generic; using System.Reflection; using System.Runtime.InteropServices; using log4net; using OpenMetaverse; using OdeAPI; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; namespace OpenSim.Region.Physics.OdePlugin { public class ODEDynamics { public Vehicle Type { get { return m_type; } } // private OdeScene m_parentScene = null; // private IntPtr m_aMotor = IntPtr.Zero; private OdePrim rootPrim; private OdeScene _pParentScene; private Vector3 refUpAxis = new Vector3(0, 0, 1); private Vector3 refAtAxis = new Vector3(1, 0, 0); // Vehicle properties private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: // HOVER_TERRAIN_ONLY // HOVER_GLOBAL_HEIGHT // NO_DEFLECTION_UP // HOVER_WATER_ONLY // HOVER_UP_ONLY // LIMIT_MOTOR_UP // LIMIT_ROLL_ONLY private Vector3 m_BlockingEndPoint = Vector3.Zero; // not sl private Quaternion m_RollreferenceFrame = Quaternion.Identity; // Linear properties private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time private Vector3 m_linearFrictionTimescale = new Vector3(1000, 1000, 1000); private float m_linearMotorDecayTimescale = 120; private float m_linearMotorTimescale = 1000; private Vector3 m_lastLinearVelocityVector = Vector3.Zero; private Vector3 m_linearMotorOffset = Vector3.Zero; //Angular properties private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor private float m_angularMotorTimescale = 1000; // motor angular velocity ramp up rate private float m_angularMotorDecayTimescale = 120; // motor angular velocity decay rate private Vector3 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); // body angular velocity decay rate private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body //Deflection properties private float m_angularDeflectionEfficiency = 0; private float m_angularDeflectionTimescale = 1000; private float m_linearDeflectionEfficiency = 0; private float m_linearDeflectionTimescale = 1000; //Banking properties private float m_bankingEfficiency = 0; private float m_bankingMix = 0; private float m_bankingTimescale = 0; //Hover and Buoyancy properties private float m_VhoverHeight = 0f; private float m_VhoverEfficiency = 0f; private float m_VhoverTimescale = 1000f; private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. //Attractor properties private float m_verticalAttractionEfficiency = 1.0f; // damped private float m_verticalAttractionTimescale = 1000f; // Timescale > 300 means no vert attractor. // special contact data for vehicles public ContactData VehiculeContactData = new ContactData(0f, 0.1f); // auxiliar private Vector3 m_dir = Vector3.Zero; // velocity applied to body private float m_lmEfect = 0; // current linear motor eficiency private float m_amEfect = 0; // current angular motor eficiency public ODEDynamics(OdePrim rootp) { rootPrim = rootp; _pParentScene = rootPrim._parent_scene; } internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) { float len; float invtimestep = 1.0f / _pParentScene.ODE_STEPSIZE; float timestep = _pParentScene.ODE_STEPSIZE; switch (pParam) { case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: if (pValue < 0f) pValue = 0f; if (pValue > 1f) pValue = 1f; m_angularDeflectionEfficiency = pValue; break; case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: if (pValue < timestep) pValue = timestep; m_angularDeflectionTimescale = pValue; break; case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: if (pValue < timestep) pValue = timestep; else if (pValue > 120) pValue = 120; m_angularMotorDecayTimescale = pValue * invtimestep; break; case Vehicle.ANGULAR_MOTOR_TIMESCALE: if (pValue < timestep) pValue = timestep; m_angularMotorTimescale = pValue; break; case Vehicle.BANKING_EFFICIENCY: if (pValue < -1f) pValue = -1f; if (pValue > 1f) pValue = 1f; m_bankingEfficiency = pValue; break; case Vehicle.BANKING_MIX: if (pValue < 0f) pValue = 0f; if (pValue > 1f) pValue = 1f; m_bankingMix = pValue; break; case Vehicle.BANKING_TIMESCALE: if (pValue < timestep) pValue = timestep; m_bankingTimescale = pValue; break; case Vehicle.BUOYANCY: if (pValue < -1f) pValue = -1f; if (pValue > 1f) pValue = 1f; m_VehicleBuoyancy = pValue; break; case Vehicle.HOVER_EFFICIENCY: if (pValue < 0f) pValue = 0f; if (pValue > 1f) pValue = 1f; m_VhoverEfficiency = pValue; break; case Vehicle.HOVER_HEIGHT: m_VhoverHeight = pValue; break; case Vehicle.HOVER_TIMESCALE: if (pValue < timestep) pValue = timestep; m_VhoverTimescale = pValue; break; case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: if (pValue < 0f) pValue = 0f; if (pValue > 1f) pValue = 1f; m_linearDeflectionEfficiency = pValue; break; case Vehicle.LINEAR_DEFLECTION_TIMESCALE: if (pValue < timestep) pValue = timestep; m_linearDeflectionTimescale = pValue; break; case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: if (pValue < timestep) pValue = timestep; else if (pValue > 120) pValue = 120; m_linearMotorDecayTimescale = pValue * invtimestep; break; case Vehicle.LINEAR_MOTOR_TIMESCALE: if (pValue < timestep) pValue = timestep; m_linearMotorTimescale = pValue; break; case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: if (pValue < 0f) pValue = 0f; if (pValue > 1f) pValue = 1f; m_verticalAttractionEfficiency = pValue; break; case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: if (pValue < timestep) pValue = timestep; m_verticalAttractionTimescale = pValue; break; // These are vector properties but the engine lets you use a single float value to // set all of the components to the same value case Vehicle.ANGULAR_FRICTION_TIMESCALE: if (pValue < timestep) pValue = timestep; m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); break; case Vehicle.ANGULAR_MOTOR_DIRECTION: m_angularMotorDirection = new Vector3(pValue, pValue, pValue); len = m_angularMotorDirection.Length(); if (len > 12.566f) m_angularMotorDirection *= (12.566f / len); m_amEfect = 1.0f; // turn it on break; case Vehicle.LINEAR_FRICTION_TIMESCALE: if (pValue < timestep) pValue = timestep; m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); break; case Vehicle.LINEAR_MOTOR_DIRECTION: m_linearMotorDirection = new Vector3(pValue, pValue, pValue); len = m_linearMotorDirection.Length(); if (len > 30.0f) m_linearMotorDirection *= (30.0f / len); m_lmEfect = 1.0f; // turn it on break; case Vehicle.LINEAR_MOTOR_OFFSET: m_linearMotorOffset = new Vector3(pValue, pValue, pValue); len = m_linearMotorOffset.Length(); if (len > 100.0f) m_linearMotorOffset *= (100.0f / len); break; } }//end ProcessFloatVehicleParam internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) { float len; float invtimestep = 1.0f / _pParentScene.ODE_STEPSIZE; float timestep = _pParentScene.ODE_STEPSIZE; switch (pParam) { case Vehicle.ANGULAR_FRICTION_TIMESCALE: if (pValue.X < timestep) pValue.X = timestep; if (pValue.Y < timestep) pValue.Y = timestep; if (pValue.Z < timestep) pValue.Z = timestep; m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.ANGULAR_MOTOR_DIRECTION: m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // Limit requested angular speed to 2 rps= 4 pi rads/sec len = m_angularMotorDirection.Length(); if (len > 12.566f) m_angularMotorDirection *= (12.566f / len); m_amEfect = 1.0f; // turn it on break; case Vehicle.LINEAR_FRICTION_TIMESCALE: if (pValue.X < timestep) pValue.X = timestep; if (pValue.Y < timestep) pValue.Y = timestep; if (pValue.Z < timestep) pValue.Z = timestep; m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.LINEAR_MOTOR_DIRECTION: m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); len = m_linearMotorDirection.Length(); if (len > 30.0f) m_linearMotorDirection *= (30.0f / len); m_lmEfect = 1.0f; // turn it on break; case Vehicle.LINEAR_MOTOR_OFFSET: m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); len = m_linearMotorOffset.Length(); if (len > 100.0f) m_linearMotorOffset *= (100.0f / len); break; case Vehicle.BLOCK_EXIT: m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z); break; } }//end ProcessVectorVehicleParam internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) { switch (pParam) { case Vehicle.REFERENCE_FRAME: m_referenceFrame = Quaternion.Inverse(pValue); break; case Vehicle.ROLL_FRAME: m_RollreferenceFrame = pValue; break; } }//end ProcessRotationVehicleParam internal void ProcessVehicleFlags(int pParam, bool remove) { if (remove) { m_flags &= ~((VehicleFlag)pParam); } else { m_flags |= (VehicleFlag)pParam; } }//end ProcessVehicleFlags internal void ProcessTypeChange(Vehicle pType) { float invtimestep = _pParentScene.ODE_STEPSIZE; m_lmEfect = 0; m_amEfect = 0; m_linearMotorDirection = Vector3.Zero; m_angularMotorDirection = Vector3.Zero; m_BlockingEndPoint = Vector3.Zero; m_RollreferenceFrame = Quaternion.Identity; m_linearMotorOffset = Vector3.Zero; m_referenceFrame = Quaternion.Identity; // Set Defaults For Type m_type = pType; switch (pType) { case Vehicle.TYPE_NONE: m_linearFrictionTimescale = new Vector3(1000, 1000, 1000); m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); m_linearMotorTimescale = 1000; m_linearMotorDecayTimescale = 120 * invtimestep; m_angularMotorTimescale = 1000; m_angularMotorDecayTimescale = 1000 * invtimestep; m_VhoverHeight = 0; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; m_flags = (VehicleFlag)0; break; case Vehicle.TYPE_SLED: m_linearFrictionTimescale = new Vector3(30, 1, 1000); m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); m_linearMotorTimescale = 1000; m_linearMotorDecayTimescale = 120 * invtimestep; m_angularMotorTimescale = 1000; m_angularMotorDecayTimescale = 120 * invtimestep; m_VhoverHeight = 0; m_VhoverEfficiency = 1; m_VhoverTimescale = 10; m_VehicleBuoyancy = 0; m_linearDeflectionEfficiency = 1; m_linearDeflectionTimescale = 1; m_angularDeflectionEfficiency = 0; m_angularDeflectionTimescale = 1000; m_bankingEfficiency = 0; m_bankingMix = 1; m_bankingTimescale = 10; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); break; case Vehicle.TYPE_CAR: m_linearFrictionTimescale = new Vector3(100, 2, 1000); m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); m_linearMotorTimescale = 1; m_linearMotorDecayTimescale = 60 * invtimestep; m_angularMotorTimescale = 1; m_angularMotorDecayTimescale = 0.8f * invtimestep; m_VhoverHeight = 0; m_VhoverEfficiency = 0; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; m_linearDeflectionEfficiency = 1; m_linearDeflectionTimescale = 2; m_angularDeflectionEfficiency = 0; m_angularDeflectionTimescale = 10; m_verticalAttractionEfficiency = 1f; m_verticalAttractionTimescale = 10f; m_bankingEfficiency = -0.2f; m_bankingMix = 1; m_bankingTimescale = 1; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP | VehicleFlag.HOVER_UP_ONLY); break; case Vehicle.TYPE_BOAT: m_linearFrictionTimescale = new Vector3(10, 3, 2); m_angularFrictionTimescale = new Vector3(10, 10, 10); m_linearMotorTimescale = 5; m_linearMotorDecayTimescale = 60 * invtimestep; m_angularMotorTimescale = 4; m_angularMotorDecayTimescale = 4 * invtimestep; m_VhoverHeight = 0; m_VhoverEfficiency = 0.5f; m_VhoverTimescale = 2; m_VehicleBuoyancy = 1; m_linearDeflectionEfficiency = 0.5f; m_linearDeflectionTimescale = 3; m_angularDeflectionEfficiency = 0.5f; m_angularDeflectionTimescale = 5; m_verticalAttractionEfficiency = 0.5f; m_verticalAttractionTimescale = 5f; m_bankingEfficiency = -0.3f; m_bankingMix = 0.8f; m_bankingTimescale = 1; m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_ROLL_ONLY); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP | VehicleFlag.HOVER_WATER_ONLY); break; case Vehicle.TYPE_AIRPLANE: m_linearFrictionTimescale = new Vector3(200, 10, 5); m_angularFrictionTimescale = new Vector3(20, 20, 20); m_linearMotorTimescale = 2; m_linearMotorDecayTimescale = 60 * invtimestep; m_angularMotorTimescale = 4; m_angularMotorDecayTimescale = 8 * invtimestep; m_VhoverHeight = 0; m_VhoverEfficiency = 0.5f; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; m_linearDeflectionEfficiency = 0.5f; m_linearDeflectionTimescale = 0.5f; m_angularDeflectionEfficiency = 1; m_angularDeflectionTimescale = 2; m_verticalAttractionEfficiency = 0.9f; m_verticalAttractionTimescale = 2f; m_bankingEfficiency = 1; m_bankingMix = 0.7f; m_bankingTimescale = 2; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); break; case Vehicle.TYPE_BALLOON: m_linearFrictionTimescale = new Vector3(5, 5, 5); m_angularFrictionTimescale = new Vector3(10, 10, 10); m_linearMotorTimescale = 5; m_linearMotorDecayTimescale = 60 * invtimestep; m_angularMotorTimescale = 6; m_angularMotorDecayTimescale = 10 * invtimestep; m_VhoverHeight = 5; m_VhoverEfficiency = 0.8f; m_VhoverTimescale = 10; m_VehicleBuoyancy = 1; m_linearDeflectionEfficiency = 0; m_linearDeflectionTimescale = 5 * invtimestep; m_angularDeflectionEfficiency = 0; m_angularDeflectionTimescale = 5; m_verticalAttractionEfficiency = 0f; m_verticalAttractionTimescale = 1000f; m_bankingEfficiency = 0; m_bankingMix = 0.7f; m_bankingTimescale = 5; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); break; } }//end SetDefaultsForType internal void Stop() { m_lmEfect = 0; m_amEfect = 0; } public static Vector3 Xrot(Quaternion rot) { Vector3 vec; rot.Normalize(); // just in case vec.X = 2 * (rot.X * rot.X + rot.W * rot.W) - 1; vec.Y = 2 * (rot.X * rot.Y + rot.Z * rot.W); vec.Z = 2 * (rot.X * rot.Z - rot.Y * rot.W); return vec; } public static Vector3 Zrot(Quaternion rot) { Vector3 vec; rot.Normalize(); // just in case vec.X = 2 * (rot.X * rot.Z + rot.Y * rot.W); vec.Y = 2 * (rot.Y * rot.Z - rot.X * rot.W); vec.Z = 2 * (rot.Z * rot.Z + rot.W * rot.W) - 1; return vec; } private const float halfpi = 0.5f * (float)Math.PI; public static Vector3 ubitRot2Euler(Quaternion rot) { // returns roll in X // pitch in Y // yaw in Z Vector3 vec; // assuming rot is normalised // rot.Normalize(); float zX = rot.X * rot.Z + rot.Y * rot.W; if (zX < -0.49999f) { vec.X = 0; vec.Y = -halfpi; vec.Z = (float)(-2d * Math.Atan(rot.X / rot.W)); } else if (zX > 0.49999f) { vec.X = 0; vec.Y = halfpi; vec.Z = (float)(2d * Math.Atan(rot.X / rot.W)); } else { vec.Y = (float)Math.Asin(2 * zX); float sqw = rot.W * rot.W; float minuszY = rot.X * rot.W - rot.Y * rot.Z; float zZ = rot.Z * rot.Z + sqw - 0.5f; vec.X = (float)Math.Atan2(minuszY, zZ); float yX = rot.Z * rot.W - rot.X * rot.Y; //( have negative ?) float yY = rot.X * rot.X + sqw - 0.5f; vec.Z = (float)Math.Atan2(yX, yY); } return vec; } public static void GetRollPitch(Quaternion rot, out float roll, out float pitch) { // assuming rot is normalised // rot.Normalize(); float zX = rot.X * rot.Z + rot.Y * rot.W; if (zX < -0.49999f) { roll = 0; pitch = -halfpi; } else if (zX > 0.49999f) { roll = 0; pitch = halfpi; } else { pitch = (float)Math.Asin(2 * zX); float minuszY = rot.X * rot.W - rot.Y * rot.Z; float zZ = rot.Z * rot.Z + rot.W * rot.W - 0.5f; roll = (float)Math.Atan2(minuszY, zZ); } return ; } internal void Step()//float pTimestep) { IntPtr Body = rootPrim.Body; d.Quaternion rot = d.BodyGetQuaternion(Body); Quaternion objrotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object Quaternion rotq = objrotq; // rotq = rotation of object rotq *= m_referenceFrame; // rotq is now rotation in vehicle reference frame Quaternion irotq = Quaternion.Inverse(rotq); d.Vector3 dvtmp; Vector3 tmpV; dvtmp = d.BodyGetLinearVel(Body); Vector3 curVel; curVel.X = dvtmp.X; curVel.Y = dvtmp.Y; curVel.Z = dvtmp.Z; Vector3 curLocalVel = curVel * irotq; // current velocity in local dvtmp = d.BodyGetAngularVel(Body); Vector3 curAngVel; curAngVel.X = dvtmp.X; curAngVel.Y = dvtmp.Y; curAngVel.Z = dvtmp.Z; Vector3 curLocalAngVel = curAngVel * irotq; // current velocity in local Vector3 force = Vector3.Zero; // actually linear aceleration until mult by mass in world frame Vector3 torque = Vector3.Zero;// actually angular aceleration until mult by Inertia in object frame d.Vector3 dtorque = new d.Vector3();// actually angular aceleration until mult by Inertia in object frame bool doathing = false; // linear motor if (m_lmEfect > 0.01 && m_linearMotorTimescale < 1000) { tmpV = m_linearMotorDirection - curLocalVel; // velocity error if (tmpV.LengthSquared() > 1e-6f) { tmpV = tmpV * (m_lmEfect / m_linearMotorTimescale); // error to correct in this timestep tmpV *= rotq; // to world if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0) tmpV.Z = 0; if (m_linearMotorOffset.X != 0 && m_linearMotorOffset.Y != 0 && m_linearMotorOffset.Z != 0) { // have offset, do it now tmpV *= rootPrim.Mass; d.BodyAddForceAtRelPos(Body, tmpV.X, tmpV.Y, tmpV.Z, m_linearMotorOffset.X, m_linearMotorOffset.Y, m_linearMotorOffset.Z); } else { force.X += tmpV.X; force.Y += tmpV.Y; force.Z += tmpV.Z; } } m_lmEfect *= (1 - 1.0f / m_linearMotorDecayTimescale); } else m_lmEfect = 0; // friction if (curLocalVel.X != 0 || curLocalVel.Y != 0 || curLocalVel.Z != 0) { tmpV.X = -curLocalVel.X / m_linearFrictionTimescale.X; tmpV.Y = -curLocalVel.Y / m_linearFrictionTimescale.Y; tmpV.Z = -curLocalVel.Z / m_linearFrictionTimescale.Z; tmpV *= rotq; // to world force.X += tmpV.X; force.Y += tmpV.Y; force.Z += tmpV.Z; } // hover if (m_VhoverTimescale < 300) { d.Vector3 pos = d.BodyGetPosition(Body); // default to global float perr = m_VhoverHeight - pos.Z;; if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) { perr += _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y); } else if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) { perr += _pParentScene.GetWaterLevel(); } else if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == 0) { float t = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y); float w = _pParentScene.GetWaterLevel(); if (t > w) perr += t; else perr += w; } if ((m_flags & VehicleFlag.HOVER_UP_ONLY) == 0 || perr > 0) { force.Z += (perr / m_VhoverTimescale / m_VhoverTimescale - curVel.Z * m_VhoverEfficiency) / _pParentScene.ODE_STEPSIZE; force.Z += _pParentScene.gravityz * (1f - m_VehicleBuoyancy); } else // no buoyancy force.Z += _pParentScene.gravityz; } else { // default gravity and buoancy force.Z += _pParentScene.gravityz * (1f - m_VehicleBuoyancy); } // linear deflection if (m_linearDeflectionEfficiency > 0) { float len = curVel.Length(); Vector3 atAxis = refAtAxis; atAxis *= rotq; // at axis rotated to world atAxis = Xrot(rotq); tmpV = atAxis * len; tmpV -= curVel; // velocity error tmpV *= (m_linearDeflectionEfficiency / m_linearDeflectionTimescale); // error to correct in this timestep force.X += tmpV.X; force.Y += tmpV.Y; if((m_flags & VehicleFlag.NO_DEFLECTION_UP) ==0) force.Z += tmpV.Z; } // angular motor if (m_amEfect > 0.01 && m_angularMotorTimescale < 1000) { tmpV = m_angularMotorDirection - curLocalAngVel; // velocity error if (tmpV.LengthSquared() > 1e-6f) { tmpV = tmpV * (m_amEfect / m_angularMotorTimescale); // error to correct in this timestep tmpV *= m_referenceFrame; // to object dtorque.X += tmpV.X; dtorque.Y += tmpV.Y; dtorque.Z += tmpV.Z; } m_amEfect *= (1 - 1.0f / m_angularMotorDecayTimescale); } else m_amEfect = 0; // angular friction if (curLocalAngVel.X != 0 || curLocalAngVel.Y != 0 || curLocalAngVel.Z != 0) { tmpV.X = -curLocalAngVel.X / m_angularFrictionTimescale.X; tmpV.Y = -curLocalAngVel.Y / m_angularFrictionTimescale.Y; tmpV.Z = -curLocalAngVel.Z / m_angularFrictionTimescale.Z; tmpV *= m_referenceFrame; // to object dtorque.X += tmpV.X; dtorque.Y += tmpV.Y; dtorque.Z += tmpV.Z; } // angular deflection if (m_angularDeflectionEfficiency > 0) { doathing = false; float ftmp = m_angularDeflectionEfficiency / m_angularDeflectionTimescale / m_angularDeflectionTimescale /_pParentScene.ODE_STEPSIZE; tmpV.X = 0; if (Math.Abs(curLocalVel.Z) > 0.01) { tmpV.Y = -(float)Math.Atan2(curLocalVel.Z, curLocalVel.X) * ftmp; doathing = true; } else tmpV.Y = 0; if (Math.Abs(curLocalVel.Y) > 0.01) { tmpV.Z = (float)Math.Atan2(curLocalVel.Y, curLocalVel.X) * ftmp; doathing = true; } else tmpV.Z = 0; if (doathing) { tmpV *= m_referenceFrame; // to object dtorque.X += tmpV.X; dtorque.Y += tmpV.Y; dtorque.Z += tmpV.Z; } } // vertical atractor if (m_verticalAttractionTimescale < 300) { doathing = false; float roll; float pitch; GetRollPitch(rotq, out roll, out pitch); float ftmp = 1.0f / m_verticalAttractionTimescale / m_verticalAttractionTimescale / _pParentScene.ODE_STEPSIZE; float ftmp2 = m_verticalAttractionEfficiency / _pParentScene.ODE_STEPSIZE; if (Math.Abs(roll) > 0.01) // roll { tmpV.X = -roll * ftmp; tmpV.X -= curLocalAngVel.X * ftmp2; doathing = true; } else { tmpV.X = 0; } if (Math.Abs(pitch) > 0.01 && ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) == 0)) // pitch { tmpV.Y = -pitch * ftmp; tmpV.Y -= curLocalAngVel.Y * ftmp2; doathing = true; } else { tmpV.Y = 0; } tmpV.Z = 0; if (m_bankingEfficiency == 0 || Math.Abs(roll) < 0.01) tmpV.Z = 0; else { float broll = -roll * m_bankingEfficiency; ; if (m_bankingMix != 0) { float vfact = m_bankingMix * Math.Abs(curLocalVel.X) / 10.0f; if (vfact < m_bankingMix) broll *= ((1 - m_bankingMix) + vfact); } tmpV.Z = (broll - curLocalAngVel.Z) / m_bankingTimescale; doathing = true; } if (doathing) { tmpV *= m_referenceFrame; // to object dtorque.X += tmpV.X; dtorque.Y += tmpV.Y; dtorque.Z += tmpV.Z; } } /* d.Vector3 pos = d.BodyGetPosition(Body); // Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); Vector3 posChange = new Vector3(); posChange.X = pos.X - m_lastPositionVector.X; posChange.Y = pos.Y - m_lastPositionVector.Y; posChange.Z = pos.Z - m_lastPositionVector.Z; double Zchange = Math.Abs(posChange.Z); if (m_BlockingEndPoint != Vector3.Zero) { if (pos.X >= (m_BlockingEndPoint.X - (float)1)) { pos.X -= posChange.X + 1; d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } if (pos.Y >= (m_BlockingEndPoint.Y - (float)1)) { pos.Y -= posChange.Y + 1; d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } if (pos.Z >= (m_BlockingEndPoint.Z - (float)1)) { pos.Z -= posChange.Z + 1; d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } if (pos.X <= 0) { pos.X += posChange.X + 1; d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } if (pos.Y <= 0) { pos.Y += posChange.Y + 1; d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } } if (pos.Z < _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y)) { pos.Z = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + 2; d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } } if ((m_flags & (VehicleFlag.NO_X)) != 0) { m_dir.X = 0; } if ((m_flags & (VehicleFlag.NO_Y)) != 0) { m_dir.Y = 0; } if ((m_flags & (VehicleFlag.NO_Z)) != 0) { m_dir.Z = 0; } */ // angular part /* // Get what the body is doing, this includes 'external' influences /* Vector3 angularVelocity = Vector3.Zero; // Vertical attractor section Vector3 vertattr = Vector3.Zero; if (m_verticalAttractionTimescale < 300) { float VAservo = 0.2f / m_verticalAttractionTimescale; // get present body rotation // make a vector pointing up Vector3 verterr = Vector3.Zero; verterr.Z = 1.0f; // rotate it to Body Angle verterr = verterr * rotq; // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. if (verterr.Z < 0.0f) { verterr.X = 2.0f - verterr.X; verterr.Y = 2.0f - verterr.Y; } // Error is 0 (no error) to +/- 2 (max error) // scale it by VAservo verterr = verterr * VAservo; //if (frcount == 0) Console.WriteLine("VAerr=" + verterr); // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. vertattr.X = verterr.Y; vertattr.Y = - verterr.X; vertattr.Z = 0f; // scaling appears better usingsquare-law float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); vertattr.X += bounce * angularVelocity.X; vertattr.Y += bounce * angularVelocity.Y; } // else vertical attractor is off // m_lastVertAttractor = vertattr; // Bank section tba // Deflection section tba // Sum velocities m_lastAngularVelocity = angularVelocity + vertattr; // + bank + deflection if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) { m_lastAngularVelocity.X = 0; m_lastAngularVelocity.Y = 0; } if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) { if (!d.BodyIsEnabled (Body)) d.BodyEnable (Body); } else { m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. } */ d.Mass dmass; d.BodyGetMass(Body,out dmass); if (force.X != 0 || force.Y != 0 || force.Z != 0) { force *= dmass.mass; d.BodySetForce(Body, force.X, force.Y, force.Z); } if (dtorque.X != 0 || dtorque.Y != 0 || dtorque.Z != 0) { d.MultiplyM3V3(out dvtmp, ref dmass.I, ref dtorque); d.BodyAddRelTorque(Body, dvtmp.X, dvtmp.Y, dvtmp.Z); // add torque in object frame } //end MoveAngular // limit rotations /* bool changed = false; if (m_RollreferenceFrame != Quaternion.Identity) { if (rotq.X >= m_RollreferenceFrame.X) { rot.X = rotq.X - (m_RollreferenceFrame.X / 2); } if (rotq.Y >= m_RollreferenceFrame.Y) { rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2); } if (rotq.X <= -m_RollreferenceFrame.X) { rot.X = rotq.X + (m_RollreferenceFrame.X / 2); } if (rotq.Y <= -m_RollreferenceFrame.Y) { rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2); } changed = true; } if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0) { rot.X = 0; rot.Y = 0; changed = true; } if (changed) d.BodySetQuaternion(Body, ref rot); */ } } }